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Abstract

The paper deals with polynomials of the form
f(x) =x™ —e1a;x™ 1 — €,a,x™ 2= .. =€ 1Gm_1X — EmQm

where €; € {—1,1} fori =1,2,3,...,m. It is shown that for any positive
integers ai, ay, .., &y With a; >2a, 2+ >2a, =21 and meN
withm > 2, f(x) has unique real zero outside the unit disk |z| < 1. It is
also presented in this paper that the zeros of the polynomials can be
applied in the study of integer sequences.
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1 Introduction
A polynomial f(x) is of the form

A X"+ A x4+ ax+ ag

where a; € R (i=0,1,2,..,n) are coefficients and x is the independent variable. If n # 0,
then we say that the polynomial f(x) is of order n.

Polynomials are studied in various fields of mathematics and lead to interesting questions. For
example, if we are given a particular polynomial f(x) having real coefficients, can we find any
real zeros? If so, how many and where in the real number line can we locate them? Are they
positive or negative? In dealing with problems involving roots of polynomials, we use the
Fundamental Theorem of Algebra (FTA). The FTA tells us that any non-constant polynomials
with complex coefficients have complex roots. It is formally stated as follows:
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Theorem 1.1 (Fundamental Theorem of Algebra). Given any positive integer n > 1 and any
choice of complex numbers «y, a4, ..., @, such that an «; # 0, the polynomial equation

apz +az" 1+ o+ a2+ a, =0
has at least one solution z € C.

For the proof of this remarkable statement, see Fine and Rosenberger [5]. It may be helpful also
if we give a bound for the zeros to narrow down our search for zeros. Fortunately, there are many
existing methods in the literature to answer this query. Two good examples are the Descartes'
Rule of Signs [13] and the Budan-Fourier Theorem [3]:

Theorem 1.2 (Descartes' Rule of Signs). Let f(x) = apx™ + ayx™ 1+ -+ a,_1x +a, be a
polynomial with real coefficients «;, i =0,1,...,n, and a, and a, be nonzero. Let v be the
number of changes of signs in its sequence of coefficients ay, a4, ..., a, and p be the number of
its real positive zeros, counted with their orders of multiplicity. Then there exists a nonnegative
integer m such that

p=v-—2m.

Theorem 1.3 (Budan-Fourier Theorem). Let f(x) be a non-constant polynomial of degree n
with real coefficients. Let ¢ € R and v(c) be the number of changes of signs in the sequence
£, (), f"(C), ..., f™(c). Then the number of zeros of f in the interval (a; b], counted
with their orders of multiplicity, is equal to

v(a) —v(b) —2m
for some m € R.

The complex zeros of any polynomial f(x), however, usually cannot be avoided in the
discussion of polynomials. So the zeros are placed on the complex plane and most of the time we
also give a bound to narrow down our search for zeros. One good method for giving bounds is
that of Lagrange and MacLaurin [16]:

Theorem 1.4 (Lagrange-Maclaurin Method). Suppose a,_, < 0,k =1, is the first of the
negative coefficients of the polynomial f defined in Theorem 1.2. An upper bound U for
the set of positive zeros of f may be given by

k B
uv=1+ |[——
(24

where B is the largest absolute value of the negative coefficients of the polynomial f(x), and

“|-2 = —Zfork=1.
xo

ao
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Recently, there are several methods that are developed, which are based on Theorem 1.2. For
instance, in [12], Sagrallof and Mehlorn described a variant of the Descartes' method that isolates
the real zeros of any real square-free polynomial through the so-called coefficient oracles. In
[14], Nickalls presented a new bound for zeros of polynomials when all of them are real
numbers. He described an upper bound having the property of being exact in the case where
zeros are of n — 1 multiplicity. On the other hand, Dehmer and Mowshowitz [4] developed
methods for establishing improved bounds on the moduli of the zeros of complex and real
polynomials. Jain [6] also introduced an improved version of the Cauchy's classical bound for
zeros of polynomials. Other related results for computing bounds for zeros of polynomials can be
found in [2], [11], [15], [16], and references therein.

2 Main Results
The present paper is concerned with the existence of a unique real zero of certain families of
polynomials outside the unit disk |z| < 1. This work is an extension of the following result by
Wu and Zhang [17]:

Lemma 2.1. Let a4, a,, ..., a,, be positive integers with a;, > a, >+ > a,, =1 and meN
with m > 2. Then, the polynomial

m-2

f() =x™—ax™ ! —ax™ - =X — Ay, (1)

(i) has exactly one positive real zero x*witha; < x* < a; + 1, and
(if) has m — 1 zeros lying within the unit circle in the complex plane.

