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Abstract 

 

If f: G G1 is morphism in the category of Abelian Groups (OR R-mod, 

vector spaces etc.) then Kerf ={ 0)(/ xfGx } is indeed the equalizer of f 

and the zero morphism 0. A generalization of this idea is that of an equalizer 

of any two morphisms in any arbitrary category A.  In this paper we prove the 

existence of equalizers of any two homomorphisms in the category G of 
graphs by actually constructing the same (up to isomorphism). Dually the 

coequalizer for morphisms f and g in G is defined as the equalizer for f and g 

in the dual category G*. This is in fact a generalization of a quotient by an 

equivalence relation. It is clear that G  has coequalizers if and only if G* has 

equalizers. We prove by an example that G does not have coequalizers. 

Finally we prove that G  has finite intersections also. 
 

 

1. Introduction 

A graph G consists of a pair G = (V(G), E(G) ) ( also written as G = (V, E) whenever 

the context is clear) where V(G) is a finite set whose elements are called vertices and 

E(G) is a set of unordered pairs of distinct elements in V(G) whose members are 
called edges. The graphs as we have defined above are called simple graphs. 

Throughout our discussions all graphs are considered to be simple graphs [1, 2]. 

Let G and G1 be graphs. A homomorphisms f: G G1 is a pair )
~

,( fff  where 

f*: V(G) V(G1) and f
~

: E(G) E(G1) are functions such that 

f
~

((u, v)) = ( f (u), f (v)) for all edges (u, v) E(G). For convenience if 

(u, v) E (G) then f
~

((u, v)) is simply denoted as f
~

((u, v)) [3]. 

Then we have the category of graphs say G, where objects are graphs and morphisms 
are as defined above, where equality, compositions and the identity morphisms are 
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defined in the natural way. It is also proved that two homomorphisms )
~

,( fff and 

)~,( ggg  of graphs are equal if and only if f  = g Lemma 1.6 [3]. 
 

 

2. Equalizers 

Definition 2.1: Let YXgf :, be two given homomorphisms of graphs. Then a 

homomorphism XKh:  is said to be an equalizer for f and g if 

i) f h = g h and 

ii) If XZp :  is any graph homomorphism such that f p = g p then there exists 

a unique homomorphism KZq :  such that h q = p. (See Figure 2.1). 

 

 
 

Figure 2.1 

 

 

Proposition 2.2: The Category of graphs G has equalizers [4, 5, 6]. 

 

Proof: Let f , g :X®Y  be given homomorphisms of graphs. Let K be the graph with 

vertex set })()(/{)( 0 xgxfXxKV and for all )(, KEvu , the edge

)(),( KEvu if and only if (u, v) belongs to V(X). Let )
~

,( )()( KEK iii
KV

 be the 

inclusion homomorphism. 

 

Claim: XKiK : is an equalizer for f and g. Now for all Kx  

)()(

)(

)(

)(

)()()(

xig

xig

xg

xf

xifxif

K

K

KK

 

So that )()( KK igif . Hence by Lemma 1.6 in [3]. 

KK igif Which is (i) of Definition 2.1 (See Figure 2.2). 
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Figure 2.2 

 

 

Suppose there exists a homomorphism of graphs  such that f p = g p. 

Then for all Z Z , Z) = Z) so that by definition of K, Z) V(K). So 

define a homomorphism as follows. Z) = Z) for all Z Z. Moreover 

if (Z1, Z2) E(Z), then ( p* (Z1), p* (Z2)) E(X) (since p is a homomorphism) and 

hence (p* (Z1), p* (Z2)) E(K) (by definition of E(K)). i.e. (q* (Z1), q* (Z2)) E (K) 

so that  is a homomorphism of graphs. Also by definition, for all Z Z , 

(qik
Z) = Z) and so ki q = p. 

Further q is unique, for if there exists  such that ki q1 = p. Then 

,11 qqipqiq kk  
proving the uniqueness. Hence G has equalizers. 

 

Remark 2.3: As in any category the following properties are true in G [7, 8]. 
i) If h is an equalizer for f and g then h is a monomorphism. 

ii) Any two equalizers for f and g are isomorphic subobjects of X. Hence we can 
talk about „the‟ equalizer of two given homomorphisms. 

iii) f = g if and only if 1X is the equalizer for f and g. 

