

Equalizers and Intersections in the Category of Graphs

S. Buvaneswari*¹ and P. Alphonse Rajendran²

^{1, 2}Department of Mathematics, Periyar Maniammai University
Vallam, Thanjavur - 613403, Tamil Nadu, India
*Email: buvaneswari@pmu.edu

Abstract

If $f: G \rightarrow G_1$ is morphism in the category of Abelian Groups (OR $R\text{-mod}$, vector spaces etc.) then $\text{Ker } f = \{x \in G \mid f(x) = 0\}$ is indeed the equalizer of f and the zero morphism 0. A generalization of this idea is that of an equalizer of any two morphisms in any arbitrary category \mathcal{A} . In this paper we prove the existence of equalizers of any two homomorphisms in the category \mathcal{G} of graphs by actually constructing the same (up to isomorphism). Dually the coequalizer for morphisms f and g in \mathcal{G} is defined as the equalizer for f and g in the dual category \mathcal{G}^* . This is in fact a generalization of a quotient by an equivalence relation. It is clear that \mathcal{G} has coequalizers if and only if \mathcal{G}^* has equalizers. We prove by an example that \mathcal{G} does not have coequalizers. Finally we prove that \mathcal{G} has finite intersections also.

1. Introduction

A graph G consists of a pair $G = (V(G), E(G))$ (also written as $G = (V, E)$ whenever the context is clear) where $V(G)$ is a finite set whose elements are called vertices and $E(G)$ is a set of unordered pairs of distinct elements in $V(G)$ whose members are called edges. The graphs as we have defined above are called simple graphs. Throughout our discussions all graphs are considered to be simple graphs [1, 2].

Let G and G_1 be graphs. A homomorphism $f: G \rightarrow G_1$ is a pair $f = (f^*, \tilde{f})$ where $f^*: V(G) \rightarrow V(G_1)$ and $\tilde{f}: E(G) \rightarrow E(G_1)$ are functions such that $\tilde{f}((u, v)) = (f^*(u), f^*(v))$ for all edges $(u, v) \in E(G)$. For convenience if $(u, v) \in E(G)$ then $\tilde{f}((u, v))$ is simply denoted as $\tilde{f}((u, v))$ [3].

Then we have the category of graphs say \mathcal{G} , where objects are graphs and morphisms are as defined above, where equality, compositions and the identity morphisms are

defined in the natural way. It is also proved that two homomorphisms $f = (f^*, \tilde{f})$ and $g = (g^*, \tilde{g})$ of graphs are equal if and only if $f^* = g^*$ Lemma 1.6 [3].

2. Equalizers

Definition 2.1: Let $f, g : X \rightarrow Y$ be two given homomorphisms of graphs. Then a homomorphism $h : K \rightarrow X$ is said to be an equalizer for f and g if

- i) $fh = gh$ and
- ii) If $p : Z \rightarrow X$ is any graph homomorphism such that $fp = gp$ then there exists a unique homomorphism $q : Z \rightarrow K$ such that $hq = p$. (See Figure 2.1).

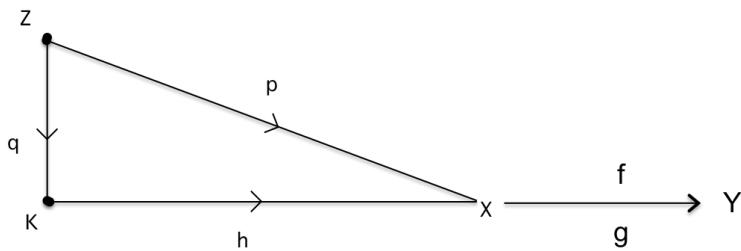


Figure 2.1

Proposition 2.2: The Category of graphs \mathcal{G} has equalizers [4, 5, 6].

Proof: Let $f, g : X \rightarrow Y$ be given homomorphisms of graphs. Let K be the graph with vertex set $V(K) = \{x_0 \in X / f(x) = g(x)\}$ and for all $u, v \in E(K)$, the edge $(u, v) \in E(K)$ if and only if (u, v) belongs to $V(X)$. Let $i_K = (i_{V(K)}^*, \tilde{i}_{E(K)})$ be the inclusion homomorphism.

Claim: $i_K : K \rightarrow X$ is an equalizer for f and g . Now for all $x \in K$

$$\begin{aligned}
 (f i_K)^*(x) &= f^* i_K^*(x) \\
 &= f^*(x) \\
 &= g^*(x) \\
 &= g^* i_K^*(x) \\
 &= (g i_K)^*(x)
 \end{aligned}$$

So that $(f i_K)^* = (g i_K)^*$. Hence by Lemma 1.6 in [3].

