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Abstract

In this paper, we consider various higher order special mixed-type polynomials
which are related to Bernoulli, Euler, Daechee, Changhee associated with Boole
polynomials. From those polynomials, we investigate some interesting properties
of higher order special mixed-type polynomials related to Boole polynomials.
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1. Introduction

Let p be an odd prime number. Z,, Q, and C, will denote the ring of p-adic integers,
the field of p-adic numbers and the completion of algebraic closure of Q,. The p-adic

1
norm | - |, is normalized by |p|, = —. If ¢ € C, one normally assumes that |g| < 1.
4
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1

If ¢ € C,, then we assume that |g — 1|, < p 7~ so that ¢g* = exp(x logg) for each
x € Zp. Let UD(Z,) be the space of uniformly differentiable function on Z,. For

f € UD(Zp), the bosonic p-adic integral on Z, is defined by

1P
W) = [ Fwdio@ = tim —5 3 pw, @12p. (D
4 x=0

and the fermionic p-adic integral on Z, is defined by

pN—1

1-1(f) =f fdp—i(x) = ngnoo Z DY, (1L,3,7]).
x=0

Zy

From (1.1), we have
Io(f1) = Io(f) + f'(0),  ([2-7,10]).

where fi(x) = f(x + 1).
By using iterative method, we get

n—1

Io(f) = Io())+ ) f'G6).

i=0

where f,(x) = f(x +n), (n € N).
From (1.2), we have

L (fy) +1(f) =27(0), ([7.11D.

where fi1(x) = f(x + 1).
By using iterative method, we get

n—1

() + D" =2) =D,

=0

where f,(x) = f(x +n), (n € N).

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

As is known,the Boole polynomials of order r are defined by the generating function

to be

1
(1+(1+r)k

' f N oy
) (1+1) _’;)Bln (xl)»)m, ([13,14])

(1.7)

The Bernoulli polynomials of order r are defined by the generating function to be

t Y — ), 1"

xt __ r v

Q_Je_QmuM,
n=

(1.8)
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We recall that the Euler polynomials of order r are defined by the generating function to

be -
2 rexf = § :E<’>(x)ﬁ (1.9)
el +1 —~ " n!’ )

The Daehee polynomials of order r are defined by the generating function to be

log (1+1)\" R N
(7> (1+1) =’§D,§)(x)a, (1.10)

Finally, the Changhee polynomials of order r are defined by the generating function to
be

2\ > 1"
(t-l——2) (141" = ZCh,([)(x);, (1.11)
n=0 ’

The Stirling number of the first kind is defined by

(X)n :x(x—1)--~(x—n+1):ZSl(n,l)xl. (1.12)
=0
Note that N .
A+ =Y (Z (’;>C,(”(x)D,§’_),> % (1.13)
n=0 \[=0 ’
and -
X tn
(1+1) =’§(x)nm. (1.14)
From (1.13) and (1.14), we have
=Y (7)0}”@)1),5’_)1. (1.15)
=0

Special polynomials are very important in mathematics. Because of their remarkable
properties, special polynomials have been used for centuries. For instance, since they
have numerous applications in complex analysis and mathematical physics and astron-
omy, trigonometric functions have been studied for over a thousand years. Even the
series expansions for sine and cosine were known to Madhava in the fourteen century.
These series were rediscovered by Newton and Leibniz in the seventeen century. Since
then, the theory of special polynomials has been continuously developed with contribu-
tions by a host of mathematicians, including Euler, Bernoulli, Legendre, Laplace, Gauss,
Kummer, Eisenstein, Riemann, Jacobian, Chebyshev, Ramanujan, and so on.

In the past years,the development of new special polynomials and applications of
special polynomials to new areas of mathematics have initiated a resurgence of interest
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in the numerical analysis and number theory,combinatorics,quantum field theory, and so
on (see [1-14]). Moreover, in recent years, the various generalizations of the familiar
special polynomials have been defined by using p-adic g-integral on Z, and p-adic
fermionic g-deformed integrals on Z, introduced and investigated by Kim (see [2, 4,
5-8]).

