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Abstract 

     The paper deals with polynomials of the form 

𝑓(𝑥) = 𝑥𝑚 − 𝜖1𝑎1𝑥𝑚−1 − 𝜖2𝑎2𝑥𝑚−2− . . . −𝜖𝑚−1𝑎𝑚−1𝑥 −  𝜖𝑚𝑎𝑚 , 

where 𝜖𝑖  ∈ {−1, 1} for 𝑖 = 1, 2, 3, … , 𝑚. It is shown that for any positive 

integers  𝑎1, 𝑎2, … , 𝑎𝑚 with 𝑎1 ≥ 𝑎2 ≥ ⋯  ≥ 𝑎𝑚 ≥ 1 and 𝑚 ∈ ℕ 

with 𝑚 ≥ 2, 𝑓(𝑥) has unique real zero outside the unit disk |𝑧| ≤ 1. It is 

also presented in this paper that the zeros of the polynomials can be 

applied in the study of integer sequences. 
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1   Introduction 
A polynomial 𝑓(𝑥) is of the form 

 

𝑎𝑛𝑥𝑛 +  𝑎𝑛−1𝑥𝑛−1 + ⋯ +   𝑎1𝑥 +  𝑎0 
 

where 𝑎𝑖  ∈  ℝ  (𝑖 = 0, 1, 2, … , 𝑛)  are coefficients and 𝑥 is the independent variable. If 𝑛 ≠ 0, 

then we say that the polynomial 𝑓(𝑥) is of order 𝑛. 

Polynomials are studied in various fields of mathematics and lead to interesting questions. For 

example, if we are given a particular polynomial 𝑓(𝑥) having real coefficients, can we find any 

real zeros? If so, how many and where in the real number line can we locate them? Are they 

positive or negative? In dealing with problems involving roots of polynomials, we use the 

Fundamental Theorem of Algebra (FTA). The FTA tells us that any non-constant polynomials 

with complex coefficients have complex roots. It is formally stated as follows: 
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Theorem 1.1 (Fundamental Theorem of Algebra). Given any positive integer 𝑛 ≥ 1 and any 

choice of complex numbers 𝛼0, 𝛼1, … , 𝛼𝑛 such that an 𝛼𝑖 ≠ 0, the polynomial equation 

 

𝛼0𝑧𝑛 + 𝛼1𝑧𝑛−1 + ⋯ + 𝛼𝑛−1𝑧 +  𝛼𝑛 = 0 
 

has at least one solution 𝑧 ∈ ℂ. 

 

For the proof of this remarkable statement, see Fine and Rosenberger [5]. It may be helpful also 

if we give a bound for the zeros to narrow down our search for zeros. Fortunately, there are many 

existing methods in the literature to answer this query. Two good examples are the Descartes' 

Rule of Signs [13] and the Budan-Fourier Theorem [3]: 

 

Theorem 1.2 (Descartes' Rule of Signs). Let 𝑓(𝑥) = 𝛼0𝑥𝑛 +  𝛼1𝑥𝑛−1 + ⋯ +  𝛼𝑛−1𝑥 + 𝛼𝑛 be a 

polynomial with real coefficients  𝛼𝑖, 𝑖 = 0, 1, … , 𝑛,  and 𝛼𝑛 and 𝛼0 be nonzero. Let 𝑣 be the 

number of changes of signs in its sequence of coefficients 𝛼0, 𝛼1, … , 𝛼𝑛 and p be the number of 

its real positive zeros, counted with their orders of multiplicity. Then there exists a nonnegative 

integer m such that 

𝑝 = 𝑣 − 2𝑚. 
 

Theorem 1.3 (Budan-Fourier Theorem). Let 𝑓(𝑥) be a non-constant polynomial of degree 𝑛 

with real coefficients. Let 𝑐 ∈ ℝ and 𝑣(𝑐) be the number of changes of signs in the sequence 

𝑓(𝑐), 𝑓′(𝑐), 𝑓′′(𝑐), … , 𝑓(𝑛)(𝑐).  Then the number of zeros of 𝑓 in the interval (𝑎;  𝑏], counted 

with their orders of multiplicity, is equal to  

 

𝑣(𝑎) − 𝑣(𝑏) − 2𝑚 
 

for some 𝑚 ∈ ℝ. 

