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Abstract

In this paper, we consider various higher order special mixed-type polynomials
which are related to Bernoulli, Euler, Daehee, Changhee associated with Boole
polynomials. From those polynomials, we investigate some interesting properties
of higher order special mixed-type polynomials related to Boole polynomials.
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1. Introduction

Let p be an odd prime number. Zp, Qp and Cp will denote the ring of p-adic integers,
the field of p-adic numbers and the completion of algebraic closure of Qp. The p-adic

norm | · |p is normalized by |p|p = 1

p
. If q ∈ C, one normally assumes that |q| < 1.

1Corresponding author.
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If q ∈ Cp, then we assume that |q − 1|p < p
− 1

p−1 so that qx = exp(x log q) for each
x ∈ Zp. Let UD(Zp) be the space of uniformly differentiable function on Zp. For
f ∈ UD(Zp), the bosonic p-adic integral on Zp is defined by

I0(f ) =
∫

Zp

f (x)dµ0(x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x), ([4,9,12]). (1.1)

and the fermionic p-adic integral on Zp is defined by

I−1(f ) =
∫

Zp

f (x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

f (x)(−1)x, ([1,3,7]). (1.2)

From (1.1), we have

I0(f1) = I0(f ) + f ′(0), ([2-7,10]). (1.3)

where f1(x) = f (x + 1).
By using iterative method, we get

I0(fn) = I0(f ) +
n−1∑
i=0

f ′(i). (1.4)

where fn(x) = f (x + n), (n ∈ N).
From (1.2), we have

I−1(f1) + I−1(f ) = 2f (0), ([7,11]). (1.5)

where f1(x) = f (x + 1).
By using iterative method, we get

I−1(fn) + (−1)n−1I−1(f ) = 2
n−1∑
l=0

(−1)n−l−1f (l), (1.6)

where fn(x) = f (x + n), (n ∈ N).
As is known,the Boole polynomials of order r are defined by the generating function

to be (
1

1 + (1 + t)λ

)r

(1 + t)x =
∞∑

n=0

Bl(r)n (x|λ)
tn

n! , ([13,14]) (1.7)

The Bernoulli polynomials of order r are defined by the generating function to be

(
t

et − 1

)r

ext =
∞∑

n=0

B(r)
n (x)

tn

n! , (1.8)
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We recall that the Euler polynomials of order r are defined by the generating function to
be (

2

et + 1

)r

ext =
∞∑

n=0

E(r)
n (x)

tn

n! , (1.9)

The Daehee polynomials of order r are defined by the generating function to be

(
log (1 + t)

t

)r

(1 + t)x =
∞∑

n=0

D(r)
n (x)

tn

n! , (1.10)

Finally, the Changhee polynomials of order r are defined by the generating function to
be (

2

t + 2

)r

(1 + t)x =
∞∑

n=0

Ch(r)
n (x)

tn

n! , (1.11)

The Stirling number of the first kind is defined by

(x)n = x(x − 1) · · · (x − n + 1) =
n∑

l=0

S1(n, l)xl. (1.12)

Note that

(1 + t)x =
∞∑

n=0

(
n∑

l=0

(
n

l

)
C

(r)
l (x)D

(r)
n−l

)
tn

n! . (1.13)

and

(1 + t)x =
∞∑

n=0

(x)n
tn

n! . (1.14)

From (1.13) and (1.14), we have

(x)n =
n∑

l=0

(
n

l

)
C

(r)
l (x)D

(r)
n−l . (1.15)

Special polynomials are very important in mathematics. Because of their remarkable
properties, special polynomials have been used for centuries. For instance, since they
have numerous applications in complex analysis and mathematical physics and astron-
omy, trigonometric functions have been studied for over a thousand years. Even the
series expansions for sine and cosine were known to Madhava in the fourteen century.
These series were rediscovered by Newton and Leibniz in the seventeen century. Since
then, the theory of special polynomials has been continuously developed with contribu-
tions by a host of mathematicians, including Euler, Bernoulli, Legendre, Laplace, Gauss,
Kummer, Eisenstein, Riemann, Jacobian, Chebyshev, Ramanujan, and so on.