An example of a polynomial that satisfies the above lemma is the polynomial x2 — 2x — 1,
wherein a; = 2 and a, = a,, = 1. In this example, we observe that a;, =2 >a, =1 > 1. The

roots of the polynomial are 1+ v2 and 1 — /2. As one can see, the root 1+ V2 satisfies

conclusion (i) of the lemma, and the number 1 — /2 is the only zero of the polynomial lying in
the unit circle, thus satisfying conclusion (ii) of the lemma.

We now present our main result.
Theorem 2.2. Let a4, a,, ..., a,, be positive integers with

aL=a, = =2ay,>1 (2)
and m € N\{1}. Let the m*"*-order polynomial f be defined by

M=2 =€y 10m_1X — EmQm , (3)

fx) =x™ —a;x™ ! — g,a,x
wheree; € {—1,1}fori =1,2,3,...,m. Then,

(i) either
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(a) if e, = —1 and the ¢; 's alternate in signs for i = 1, 2, ..., m, f(x) has one negative
real zero x~ with —(a; + 1) < x~ < —ay; or

(b) if e = 1 and €; ’s alternate in signs for i = 1,2, ...,m, f(x) has one positive real zero
xtwitha; —1<x <ay; or

(c)ife; =—1 foralli =1,2,...,m, f(x) has one negative real zero x~ with
—a; <x~ < —(a; —1);

and
(ii) the other m — 1 zeros of f(x) lie within the unit circle in the complex plane.

Proof. We only prove (a) in (i), and (ii). The proofs for cases (b) and (c) are similar so we
omit them.

Let e, = —1 and ¢;’s alternate in signs for i = 1,2,...,m. Hence, ¢; = (=1)¢ for i =
1,2,...,m. So we can write (3) in compact form as follows:
m
fG) =xm = ) (~Diaam @

Now, for any positive integers a; > a, = - > a,, > 1 arnnd m € N\{1} we have
f=a) = (~a)™ = (a)™ = ) (~Digpx™
= (—1)™(aya™? + 62:21""3 + o+ apoqay + ap).
Clearly, f(—a;) < 0if misevenand f(—a;) > 0 otherwise. We also have

m
f(~(as + D) = (-D" ((al Fm)™ =) ay(ay + D" ) )
i=1
Here, we have two possibilities for m. If m is even then by applying (2) and a formula for finite
geometric series we can show that (5) is positive:
m

m
f(—(a1 + 1)) = (al + 1)m - Z ai(al + 1)m_i > (a1 + 1)m - a1 Z(al + 1)m_i
i=1 i=1
+1)™m™ -1
=(a1+1)m—a1-(a1 ) =1>0.
a;
On the other hand, if m is odd then
f( (a, + 1)) =—(a;, + 1™ +Za (a; + )™
+ 1™ —
< (al + 1)m + 1 (al ) == _1 < 0

a,
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These imply that, in any case, there exists a negative real zero x~ of f(x) with —(a; +1) <
x~ < —ay. According to Descarte's rule of signs, the polynomial equation f(x) = 0 has at
|m/2]| negative real roots. Now we show that we have exactly one negative real root x~ in
(—(aq + 1), —a,) and that there are no other negative real roots outside the interval. To do this,
we use Budan-Fourier's theorem. To make things simpler, we first find a lower bound for the
negative real root x~ of f(x) = 0 using the Lagrange-Maclaurin's method. We have already
shown that x~ > —(a; + 1). We will show that —(a, + 1) is indeed the greatest lower bound
for x=. To prove this, we consider the transformed equation g(x) = 0 where g(x) =
x™f(—x), and denote the upper bound of its positive roots to be U,. This means that we can
obtain a lower bound for the negative real root of f(x) = 0, i.e. if x™ is the negative real root of
f(x) = 0thenx™ = —U,. We now write g as

g(x) = x™ ((—x)m - z(—l)iai(—xw-i) = (-D)mx™ (xm -> al-xm—i).
i=1 i=1

If m is even then g(x) = x?™ + (—ay)x?™ 1 = Y™, a;x*™~. An upper bound for the positive
root of g(x) = 0 is given by

Ug=1+"a;<1l4+a;, m=2,
where equality holds for m = 2. But, for m = 2, we have f(x) = x? + a;x — a_2 whose
roots are given by x* = (—a; ++a?+4a,)/2. Note that for a; >a,>1 we have

x~ = (—a, ++a?+4a,)/2 < 0. It can be verified easily that x~ > —(a; + 1). Now if m is
odd then g(x) = —x?™ + Y™, a;x?™"%, Hence,

Uy=1-"[a; <1, m>2.

It follows that, in any case, the negative real root x~ > —(a; + 1). This implies that there is no
other negative real root in (—oo, —(a, + 1)).

Now we claim that there is only one negative real root in (—(a, + 1),0). To verify this, we let
v(c) be the number of changes of signs in the sequence

f©), 1), (€D, e, fT™(0),
where ¢ € {—(a; + 1), 0}. We first show that
v(—(a1 + 1)) =m and v(0) =m — 1.