$f i_K = g i_K$ Which is (i) of Definition 2.1 (See Figure 2.2).

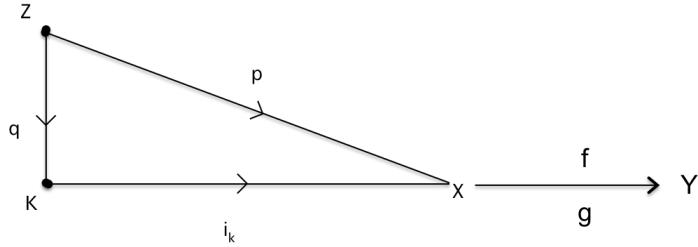


Figure 2.2

Suppose there exists a homomorphism of graphs $p : Z \rightarrow X$ such that $fp = gp$.

Then for all $\beta \in Z$, $f^*p^*(\beta) = g^*p^*(\beta)$ so that by definition of K , $p^*(\beta) \in V(K)$. So define a homomorphism $q : Z \rightarrow K$ as follows. $q^*(\beta) = p^*(\beta)$ for all $\beta \in Z$. Moreover if $(\beta_1, \beta_2) \in E(Z)$, then $(p^*(\beta_1), p^*(\beta_2)) \in E(X)$ (since p is a homomorphism) and hence $(p^*(\beta_1), p^*(\beta_2)) \in E(K)$ (by definition of $E(K)$). i.e. $(q^*(\beta_1), q^*(\beta_2)) \in E(K)$ so that $q : Z \rightarrow K$ is a homomorphism of graphs. Also by definition, for all $\beta \in Z$, $i_k^*q^*(\beta) = p^*(\beta)$ and so $i_kq = p$.

Further q is unique, for if there exists $q_1 : Z \rightarrow K$ such that $i_kq_1 = p$. Then $q_1 = i_kq_1 = p = i_kq = q$, proving the uniqueness. Hence \mathcal{G} has equalizers.

Remark 2.3: As in any category the following properties are true in \mathcal{G} [7, 8].

- i) If h is an equalizer for f and g then h is a monomorphism.
- ii) Any two equalizers for f and g are isomorphic subobjects of X . Hence we can talk about ‘the’ equalizer of two given homomorphisms.
- iii) $f = g$ if and only if 1_X is the equalizer for f and g .

Proposition 2.4: Let $f, g : X \rightarrow Y$ be homomorphisms of graphs and $h : K \rightarrow X$ be the equalizer for f and g . If h is also an epimorphism then h is an isomorphism (See Figure 2.3)[4, 5].

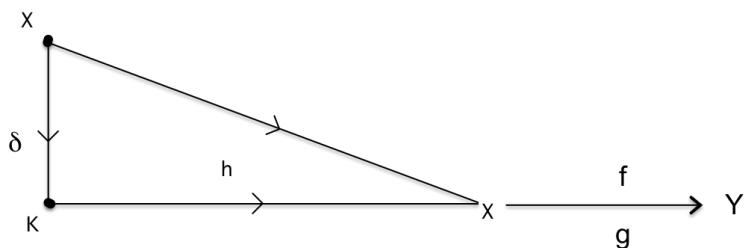


Figure 2.3

Proof: Given that h is an equalizer for f and g . Hence f is a monomorphism.

Moreover $fh=gh$ (by definition) and hence $f = g$ (since h is an epimorphism). Therefore by (iii) in Remark (2.3), 1_X is an equalizer for f and g . This shows that there exists a unique homomorphism $\delta : X \rightarrow K$ such that $h\delta = 1_X$. Therefore h is a retraction. Thus h is a monomorphism and also a retraction implies that h is an isomorphism (Proposition 5.1 in [3]).

3. Coequalizers

Definition 3.1: Let $f, g : X \rightarrow Y$ are two given homomorphism of graphs. Then a homomorphism $h : Y \rightarrow Z$ is said to be a coequalizer for f and g if

- i) $hf = hg$ and
- ii) if $h_1f = h_1g$ for some homomorphism $h_1 : Y \rightarrow Z_1$ then there exists a unique homomorphism $\gamma : Z \rightarrow Z_1$ such that $\gamma h = h_1$ (See Figure 3.1).