 

The complex zeros of any polynomial 𝑓(𝑥), however, usually cannot be avoided in the 

discussion of polynomials. So the zeros are placed on the complex plane and most of the time we 

also give a bound to narrow down our search for zeros. One good method for giving bounds is 

that of Lagrange and MacLaurin [16]: 

 

Theorem 1.4 (Lagrange-Maclaurin Method). Suppose 𝛼𝑛−𝑘 < 0, 𝑘 ≥ 1,  is the first of the 

negative coefficients of the polynomial 𝑓 defined in Theorem 1.2. An upper bound 𝑈 for 

the set of positive zeros of 𝑓 may be given by 

𝑈 = 1 + √−
𝐵

𝛼0

𝑘

, 

where 𝐵 is the largest absolute value of the negative coefficients of the polynomial 𝑓(𝑥), and 

√− 𝐵

𝛼0

𝑘
= −

𝐵

𝛼0
 for k = 1. 
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Recently, there are several methods that are developed, which are based on Theorem 1.2. For 

instance, in [12], Sagrallof and Mehlorn described a variant of the Descartes' method that isolates 

the real zeros of any real square-free polynomial through the so-called coefficient oracles. In 

[14], Nickalls presented a new bound for zeros of polynomials when all of them are real 

numbers. He described an upper bound having the property of being exact in the case where 

zeros are of 𝑛 −  1 multiplicity. On the other hand, Dehmer and Mowshowitz [4] developed 

methods for establishing improved bounds on the moduli of the zeros of complex and real 

polynomials. Jain [6] also introduced an improved version of the Cauchy's classical bound for 

zeros of polynomials. Other related results for computing bounds for zeros of polynomials can be 

found in [2], [11], [15], [16], and references therein. 

 

2    Main Results 
The present paper is concerned with the existence of a unique real zero of certain families of 

polynomials outside the unit disk |𝑧| ≤ 1. This work is an extension of the following result by 

Wu and Zhang [17]: 

 

Lemma 2.1. Let 𝑎1, 𝑎2, … , 𝑎𝑚 be positive integers with 𝑎1 ≥ 𝑎2 ≥ ⋯  ≥ 𝑎𝑚 ≥ 1 and 𝑚 ∈ ℕ 

with 𝑚 ≥ 2. Then, the polynomial 

 

𝑓(𝑥) = 𝑥𝑚 − 𝑎1𝑥𝑚−1 − 𝑎2𝑥𝑚−2− . . . −𝑎𝑚−1𝑥 −  𝑎𝑚,                                              (1) 

     

 (i) has exactly one positive real zero 𝑥+with 𝑎1  <  𝑥+  <  𝑎1  +  1,  and 

      (ii) has 𝑚 −  1 zeros lying within the unit circle in the complex plane. 

 

An example of a polynomial that satisfies the above lemma is the polynomial 𝑥2 − 2𝑥 − 1, 
wherein 𝑎1 = 2 and 𝑎2 = 𝑎𝑚 = 1. In this example, we observe that 𝑎1 = 2 ≥ 𝑎2 = 1 ≥ 1. The 

roots of the polynomial are 1 + √2 and 1 − √2. As one can see, the root 1 +  √2 satisfies 

conclusion (𝑖) of the lemma, and the number 1 −  √2 is the only zero of the polynomial lying in 

the unit circle, thus satisfying conclusion (𝑖𝑖) of the lemma. 

 

We now present our main result. 

 

Theorem 2.2. Let 𝑎1, 𝑎2, … , 𝑎𝑚 be positive integers with 

 

𝑎1 ≥ 𝑎2 ≥ ⋯  ≥ 𝑎𝑚 > 1                                                                                     (2) 

 

and 𝑚 ∈ ℕ\{1}. Let the 𝑚𝑡ℎ-order polynomial 𝑓 be defined by 

 

𝑓(𝑥) = 𝑥𝑚 − 𝜖1𝑎1𝑥𝑚−1 − 𝜖2𝑎2𝑥𝑚−2− . . . −𝜖𝑚−1𝑎𝑚−1𝑥 −  𝜖𝑚𝑎𝑚 ,                              (3) 

 

where 𝜖𝑖  ∈ {−1, 1} for 𝑖 = 1,2,3, … , 𝑚. Then, 

 