In the past years,the development of new special polynomials and applications of
special polynomials to new areas of mathematics have initiated a resurgence of interest
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in the numerical analysis and number theory,combinatorics,quantum field theory, and so
on (see [1-14]). Moreover, in recent years, the various generalizations of the familiar
special polynomials have been defined by using p-adic q-integral on Zp and p-adic
fermionic q-deformed integrals on Zp introduced and investigated by Kim (see [2, 4,
5-8]).

In this paper, we consider various special higher order mixed-type polynomials which
are related to Bernoulli, Euler, Daehee, Changhee associated with Boole polynomials of
order r. From those polynomials, we investigate some interesting properties of special
higher order mixed-type polynomials.

2. The higher order mixed-type special polynomials related to Boole
polynomials

Let us consider the higher order Boole-Bernoulli mixed-type polynomials of order (r, s)

as follows:

BlB(r,s)
n (x|λ) =

∫
Zp

· · ·
∫

Zp

B(s)
n (λx1 + · · · + λxr + x)dµ−1(x1) · · · dµ−1(xr), (2.1)

where Bl(r)(x) is Boole polynomials of order r and B(s)
n (x) is Bernoulli polynomials of

order s.
Then, we can find the generating function of BlBn(x|λ) as follows:

∞∑
n=0

BlB(r,s)
n (x|λ)

tn

n!

=
∫

Zp

· · ·
∫

Zp

∞∑
n=0

B(s)
n (λx1 + · · · + λxr + x)

tn

n!dµ−1(x1) · · · dµ−1(xr)

=
(

t

et − 1

)s ∫
Zp

· · ·
∫

Zp

(1 + t)(λx1+···+λxr+x)dµ−1(x1) · · · dµ−1(xr)

=
(

t

et − 1

)s (
1

1 + (1 + t)λ

)r

(1 + t)x.

(2.2)

From(1.13), we get

(
t

et − 1

)s (
1

1 + (1 + t)λ

)r

(1 + t)x =
∞∑

n=0

(
B(s)

n Bl(r)n

n∑
l=0

(
n

l

)
C

(r)
l (x)D

(r)
n−l

)
tn

n! .
(2.3)

Note that

B(s)
n (λx1 + · · · + λxr + x) =

n∑
l=0

(
n

l

)
B

(s)
n−l(λx1 + · · · + λxr + x)l, (2.4)
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From (2.1) and (2.4), we get

BlB(r,s)
n (x|λ) =

∫
Zp

· · ·
∫

Zp

∞∑
n=0

B(s)
n (λx1 + · · · + λxr + x)dµ−1(x1) · · · dµ−1(xr)

=
n∑

l=0

(
n

l

)
λlB

(s)
n−l

∫
Zp

· · ·
∫

Zp

(
x

λ
+ x1 + · · · + xr)

ldµ−1(x1) · · · dµ−1(xr)

=
n∑

l=0

(
n

l

)
λlB

(s)
n−lE

(r)
l (

x

λ
).

(2.5)

Therefore, by (2.5), we obtain the following theorem.

Theorem 2.1. For n ∈ N, we have

BlB(r,s)
n (x|λ) =

n∑
l=0

(
n

l

)
λlB

(s)
n−lE

(r)
l (

x

λ
).

Now, we consider the higher order Boole-Euler mixed-type polynomials of order (r, s)

as follows:

BlE(r,s)
n (x|λ) =

∫
Zp

· · ·
∫

Zp

E(s)
n (λx1 + · · · + λxr + x)dµ−1(x1) · · · dµ−1(xr), (2.6)

where Bl(r)(x) is Boole polynomials of order r and E(s)
n (x) is the Euler polynomials of

order s.
Then, we can find the generating function of BlE(r,s)

n (x|λ) as follows:

∞∑
n=0

BlE(r,s)
n (x|λ)

tn

n!