 

Proposition 2.4: Let  be homomorphism of graphs and  be the 
equalizer for f and g. If h is also an epimorphism then h is an isomorphism (See 

Figure 2.3)[4, 5]. 

 

 
 

Figure 2.3 
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Proof: Given that h is an equalizer for f and g. Hence f is a monomorphism. 
Moreover fh=gh (by definition) and hence f = g (since h is an epimorphism). 

Therefore by (iii) in Remark (2.3), 1X is an equalizer for f and g. This shows that there 

exists a unique homomorphism  such that Therefore h is a 
retraction. Thus h is a monomorphism and also a retraction implies that h is an 

isomorphism (Proposition 5.1 in [3]). 

 

3. Coequalizers 

Definition 3.1: Let are two given homomorphism of graphs. Then a 

homomorphism  is said to be a coequalizer for f and g if 

i) and 

ii) for some homomorphism  then there exists a 

unique homomorphism  such that  (See Figure 3.1). 

 

 
 

Figure 3.1 

 

 

Remark 3.2: As for equalizers, we can prove the following statements for 

coequalizers [6]. 
1) If h is a coequalizer for f and g then h is an epimorphism. 

2) Any two coequalizer for f and g are isomorphic graphs. 

3) If h is a coequalizer for f and g and h is also a monomorphism then h is an 

isomorphism. 
4) Every retraction is a coequalizer. 

 

Definition 3.3: Let X, Y be arbitrary graphs in G. If coequalizer for every pair of 

homomrphisms exists then G is said to have coequalizers. 

 

Remark 3.4: We have proved that the category G has equalizers [6]. However this is 
not true in the case of coequalizers as the following example shows. 

 
Example 3.5: Let X and Y be graphs where V(X) = {x}, E(X) = ф ; 

V(Y) = { y1, y2 }, E(Y) = {(y1, y2)}and Where

 (See Figure 3.2). 
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Figure 3.2 

 

 

Suppose  is a coequalizer for f and g then hf = hg. Then

. 

i.e. …(1) But (y1, y2) is an edge in Y implies that 

is an edge in Z which is a contradiction by (1). 

Therefore f and g do not have a coequalizer thus proving that G does not have 

coequalizers. 

 

 

4. Intersection 

Definition 4.1: Let  be a family of subgraphs of A. A morphism

 is called the intersection of the family if 

i) for each  we can write  for some morphism  and 

ii) if every morphism  which factors through each  factors uniquely 

through u (See Figure 4.1a&4.1b). 

 

 
 

Figure 4.1a                               Figure 4.1b 

 

 

Remark 4.2: 

1) By definition of subgraphs, each  is a monomorphism and hence * is 
injective. 

2) The morphism u in the definition is also a monomorphism. For  for 

Hence  (since  is a 

monomorphism). Take  Then by 

uniqueness in the definition . So that u is a monomorphism. 
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3)  Since  is a monomorphism each  is a monomorphism. 
4)  Any two intersections of a given family are isomorphism. 

 

Proposition 4.3: The Category of graphs G has finite intersections [6]. 
 

Proof:  be a finite set of subgraphs of A. Then by the 

definition of subobjects, each  is a monomorphism and hence 

 is injective [3]. 

Consider the graph B, where 
n

i

ii AVAVuBV
1

)())(()( . 

If  for each i = 1 to n. 

So define  is an edge in B if and only if  is an edge in Ai for all i. 

Consider the graph B. we define a homomorphism  as follows: 

If  Hence there is a unique  

such that . Define  by  

 is a homomorphism. Let  be defined as 

 
Then for all  

Thus 

 
. 

 
Claim 1: B is the intersection of the given family. Suppose there exists a 

morphism  such that  for some morphisms 

 (Refer Figures 4.1a & 4.1b). 

Define  as follows. (Z) = (Z) for all Z . 

Since  is a homomorphism, it preserves edges in C and so does  and hence  is a 
homomorphism. 

Moreover (Z) = (Z)) = (Z) by... (3). Hence  (by Lemma 1.6 in 

[3]). 

 

Claim 2: Suppose there exists such that Then for all Z V (B),  

(Z) = (Z) by definition 

= (Z) (by assumption) 

= (Z) [since  is the inclusion] 

and so  proving the uniqueness of . Thus G has finite intersections. 

 

 

5. Conclusion 

Hence the existence of equalizers of any two homomorphisms in the category G of 

graphs is proved. It is also proved by example that G does not have coequalizers and 

G has finite intersection. 
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