     (𝑖) either 
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          (𝑎) if 𝜖1 =  −1 and the 𝜖𝑖’s alternate in signs for 𝑖 = 1, 2, … , 𝑚, 𝑓(𝑥) has one negative  

real zero 𝑥− with −(𝑎1 + 1) < 𝑥− < −𝑎1; or 

 

          (𝑏) if 𝜖1 =  1 and 𝜖𝑖’s alternate in signs for 𝑖 = 1, 2, … , 𝑚, 𝑓(𝑥) has one positive real zero  

𝑥+ with 𝑎1 − 1 < 𝑥+ < 𝑎1;  or 
 

          (𝑐) if 𝜖𝑖 = −1  for all 𝑖 = 1, 2, … , 𝑚, 𝑓(𝑥) has one negative real zero 𝑥− with 

                 −𝑎1 < 𝑥− <  −(𝑎1 − 1); 
 

           and 

       

   (𝑖𝑖) the other 𝑚 −  1 zeros of 𝑓(𝑥) lie within the unit circle in the complex plane. 

 

Proof. We only prove (𝑎) in (𝑖), and (𝑖𝑖). The proofs for cases (𝑏) and (𝑐) are similar so we 

omit them. 

     Let 𝜖1 =  −1  and 𝜖𝑖’s alternate in signs for 𝑖 = 1, 2, … , 𝑚. Hence, 𝜖𝑖 = (−1)𝑖 for 𝑖 =
1, 2, … , 𝑚. So we can write (3) in compact form as follows: 

𝑓(𝑥) = 𝑥𝑚 −  ∑(−1)𝑖𝑎𝑖𝑥
𝑚−𝑖.

𝑚

𝑖=1

                                                              (4) 

Now, for any positive integers 𝑎1 ≥ 𝑎2 ≥ ⋯  ≥ 𝑎𝑚 > 1 and 𝑚 ∈ ℕ\{1}  we have 

𝑓(−𝑎1) = (−𝑎1)𝑚 − (−𝑎1)𝑚 − ∑(−1)𝑖𝑎𝑖𝑥
𝑚−𝑖

𝑚

𝑖=2

 

       = (−1)𝑚+1(𝑎2𝑎1
𝑚−2 + 𝑎3𝑎1

𝑚−3 + ⋯ + 𝑎𝑚−1𝑎1 + 𝑎𝑚).                  
 

Clearly, 𝑓(−𝑎1) < 0 if 𝑚 is even and 𝑓(−𝑎1) > 0 otherwise. We also have 

𝑓(−(𝑎1 + 1)) = (−1)𝑚 ((𝑎1 + 𝑚)𝑚 − ∑ 𝑎𝑖(𝑎1 + 1)𝑚−𝑖 

𝑚

𝑖=1

).                              (5) 

Here, we have two possibilities for 𝑚. If 𝑚 is even then by applying (2) and a formula for finite 

geometric series we can show that (5) is positive: 

𝑓(−(𝑎1 + 1)) = (𝑎1 + 1)𝑚 − ∑ 𝑎𝑖(𝑎1 + 1)𝑚−𝑖 

𝑚

𝑖=1

> (𝑎1 + 1)𝑚 − 𝑎1 ∑(𝑎1 + 1)𝑚−𝑖 

𝑚

𝑖=1

 

= (𝑎1 + 1)𝑚 − 𝑎1 ∙
(𝑎1 + 1)𝑚 − 1

𝑎1
= 1 > 0.                     

 

On the other hand, if 𝑚 is odd then 

𝑓(−(𝑎1 + 1)) = −(𝑎1 + 1)𝑚 + ∑ 𝑎𝑖(𝑎1 + 1)𝑚−𝑖 

𝑚

𝑖=1

 

                                                                  < −(𝑎1 + 1)𝑚 + 𝑎1 ∙
(𝑎1 + 1)𝑚 − 1

𝑎1
= −1 < 0.                     
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These imply that, in any case, there exists a negative real zero 𝑥− of 𝑓(𝑥) with  −(𝑎1 + 1) <
𝑥− < −𝑎1. According to Descarte's rule of signs, the polynomial equation 𝑓(𝑥)  =  0 has at 
⌊𝑚/2⌋ negative real roots. Now we show that we have exactly one negative real root 𝑥− in 