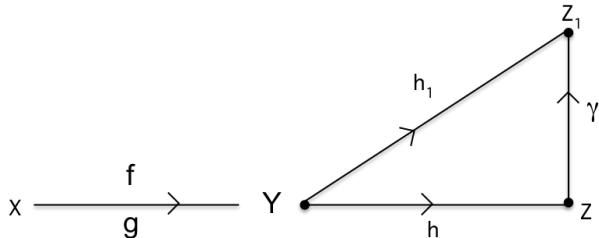


Figure 3.1

Remark 3.2: As for equalizers, we can prove the following statements for coequalizers [6].

- 1) If h is a coequalizer for f and g then h is an epimorphism.
- 2) Any two coequalizer for f and g are isomorphic graphs.
- 3) If h is a coequalizer for f and g and h is also a monomorphism then h is an isomorphism.
- 4) Every retraction is a coequalizer.

Definition 3.3: Let X, Y be arbitrary graphs in \mathcal{G} . If coequalizer for every pair of homomorphisms $f, g : X \rightarrow Y$ exists then \mathcal{G} is said to have coequalizers.

Remark 3.4: We have proved that the category \mathcal{G} has equalizers [6]. However this is not true in the case of coequalizers as the following example shows.

Example 3.5: Let X and Y be graphs where $V(X) = \{x\}$, $E(X) = \emptyset$; $V(Y) = \{y_1, y_2\}$, $E(Y) = \{(y_1, y_2)\}$ and $f, g : X \rightarrow Y$ Where $f^*(x) = y_1$ and $g^*(x) = y_2$ (See Figure 3.2).

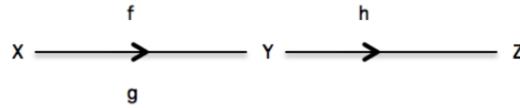


Figure 3.2

Suppose $h : Y \rightarrow Z$ is a coequalizer for f and g then $hf = hg$. Then $h^*f^*(x) = h^*g^*(x)$.

i.e. $h^*(y_1) = h^*(y_2) \dots (1)$ But (y_1, y_2) is an edge in Y implies that $\tilde{h}(y_1, y_2) = (h^*(y_1), h^*(y_2))$ is an edge in Z which is a contradiction by (1).

Therefore f and g do not have a coequalizer thus proving that \mathcal{G} does not have coequalizers.

4. Intersection

Definition 4.1: Let $\{u_i : A_i \rightarrow A\}$ be a family of subgraphs of A . A morphism $u : B \rightarrow A$ is called the intersection of the family if

- i) for each $i \in I$ we can write $u = u_i v_i$ for some morphism $v_i : B \rightarrow A_i$ and
- ii) if every morphism $C \rightarrow A$ which factors through each u_i factors uniquely through u (See Figure 4.1a&4.1b).

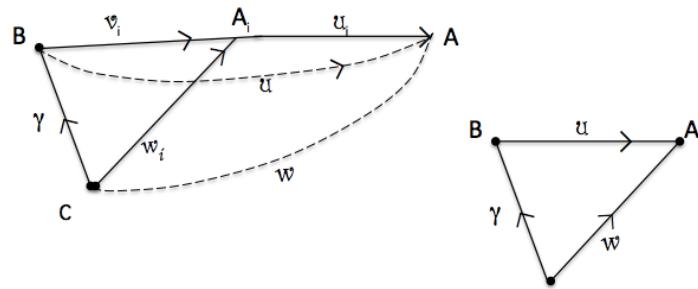


Figure 4.1a

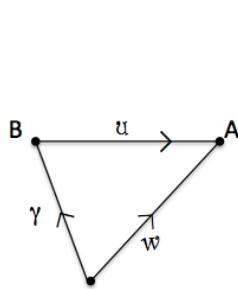


Figure 4.1b

Remark 4.2:

- 1) By definition of subgraphs, each u_i is a monomorphism and hence u_i^* is injective.
- 2) The morphism u in the definition is also a monomorphism. For $u\gamma_1 = u\gamma_2$ for $\gamma_1, \gamma_2 : C \rightarrow B$, then $u_i v_i \gamma_1 = u_i v_i \gamma_2$. Hence $v_i \gamma_1 = v_i \gamma_2$ (since u_i is a monomorphism). Take $w_i = v_i \gamma_1 = v_i \gamma_2$ and $w = u_i v_i \gamma_1 = u_i v_i \gamma_2$. Then by uniqueness in the definition $\gamma_1 = \gamma_2$. So that u is a monomorphism.

- 3) Since $u = u_i v_i$ is a monomorphism each v_i is a monomorphism.
- 4) Any two intersections of a given family are isomorphism.