In this paper, we consider various special higher order mixed-type polynomials which
are related to Bernoulli, Euler, Dachee, Changhee associated with Boole polynomials of
order r. From those polynomials, we investigate some interesting properties of special
higher order mixed-type polynomials.

2. The higher order mixed-type special polynomials related to Boole
polynomials

Let us consider the higher order Boole-Bernoulli mixed-type polynomials of order (r, s)
as follows:

BB (x|1) = f f BY) (uxt + -+ Axy + 0)dp1 (1) - dp—1 (), (2.1)
Zp ZLp

where BI" (x) is Boole polynomials of order r and B,(ls )(x) is Bernoulli polynomials of
order s.
Then, we can find the generating function of Bl B, (x|A) as follows:

o0 tn
§ BIB\"™ (x|A)—
n!

n=0

0
tl’l
=f f S B x4 ) Sdp () dp (1)
Zp Zp =0 n.

¢ N
B <ez_1> fz /Z (L4 )P0 d () - d e (xy)
p p

o\ 1 : .
:(ef—l) (1+(1+t)k) -+

From(1.13), we get

t\° 1 r o " (n "
141" = B® BRI c”x)p" | —.
(ef—l) <1+(1+t)}‘> 1+ Z( noo l;: Y ey

n=0 ’
(2.3)

(2.2)

Note that

n

B® (uxy + -+ Ax, +x) :Z(
=0

n

I)B,is_)z()»xl +o A ax +x), (2.4)
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From (2.1) and (2.4), we get

o0
BB = [ o [ Y B Gw ey 0 ) di )
z, Jz

P n=0

|
NE

n X
<Z>AZB,§S_>If f (C4x+ - x) () - dpo ()
Z, z, M

N\ ipGs) ) X
(1))‘ B E -

=0

= |l

1=0
(2.5)

Therefore, by (2.5), we obtain the following theorem.

Theorem 2.1. Forn € N, we have

n

msg i =3 (7 BB
=0

Now, we consider the higher order Boole-Euler mixed-type polynomials of order (r, )
as follows:

BlEr(l”S)(xM):fZ /Z E® Oy 44 ax, + x)du_1(x1) - - -dp_1(x,), (2.6)
P P

where Bl (x) is Boole polynomials of order r and E*)(x) is the Euler polynomials of
order s.
Then, we can find the generating function of BlE,gr ) (x|1) as follows:

o0 tn
> BIES (x| —

n!
n=0

o0
t}’l
Zf / ZEIES)()"XI+"'+)"xr+x)_'d““—1(xl)"'d:u—l(xr)
Zp  JZp 2o n (2.7)

2 N
:(, 1) / f (1 )20y () - dpe ()
e+ ZP Z[’

B 2 \* 1 rl o
_<e’+1) (1+(1+z)k)(+)'

From (1.13), we get

2\ 1 d > " (n 1"
_ ) g7 ) )
<ef + 1) (1 +( +t)k) A+t =2 (E B ) (Z)CI (X)D"—l) n!’

n=0 1=0
(2.8)
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Note that

n

EWOx) + -4 Ax, +x) = Z(
=0

n

l)Ef_),(Axl e Ax 4 1) (2.9)

From (2.6) and (2.9), we get

o0
BlE,i””@'”:/Z fZ DCED G+ hxe A x)dp1(x) - dpp (xr)
P

P n=0

n
n X
( )klE,(f_),/ o | GAxi 4 x) dp g () - d e (x)
0 l Zp 7 A

N p® g X
<l)x E”E’ (-

l

Sl

=0
(2.10)

Therefore, by (2.10), we obtain the following theorem.