(−(𝑎1 + 1), −𝑎1) and that there are no other negative real roots outside the interval. To do this, 

we use Budan-Fourier's theorem. To make things simpler, we first find a lower bound for the 

negative real root 𝑥− of 𝑓(𝑥)  =  0 using the Lagrange-Maclaurin's method. We have already 

shown that 𝑥− >  −(𝑎1 + 1).  We will show that −(𝑎1 + 1) is indeed the greatest lower bound 

for 𝑥−. To prove this, we consider the transformed equation 𝑔(𝑥)  =  0 where 𝑔(𝑥) ≡
𝑥𝑚𝑓(−𝑥), and denote the upper bound of its positive roots to be 𝑈𝑔. This means that we can 

obtain a lower bound for the negative real root of 𝑓(𝑥)  =  0, i.e. if 𝑥− is the negative real root of 

𝑓(𝑥)  =  0 then 𝑥− ≥ −𝑈𝑔. We now write 𝑔 as 

𝑔(𝑥) = 𝑥𝑚 ((−𝑥)𝑚 −  ∑(−1)𝑖𝑎𝑖(−𝑥)𝑚−𝑖

𝑚

𝑖=1

) = (−1)𝑚𝑥𝑚 (𝑥𝑚 − ∑ 𝑎𝑖𝑥
𝑚−𝑖

𝑚

𝑖=1

). 

If 𝑚 is even then 𝑔(𝑥) = 𝑥2𝑚 + (−𝑎1)𝑥2𝑚−1 − ∑ 𝑎𝑖𝑥
2𝑚−𝑖.𝑚

𝑖=2  An upper bound for the positive 

root of 𝑔(𝑥)  =  0 is given by 

𝑈𝑔 = 1 + √𝑎1
𝑚−1 < 1 + 𝑎1,   𝑚 ≥ 2, 

where equality holds for 𝑚 =  2. But, for 𝑚 =  2, we have 𝑓(𝑥) = 𝑥2 + 𝑎1𝑥 − 𝑎_2 whose 

roots are given by 𝑥± = (−𝑎1 ± √𝑎1
2 + 4𝑎2)/2. Note that for 𝑎1 ≥ 𝑎2 > 1 we have                                              

𝑥− = (−𝑎1 + √𝑎1
2 + 4𝑎2 )/2 < 0. It can be verified easily that 𝑥− > −(𝑎1 + 1). Now if 𝑚 is 

odd then 𝑔(𝑥) = −𝑥2𝑚 + ∑ 𝑎𝑖𝑥
2𝑚−𝑖.𝑚

𝑖=1   Hence, 

𝑈𝑔 = 1 − √𝑎1
𝑚 < 1,   𝑚 ≥ 2. 

It follows that, in any case, the negative real root 𝑥− > −(𝑎1 + 1). This implies that there is no 

other negative real root in (−∞, −(𝑎1 + 1)). 

Now we claim that there is only one negative real root in (−(𝑎1 + 1), 0). To verify this, we let 

𝑣(𝑐) be the number of changes of signs in the sequence 

𝑓(𝑐),  𝑓′(𝑐),  𝑓′′(𝑐), … , 𝑓(𝑚)(𝑐), 

where 𝑐 ∈ {−(𝑎1 + 1), 0}.  We first show that 

𝑣(−(𝑎1 + 1)) = 𝑚  and  𝑣(0) = 𝑚 − 1. 

Denote the 𝑘𝑡ℎ derivative of 𝑓(𝑥) as 𝐷𝑘(𝑓(𝑥)): At 𝑥 = −(𝑎1 + 1) we have 

𝐷𝑘(𝑓(𝑥))|
𝑥=−(𝑎1+1)

= 𝐷𝑘 (𝑥𝑚 −  ∑(−1)𝑖𝑎𝑖𝑥
𝑚−𝑖

𝑚

𝑖=1

)|

𝑥=−(𝑎1+1)

.                          (6) 
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We will show that, for a fixed positive integer 𝑚, the derivatives given by (6) alternate in signs 

for 𝑘 = 0,1, 2, … , 𝑚. We only prove the case when 𝑚 is even since the case for 𝑚 being odd is 

similar. We proceed using induction. For k = 0, we have 𝑓(−(𝑎1 + 1)) > 0 and for 𝑘 =  1 we 

have 

𝐷1(𝑓(𝑥))|
𝑥=−(𝑎1+1)

= (−1)𝑚−1 (𝑚(𝑎1 + 1)𝑚−1 − ∑ (𝑚 − 𝑖)𝑎𝑖(𝑎1 + 1)𝑚−𝑖−1

𝑚−1

𝑖=1

) 

          ≤  −𝑚(𝑎1 + 1)𝑚−1 + 𝑚𝑎1 ∑ (𝑎1 + 1)𝑚−𝑖−1

𝑚−1

𝑖=1

 

                                  = −𝑚(𝑎1 + 1)𝑚−1 + 𝑚𝑎1 (
(𝑎1 + 1)𝑚−1 − 1

𝑎1
) = −𝑚 < 0. 