Proposition 4.3: The Category of graphs \mathcal{G} has finite intersections [6].

Proof: Let $\{u_i : A_i \rightarrow A\}_{i=1 \text{ to } n}$ be a finite set of subgraphs of A . Then by the definition of subobjects, each $u_i : A_i \rightarrow A$ is a monomorphism and hence $u_i^* : V(A_i) \rightarrow V(A)$ is injective [3].

Consider the graph B , where $V(B) = \bigcap_{i=1}^n u_i^*(V(A_i)) \subseteq V(A)$.

If $x_1, x_2 \in V(B)$ then $x_1, x_2 \in u_i^*(V(A_i))$ for each $i = 1 \text{ to } n$.

So define (x_1, x_2) is an edge in B if and only if (x_1, x_2) is an edge in A_i for all i .

Consider the graph B . we define a homomorphism $v_i : B \rightarrow A_i (i = 1 \text{ to } n)$ as follows:

If $x \in V(B)$ then $x \in u_i^*(V(A_i))$ for each i . Hence there is a unique $y_i \in V(A_i)$ such that $x = u_i^*(y_i) \dots (1)$. Define $v_i^* : V(B) \rightarrow V(A_i)$ by $v_i^*(x) = y_i$. Clearly $v_i : B \rightarrow A_i$ is a homomorphism. Let $u : B \rightarrow A$ be defined as $u = u_i v_i \dots (2)$

Then for all $x \in V(B)$, $u^*(x) = u_i^* v_i^*(x) = u_i^*(y_i) = x$ by (1)

Thus

$u^*(x) = x$ for all $x \in B \dots (3)$ [i. e. $u^* : V(B) \rightarrow V(A)$ is the inclusion map]

Claim 1: B is the intersection of the given family. Suppose there exists a morphism $w : C \rightarrow A$ such that $w = u_i w_i (i = 1 \text{ to } n)$ for some morphisms $w_i : C \rightarrow A_i$ (Refer Figures 4.1a & 4.1b).

Define $\gamma : C \rightarrow A$ as follows. $\gamma^* : V(C) \rightarrow V(A)$ where $\gamma^*(\beta) = w^*(\beta)$ for all $\beta \in C$.

Since w is a homomorphism, it preserves edges in C and so does γ^* and hence γ is a homomorphism.

Moreover $u^* \gamma^*(\beta) = u^*(w^*(\beta)) = w^*(\beta)$ by... (3). Hence $u\gamma = w$ (by Lemma 1.6 in [3]).

Claim 2: Suppose there exists $\delta : C \rightarrow B$ such that $u\delta = w$. Then for all $\beta \in V(B)$,

$\gamma^*(\beta) = w^*(\beta)$ by definition

$= u^* \delta^*(\beta)$ (by assumption)

$= \delta^*(\beta)$ [since u^* is the inclusion]

and so $\gamma = \delta$ proving the uniqueness of γ . Thus \mathcal{G} has finite intersections.

5. Conclusion

Hence the existence of equalizers of any two homomorphisms in the category \mathcal{G} of graphs is proved. It is also proved by example that \mathcal{G} does not have coequalizers and \mathcal{G} has finite intersection.

Acknowledgement

The authors thank the anonymous referees.

REFERENCES

- [1] Godsil, C and Royle, G., 2001 Algebraic Graph Theory, Springer-Verlag, New York NY.
- [2] Balakrishnan, V.K., 1997 Schaum's Outline of Graph Theory: Including Hundreds of Solved Problems, Schaum's Outline Series.
- [3] Buvaneswari, S and Alphonse Rajendran, P., 2015 "A study on Category of Graphs", *IOSR Journal of Mathematics (IOSR-JM)*, 11(4), pp.38-46.
- [4] Porselvi Agnes, A.R., 2012 A study on the Category of Fuzzy Sets and Fuzzy Structures, Ph.D., Dissertation, Manonmaniam Sundaranar University, India.
- [5] Porselvi Agnes, A.R., Sivaraj, D and Tamizhchelvam, T. 2010 "On a new Category of Fuzzy Sets" *Journal of Advanced Research in Pure Mathematics*, 2(4), pp. 73-83.
- [6] Vijayalakshmi, P and Alphonse Rajendran, P., 2015 "Intersections and Pullbacks, *IOSR Journal of Mathematics (IOSR-JM)*, 11(2), pp. 61-69.
- [7] Awodey, S., 2006 Category Theory, Clarendon Press; Oxford University Press Inc., New York, NY.
- [8] Mitchell, B., 1965 Theory of categories, Academic Press, New York and London.