Denote the k" derivative of f(x) as D*(f(x)): At x = —(a, + 1) we have

Dk(f(x))|x=_(a1+1) = D* (xm B Z(_l)iaixm_i> *

x=—(a,+1)
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We will show that, for a fixed positive integer m, the derivatives given by (6) alternate in signs
for k = 0,1, 2, ..., m. We only prove the case when m is even since the case for m being odd is
similar. We proceed using induction. For k = 0, we have f(—(a1 + 1)) >0and for k = 1 we
have

L 0HCO)| P G Vi (m(al + 1™t - z (m — Da;(a; + 1)m—i—1>
m-— 1 -

< —-m(a; + 1™ 1+malz(a1+1)m i-1

(a1 +1)m1-1
a;

=-m(a; + 1)™ ! + ma, < > =-m<0.

Next, we show that

>0 ifniseven
Dn(f(x))|x=—(a1+1){ <0 ifnisodd’

for some natural number n < m. First, suppose that n is even. Then,

m-—-n

! B (m—1)! , o
Dn(f(X))|x=—(a1+1) = <ﬁxm n_ h(—l)lalxm n z)
=1 —n x=—(a;+1)
- .
= (_1)m—n <( m! )| (a1 + 1)m n_ %ai(al + 1)m—n—1>
m! . m Tay + 1) — 1
> o )'(a1+1) (m—n)!a1< > >
= Gy

On the other hand, if n is odd then

! 1)m-" -1
D)ooy = ~ - oG T rfn)!al <(a1 = )

(m a,

—__™ <.

(m—-n)!

These show that v(—(a; + 1)) =m. On the other hand, it can be verified easily that v(0) =
m — 1, since for any positive integer m, D”(f(x))|x=0 alternates in sign forn =0,1,2,...,m —
1and Dm(f(x))|x:0 > 0. Thus, by Budan-Fourier's theorem, the number of zeros of f in the
interval (—(a,; + 1), 0], counted with their orders of multiplicity is equal to

v(—(a; +1) —v(0)—2(0)=m—-(m—-1)—-0=1,

proving (a).
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Now, we proceed to prove section (ii) of Theorem 2.2. Again we assume m to be even. A
similar proof can be given for an odd m. From (a) of Theorem 2.2(i), there follows:

(2.7a) If x € Rsuch that x < x~ then f(x) > 0, and
(2.7b) If x € Rsuch that x~ < x < 0, then f(x) < 0.

Let h(x) = —(x + 1)f(x). By applying (4) and re-indexing the series, we obtain the
following:

m m
h(x) = —x™*1 + Z(—l)iaix(m“)_i —x™ + Z(—l)iaixm_i
i=1 i=1
m-1

= —x™*1 — (a; + D)x™ + Z (—Di(a; — ajeyx™ ™" + ap, (7)
i=1

Since f(x) has exactly one negative real zero x~ , h(x) has two negative real zeros, that is, x~
and —1. Observe that

“If x € R such that x < x~ then h(x) > 0,” and
“Ifx € Rsuchthat x~ < x < 0,then h(x) < 0." (8)

To complete the proof of (ii), it is sufficient to show that there are no zeros of f that lie on and
outside of the unit circle.

Claim 1: The polynomial equation f(x) = 0 has no complex root z; with —|z;| < x~.

Proof of Claim 1. Assume the contrary that there exists such z;. So, we have

) =z" = ) (~Diaz ™ = 0.
i=1

Then, by triangle inequality, we obtain

2 < ) a2, )
Note that =
F=lzD) = (=lzD™ = ) (~Diai(= |z "

m

=1™ =) ailz |

i=1

Using (9) we get f(—|z,|) < 0. This contradicts (8).
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Claim 2: f(x) = 0 has no complex root z, that satisfies x~ < —|z,| < —1.

Proof of Claim 2. Assume the contrary, that is, assume that there exists a z, such that f(z,) =
0. Then by (7) we obtain

m—1
h(z,) = _Zgnﬂ —(a; + 1z + (Z (_1)i(ai — Qi+ )Zgn_l) + a, = 0.
i=1

This implies that

m—1
(ay + DIz < |2 + (Z(ai —am)z;”—i) +

i=1

We note that a; — a;,; = 0foralli =1, 2, ..., m. Hence,

m—1
h(=|zz]) = =(=1z:D™"* = (a1 + D(=|z, )™ + <z (=D (@41 — a;)(—1z,) ™! ) + ap

m—1
= |z,|™* = (a; + Dz |™ + (Z (@41 — )|z ™ > + a;, 2 0.
i=1
This contradicts (8).
Claim 3: On the circles |z3] = —x~ and |z3| = 1, f(x) has the unique zero x~.