Next, we show that  

𝐷𝑛(𝑓(𝑥))|
𝑥=−(𝑎1+1)

{
  > 0    if 𝑛 is even
< 0    if 𝑛 is odd

, 

for some natural number 𝑛 ≤ 𝑚. First, suppose that 𝑛 is even. Then, 

𝐷𝑛(𝑓(𝑥))|
𝑥=−(𝑎1+1)

= (
𝑚!

(𝑚 − 𝑛)!
𝑥𝑚−𝑛 − ∑

(𝑚 − 𝑖)!

(𝑚 − 𝑛 − 𝑖)!
(−1)𝑖𝑎𝑖𝑥

𝑚−𝑛−𝑖

𝑚−𝑛

𝑖=1

)|

𝑥=−(𝑎1+1)

 

                                     = (−1)𝑚−𝑛 (
𝑚!

(𝑚 − 𝑛)!
(𝑎1 + 1)𝑚−𝑛 − ∑

(𝑚 − 𝑖)!

(𝑚 − 𝑛 − 𝑖)!
𝑎𝑖(𝑎1 + 1)𝑚−𝑛−𝑖

𝑚−𝑛

𝑖=1

) 

                                     ≥
𝑚!

(𝑚 − 𝑛)!
(𝑎1 + 1)𝑚−𝑛 −

𝑚!

(𝑚 − 𝑛)!
𝑎1 (

(𝑎1 + 1)𝑚−𝑛 − 1

𝑎1
) 

                                 =  
𝑚!

(𝑚−𝑛)!
> 0. 

 

On the other hand, if 𝑛 is odd then 

𝐷𝑛(𝑓(𝑥))|
𝑥=−(𝑎1+1)

≤ −
𝑚!

(𝑚 − 𝑛)!
(𝑎1 + 1)𝑚−𝑛 +

𝑚!

(𝑚 − 𝑛)!
𝑎1 (

(𝑎1 + 1)𝑚−𝑛 − 1

𝑎1
) 

                                  = − 
𝑚!

(𝑚−𝑛)!
< 0. 

These show that 𝑣(−(𝑎1 + 1)) = 𝑚.   On the other hand, it can be verified easily that 𝑣(0) =

𝑚 − 1, since for any positive integer 𝑚, 𝐷𝑛(𝑓(𝑥))|
𝑥=0

 alternates in sign for 𝑛 = 0, 1, 2, … , 𝑚 −

1 and 𝐷𝑚(𝑓(𝑥))|
𝑥=0

> 0. Thus, by Budan-Fourier's theorem, the number of zeros of 𝑓 in the 

interval (−(𝑎1 + 1), 0] , counted with their orders of multiplicity is equal to 

𝑣(−(𝑎1 + 1)) − 𝑣(0) − 2(0) = 𝑚 − (𝑚 − 1) − 0 = 1, 

proving (𝑎).  
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Now, we proceed to prove section (𝑖𝑖) of Theorem 2.2. Again we assume 𝑚 to be even. A 

similar proof can be given for an odd 𝑚. From (𝑎) of Theorem 2.2(𝑖), there follows: 

 

     (2.7a) If 𝑥 ∈ ℝ such that 𝑥 < 𝑥− then 𝑓(𝑥)  >  0, and 

     (2.7b) If 𝑥 ∈ ℝ such that 𝑥− < 𝑥 < 0, then 𝑓(𝑥) <  0. 