Theorem 2.2. For n € N, we have

n

B am =3 (W ELED G
=0

Let us consider the higher order Boole-Daehee mixed-type polynomials of order
(r, s) as follows:

BlD,(,”s)(xlk)z/Z /Z DY Guxy 4+ ax, +x)dp_1(x)) - - -dpu_1(x,). (2.11)
P P

where Bl (x) is Boole polynomials of order r and D,(ls )(x) is the Dachee polynomials
of order s.
Then, we can find the generating function of BlD,(f $)(x|2) as follows:

(0,0 tn
> BIDIY (x|0)—
n!

n=0

o0
z.n
=/ / ZD,SS)()»ler---Jrer+x)—,du_1(X1)---du_1(xr)
ZLp Zp n=0 n.

log(1+1)\"
=<M) f oG s () - d e ()
t Z, Z,

B log(1+1)\* 1 g N
= () () a0

(2.12)
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Note that
" n
DY (xt 4+ Axp +x) =Y <Z>ij_),(xx1 o A ) (2.13)
=0
and

(log(l +I)S> a —|—Z)x _ ( lOg(l +1) )sexlog(l-l—t)
¢ 1

elog(1+1) _

(log(1 +1))"

=Y B ()
— m!
o o o (2.14)
— Z;)Bg)(x); S1(n,m)—
o0 n M
=Y (Z B (x)S)(n, m)> —.
n=0 \m=0 n:

From (2.11) and (2.13) and (2.14), we get

BlD,gm)(xM):f f DO (xy + -+ Ax, + x)dp_1(x1) - - dp_q(x,)
Z, Z,

(2.15)
and
BID{(x|2) = Y B (x)S1(n, m)BI" (x| ). (2.16)
m=0
Therefore, by (2.15) and (2.16), we obtain the following theorem.
Theorem 2.3. Forn € N, we have
" n
BIDI(x[3) =) (l>D,§S_),Bl}’) (x|1)
=0 (2.17)

=" B ()S1(n, m)Bl” (x|,

m=0
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Now, we consider the higher order Boole-Changhee mixed-type polynomials of order
(r, s) as follows:

BlChff’s)(xM):fZ /Z ChY (hxy 4 -+ 4 Ax, +x)dp_1(x1) - - dp—y (x,).

(2.18)
where Bl (x) is Boole polynomials of orderrand Ch ,(f) (x) 1s the Changhee polynomials
of order s.

Then, we can find the generating function of BlCh,([ ) (x|2) as follows:

Z BICh" Y>(x|)\)—

n=0

-] S CHY Gty s ) it (50 die )
Zp p=0 (2.19)

2 S
=(—> / e xrF A A x)dp—(xq) - d ey (xy)
t+2 7 7
P P

+
= 2 )S( ! rl 1)
_(r+2 1+(1-|-t)k) (0%

Note that

n

ChY) (oxy 4 -+ dxy ) = Y <l) I Ot o h 0, (2.20)
=0

and

2\’ 2 s loe(l
X _ xlog(1+t)
(—t _|_2) (141" = <—elog(1+t) n 1> e

Z E,Sf)(x) (log(1 +1)™

m!

=) E)W Z S1(n, m)—

m=0 n=m

=Y (Z EY (x)S;(n, m)) ;—n‘

(2.21)
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From (2.18) and (2.20) and (2.21), we get
BICh") (x|A)

tn
=/ f Chff)(/\m+---+/\xr+x);du—1(m)---du—1(xr)
Zp Zp ’

n

n
= (Z)Chf:l,/ / (Axy+ -+ A+ x)dpo1 () - dp ()
1=0 Zp Zp

n
('Z) ch BI" (x|1).

[=0
(2.22)
and
n
BID{(x[3) = Y ER (x)S1(n. m)BI" (x|1). (2.23)
m=0
Therefore, by (2.22) and (2.23), we obtain the following theorem.
Theorem 2.4. For n € N, we have
" n
BICh{™(x|2) =) (l)Ch,SYj,Bz;’)(xm
=0 (2.24)
=Y ER ()81 (n.m)BI" (x|1).
m=0
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