Proof of Claim 3. If f(z3) = 0; then

m—1

h(z3) = _Z;,nﬂ —(a; + Dz3" + <Z (—1)i(ai —Aiyq )Zgn_i> + a, = 0.

L=

This implies that

m-1
(a; + Dz < 125 + (Z(ai —ai+1)z§"‘i> + ap. (10)
i=1
If z; = x~ orz; = —1,then h(z3) = 0, so (10) must be an equality. Therefore,

Z§n+1l (al - aZ)Zgn—ll (aZ - a3)Z§n—21 LLLY] (am—l - am)zgn_i' and Am

all lie on the same ray starting from the origin. Since a,, and (a; — a;;;) € R* for all i =
1,2,..,m—1, then so are zJ**1, zI*71, zI"72, .., z;. Thus f(z3) € R*. On the circles |z3| =
—x~ and |z3| = 1, there are two conditions z; = —1 or z3 = x~. Since f(—1) # 0, then x~ is
the unique zero of f(x), proving our claim.

These three claims prove (ii).
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Thus, f(x) =x™ — Y™, (—1)'a;x™" has exactly one negative real zero x~ satisfying the
condition —(a; + 1) < x~ < —a4 and its other zeros are found inside the unit circle.

|

To illustrate Theorem 2.2, we consider the polynomial x2 + 3x — 2. In this example,

a, =3>2=a,, 6 ==—1,and ¢ and ¢, alternate in signs. Computing for the zeros of the
—-3+V17 -3-17

polynomial, we get x = . One observes that there's a negative real zero, i.e., x~ =

-3+vV17

2
and this zero lies between —4 = —(a; + 1) and —3 = —a,. The other zero, which is , lies

inside the unit circle in complex plane.

Remark. One may notice from Theorem 2.2 the strict inequality a; > 1. The exclusion of 1 for
the values of a;’s is due to the fact that the polynomial

fG) =xm+ ) (~Dixm
a self-reciprocal polynomial (cf. [1], [7], [8]. [9], [10]) so the derivative
m—1
fl(x) = mx™ 1 + Z (m—i)(=1)ix™m -1

has all its zeros in the closed disk |z| < 1 and hence, by a result of Cohn [2], all its zeros lie on
the unit circle. On the other hand, the results for (a) and (ii) still hold when a;’s = 1 for all
i =1,2,..,mand we leave the proof to the reader.

3 An application on integer sequences
One good application of our result is on the study of integer sequences. Consider for instance the
mt-order recursive sequence {u,}o, satisfying the recurrence equation defined by

Uy = —QUp_q + QoUp_y — A3lUp_3 + -+ (1) ap_mUm, (11)
with initial values u; € N for 0 <i <mand at least one of them is not zero. Clearly, the
characteristic polynomial of (11) is given by (4). With this connection, we can easily obtain the

following Lemma.

Lemma 3.1. Let m > 2 and let {u,};—, be an integer sequence satisfying the recurrence
formula (7). Then the closed formula of u,, is given by

U, =ca+0d™) (n- o), (12)

where c > 0,d > 1,and a € —(—(ay + 1), —a;) is the negative real zero of f(x).
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Proof. Let a,ay, a5, ..., a; be the distinct roots of f(x) = 0; where f(x) is the characteristic
polynomial of (11), which is given by (4). From (a) of Theorem 2.2 we know that « is the
simple root of f(x) = 0. Let r; be the corresponding multiplicity of the root «; for each

j=123,..,t. From the properties of m®"- order linear recursive sequences, u, can be
expressed as follows (cf. [17]):

t
u, =ca™+ z P,(n)al, (13)
i=1

where P;(n) € R[n], deg P;(n) =r;—1, r+r,+--+r.=m—1,and c € R. From (ii) of
Theorem 2.2 we have |a;| < 1 for 1 <i < t. Since each «; of the second term in (9) goes to 0
asn — oo, we can find constants M,d € R withd > 1forn > n, such that

t
Z P(n)a
i=1

completing the proof of the Lemma.

< ZIPi(n)ai”I < Md™,

t
i=1

With the help of the previous Lemma, we can easily verify the following results.

Theorem 3.2. Let {u,,} be an m*"*- order sequence defined by (11) with the restriction
a; = a, =+ = a, > 1. For any positive real number g > 2, there exists a positive integer n,
such that

Bal  \ 7'
1
z — = Uy — U1, (M Z1y).

u
k=n k

Letting f — +co in Theorem 3.2 we can immediately deduce the following.

Corollary 3.3. Let {u,,} be an m*"- order sequence defined by (11) with the restriction
a; = a, =+ = a,, > 1. Then there exists a positive integer n, such that

-1

400
1

(Z _> =Up —Up_y, (M=7y).
Uy

k=n

One may follow the proofs of Theorem 1 and Corollary 1 in [17] to prove the above results.
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