 

Let ℎ(𝑥) =  −(𝑥 +  1)𝑓(𝑥). By applying (4) and re-indexing the series, we obtain the 

following: 

ℎ(𝑥) = −𝑥𝑚+1 + ∑(−1)𝑖𝑎𝑖𝑥
(𝑚+1)−𝑖 − 𝑥𝑚 + ∑(−1)𝑖𝑎𝑖𝑥

𝑚−𝑖

𝑚

𝑖=1

𝑚

𝑖=1

 

= −𝑥𝑚+1 − (𝑎1 + 1)𝑥𝑚 + ∑ (−1)𝑖(𝑎𝑖 − 𝑎𝑖+1)𝑥𝑚−𝑖   +

𝑚−1

𝑖=1

 𝑎𝑚.                  (7) 

 

Since 𝑓(𝑥) has exactly one negative real zero 𝑥− , ℎ(𝑥) has two negative real zeros, that is, 𝑥− 

and −1. Observe that 

                        “If 𝑥 ∈ ℝ such that 𝑥 < 𝑥− then ℎ(𝑥)  >  0,” and 

 “If 𝑥 ∈ ℝ such that 𝑥− < 𝑥 < 0, then ℎ(𝑥) <  0. "                                               (8) 

To complete the proof of (𝑖𝑖), it is sufficient to show that there are no zeros of 𝑓 that lie on and 

outside of the unit circle. 

Claim 1: The polynomial equation 𝑓(𝑥)  =  0 has no complex root 𝑧1 with −|𝑧1| < 𝑥−. 
 

Proof of Claim 1. Assume the contrary that there exists such 𝑧1. So, we have 

𝑓(𝑧1) = 𝑧1
𝑚 −  ∑(−1)𝑖𝑎𝑖𝑧1 𝑚−𝑖 = 0.

𝑚

𝑖=1

 

Then, by triangle inequality, we obtain 

|𝑧1
𝑚| ≤ ∑ 𝑎𝑖|𝑧1

𝑚−𝑖|.                                                                      (9)

𝑚

𝑖=1

 

Note that 

𝑓(−|𝑧1|) = (−|𝑧1|)𝑚 − ∑(−1)𝑖𝑎𝑖(−|𝑧1|)𝑚−𝑖.  

𝑚

𝑖=1

 

= |𝑧1|𝑚 − ∑ 𝑎𝑖|𝑧1|𝑚−𝑖.  

𝑚

𝑖=1

 

Using (9) we get 𝑓(−|𝑧1|) ≤ 0. This contradicts (8). 
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Claim 2: 𝑓(𝑥)  =  0 has no complex root 𝑧2 that satisfies 𝑥− <  −|𝑧2| <  −1. 
 

Proof of Claim 2. Assume the contrary, that is, assume that there exists a 𝑧2 such that 𝑓(𝑧2) =
0. Then by (7) we obtain 

ℎ(𝑧2) = −𝑧2
𝑚+1 − (𝑎1 + 1)𝑧2

𝑚 + ( ∑ (−1)𝑖(𝑎𝑖 − 𝑎𝑖+1 )𝑧2
𝑚−𝑖

𝑚−1

𝑖=1

)  + 𝑎𝑚  =  0. 

 

This implies that 

(𝑎1 + 1)|𝑧2
𝑚| ≤ |𝑧2

𝑚+1| +  ( ∑ (𝑎𝑖 − 𝑎𝑖+1 )𝑧2
𝑚−𝑖

𝑚−1

𝑖=1

)  +  𝑎𝑚 

 

We note that 𝑎𝑖 − 𝑎𝑖+1 ≥ 0 for all 𝑖 = 1, 2, … , 𝑚. Hence, 

 

ℎ(−|𝑧2|) = −(−|𝑧2|)𝑚+1 − (𝑎1 + 1)(−|𝑧2|)𝑚 + ( ∑ (−1)𝑖(𝑎𝑖+1 − 𝑎𝑖 )(−|𝑧2|) 𝑚−𝑖 

𝑚−1

𝑖=1

)  +  𝑎𝑚  

= |𝑧2|𝑚+1 − (𝑎1 + 1)|𝑧2|𝑚 + ( ∑ (𝑎𝑖+1 − 𝑎𝑖 )|𝑧2| 𝑚−𝑖 

𝑚−1

𝑖=1

)  +  𝑎𝑚 ≥ 0. 

This contradicts (8). 

 

Claim 3: On the circles |𝑧3| = −𝑥− and |𝑧3| = 1, 𝑓(𝑥) has the unique zero 𝑥−. 