=
∫

Zp

· · ·
∫

Zp

∞∑
n=0

E(s)
n (λx1 + · · · + λxr + x)

tn

n!dµ−1(x1) · · · dµ−1(xr)

=
(

2

et + 1

)s ∫
Zp

· · ·
∫

Zp

(1 + t)(λx1+···+λxr+x)dµ−1(x1) · · · dµ−1(xr)

=
(

2

et + 1

)s (
1

1 + (1 + t)λ

)r

(1 + t)x.

(2.7)

From (1.13), we get(
2

et + 1

)s (
1

1 + (1 + t)λ

)r

(1 + t)x =
∞∑

n=0

(
E(s)

n Bl(r)n

n∑
l=0

(
n

l

)
C

(r)
l (x)D

(r)
n−l

)
tn

n! .
(2.8)
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Note that

E(s)
n (λx1 + · · · + λxr + x) =

n∑
l=0

(
n

l

)
E

(s)
n−l(λx1 + · · · + λxr + x)l, (2.9)

From (2.6) and (2.9), we get

BlE(r,s)
n (x|λ) =

∫
Zp

· · ·
∫

Zp

∞∑
n=0

E(s)
n (λx1 + · · · + λxr + x)dµ−1(x1) · · · dµ−1(xr)

=
n∑

l=0

(
n

l

)
λlE

(s)
n−l

∫
Zp

· · ·
∫

Zp

(
x

λ
+ x1 + · · · + xr)

ldµ−1(x1) · · · dµ−1(xr)

=
n∑

l=0

(
n

l

)
λlE

(s)
n−lE

(r)
l (

x

λ
).

(2.10)

Therefore, by (2.10), we obtain the following theorem.

Theorem 2.2. For n ∈ N, we have

BlE(r,s)
n (x|λ) =

n∑
l=0

(
n

l

)
λlE

(s)
n−lE

(r)
l (

x

λ
).

Let us consider the higher order Boole-Daehee mixed-type polynomials of order
(r, s) as follows:

BlD(r,s)
n (x|λ) =

∫
Zp

· · ·
∫

Zp

D(s)
n (λx1 +· · ·+λxr +x)dµ−1(x1) · · · dµ−1(xr). (2.11)

where Bl(r)(x) is Boole polynomials of order r and D(s)
n (x) is the Daehee polynomials

of order s.
Then, we can find the generating function of BlD(r,s)

n (x|λ) as follows:

∞∑
n=0

BlD(r,s)
n (x|λ)

tn

n!

=
∫

Zp

· · ·
∫

Zp

∞∑
n=0

D(s)
n (λx1 + · · · + λxr + x)

tn

n!dµ−1(x1) · · · dµ−1(xr)

=
(

log(1 + t)

t

)s ∫
Zp

· · ·
∫

Zp

(λx1 + · · · + λxr + x)ldµ−1(x1) · · · dµ−1(xr)

=
(

log(1 + t)

t

)s (
1

1 + (1 + t)λ

)r

(1 + t)x.

(2.12)
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Note that

D(s)
n (λx1 + · · · + λxr + x) =

n∑
l=0

(
n

l

)
D

(s)
n−l(λx1 + · · · + λxr + x)l, (2.13)

and (
log(1 + t)

t

s)
(1 + t)x =

(
log(1 + t)

elog(1+t) − 1

)s

exlog(1+t)

=
∞∑

m=0

B(s)
m (x)

(log(1 + t))m

m!

=
∞∑

m=0

B(s)
m (x)

∞∑
n=m

S1(n, m)
tn

n!

=
∞∑

n=0

(
n∑

m=0

B(s)
m (x)S1(n, m)

)
tn

n! .

(2.14)

From (2.11) and (2.13) and (2.14), we get

BlD(r,s)
n (x|λ) =

∫
Zp

· · ·
∫

Zp

D(s)
n (λx1 + · · · + λxr + x)dµ−1(x1) · · · dµ−1(xr)

=
n∑

l=0

(
n

l

)
D

(s)
n−l

∫
Zp

· · ·
∫

Zp

(λx1 + · · · + λxr + x)ldµ−1(x1) · · · dµ−1(xr)

=
n∑

l=0

(
n

l

)
D

(s)
n−lBl

(r)
l (x|λ).

(2.15)

and

BlD(r,s)
n (x|λ) =

n∑
m=0

B(s)
m (x)S1(n, m)Bl

(r)
l (x|λ). (2.16)

Therefore, by (2.15) and (2.16), we obtain the following theorem.

Theorem 2.3. For n ∈ N, we have

BlD(r,s)
n (x|λ) =

n∑
l=0

(
n

l

)
D

(s)
n−lBl

(r)
l (x|λ)

=
n∑

m=0

B(s)
m (x)S1(n, m)Bl

(r)
l (x|λ).

(2.17)
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Now, we consider the higher order Boole-Changhee mixed-type polynomials of order
(r, s) as follows:

BlCh(r,s)
n (x|λ) =

∫
Zp

· · ·
∫

Zp

Ch(s)
n (λx1 + · · · + λxr + x)dµ−1(x1) · · · dµ−1(xr).

(2.18)
where Bl(r)(x) is Boole polynomials of order r and Ch(s)

n (x) is the Changhee polynomials
of order s.

Then, we can find the generating function of BlCh(r,s)
n (x|λ) as follows:

∞∑
n=0

BlCh(r,s)
n (x|λ)

tn

n!

=
∫

Zp

· · ·
∫

Zp

∞∑
n=0

Ch(s)
n (λx1 + · · · + λxr + x)

tn

n!dµ−1(x1) · · · dµ−1(xr)

=
(

2

t + 2

)s ∫
Zp

· · ·
∫

Zp

(λx1 + · · · + λxr + x)ldµ−1(x1) · · · dµ−1(xr)

=
(

2

t + 2

)s (
1

1 + (1 + t)λ

)r

(1 + t)x.

(2.19)

Note that

Ch(s)
n (λx1 + · · · + λxr + x) =

n∑
l=0

(
n

l

)
Ch

(s)
n−l(λx1 + · · · + λxr + x)l, (2.20)

and

(
2

t + 2

)s

(1 + t)x =
(

2

elog(1+t) + 1

)s

exlog(1+t)

=
∞∑

m=0

E(s)
m (x)

(log(1 + t))m

m!

=
∞∑

m=0

E(s)
m (x)

∞∑
n=m

S1(n, m)
tn

n!

=
∞∑

n=0

(
n∑

m=0

E(s)
m (x)S1(n, m)

)
tn

n! .

(2.21)
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From (2.18) and (2.20) and (2.21), we get

BlCh(r,s)
n (x|λ)

=
∫

Zp

· · ·
∫

Zp

Ch(s)
n (λx1 + · · · + λxr + x)

tn

n!dµ−1(x1) · · · dµ−1(xr)

=
n∑

l=0

(
n

l

)
Ch

(s)
n−l

∫
Zp

· · ·
∫

Zp

(λx1 + · · · + λxr + x)ldµ−1(x1) · · · dµ−1(xr)

=
n∑

l=0

(
n

l

)
Ch

(s)
n−lBl

(r)
l (x|λ).

(2.22)

and

BlD(r,s)
n (x|λ) =

n∑
m=0

E(s)
m (x)S1(n, m)Bl

(r)
l (x|λ). (2.23)

Therefore, by (2.22) and (2.23), we obtain the following theorem.

Theorem 2.4. For n ∈ N, we have

BlCh(r,s)
n (x|λ) =

n∑
l=0

(
n

l

)
Ch

(s)
n−lBl

(r)
l (x|λ)

=
n∑

m=0

E(s)
m (x)S1(n, m)Bl

(r)
l (x|λ).

(2.24)
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