 

Proof of Claim 3. If 𝑓(𝑧3)  =  0; then 

 

ℎ(𝑧3) = −𝑧3
𝑚+1 − (𝑎1 + 1)𝑧3

𝑚 + ( ∑ (−1)𝑖(𝑎𝑖 − 𝑎𝑖+1 )𝑧3
𝑚−𝑖

𝑚−1

𝑖=1

)  + 𝑎𝑚  =  0. 

 

This implies that 

(𝑎1 + 1)|𝑧3
𝑚| ≤ |𝑧3

𝑚+1| + ( ∑ (𝑎𝑖 − 𝑎𝑖+1 )𝑧3
𝑚−𝑖

𝑚−1

𝑖=1

)  + 𝑎𝑚.                                      (10) 

If 𝑧3 = 𝑥− or 𝑧3 =  −1, then ℎ(𝑧3)  =  0, so (10) must be an equality. Therefore, 

𝑧3
𝑚+1, (𝑎1 − 𝑎2)𝑧3

𝑚−1, (𝑎2 − 𝑎3)𝑧3
𝑚−2, … , (𝑎𝑚−1 − 𝑎𝑚)𝑧3

𝑚−𝑖,  and 𝑎𝑚 

all lie on the same ray starting from the origin. Since 𝑎𝑚 and (𝑎𝑖 − 𝑎𝑖+1) ∈ ℝ+ for all 𝑖 =
1, 2, … , 𝑚 − 1, then so are 𝑧3

𝑚+1, 𝑧3
𝑚−1, 𝑧3

𝑚−2, …, 𝑧3. Thus 𝑓(𝑧3) ∈ ℝ+. On the circles |𝑧3| =
−𝑥− and |𝑧3| = 1, there are two conditions 𝑧3 = −1 or 𝑧3 = 𝑥−. Since 𝑓(−1) ≠ 0, then 𝑥− is 

the unique zero of 𝑓(𝑥), proving our claim. 

These three claims prove (𝑖𝑖).  
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Thus, 𝑓(𝑥) = 𝑥𝑚 −  ∑ (−1)𝑖𝑎𝑖𝑥
𝑚−𝑖𝑚

𝑖=1  has exactly one negative real zero 𝑥− satisfying the 

condition −(𝑎1 + 1) < 𝑥− < −𝑎1 and its other zeros are found inside the unit circle.  

∎ 
 

To illustrate Theorem 2.2, we consider the polynomial 𝑥2 + 3𝑥 − 2. In this example,                         

𝑎1 = 3 > 2 = 𝑎2, 𝜖1 = = −1, and 𝜖1 and 𝜖2 alternate in signs. Computing for the zeros of the 

polynomial, we get 𝑥 =
−3±√17

2
. One observes that there's a negative real zero, i.e., 𝑥− =

−3−√17

2
 

and this zero lies between −4 = −(𝑎1 + 1) and −3 = −𝑎1. The other zero, which is 
−3+√17

2
, lies 

inside the unit circle in complex plane. 

 

Remark. One may notice from Theorem 2.2 the strict inequality 𝑎1  >  1. The exclusion of 1 for 

the values of 𝑎𝑖’s is due to the fact that the polynomial   

𝑓(𝑥) = 𝑥𝑚 +  ∑(−1)𝑖𝑥𝑚−𝑖

𝑚

𝑖=1

 

a self-reciprocal polynomial (cf. [1], [7], [8], [9], [10]) so the derivative 

𝑓′(𝑥) = 𝑚𝑥𝑚−1 +  ∑ (𝑚 − 𝑖)(−1)𝑖𝑥𝑚−𝑖−1

𝑚−1

𝑖=1

 

has all its zeros in the closed disk |𝑧| ≤ 1 and hence, by a result  of Cohn [2], all its zeros lie on 

the unit circle. On the other hand, the results for (𝑎) and (𝑖𝑖) still hold when 𝑎𝑖’s = 1 for all 

𝑖 = 1, 2, … , 𝑚 and we leave the proof to the reader. 

 

3   An application on integer sequences 
One good application of our result is on the study of integer sequences. Consider for instance the 

𝑚𝑡ℎ-order recursive sequence {𝑢𝑛}𝑛=0
∞  satisfying the recurrence equation defined by 

 

𝑢𝑛 = −𝑎1𝑢𝑛−1 + 𝑎2𝑢𝑛−2 − 𝑎3𝑢𝑛−3 + ⋯ + (−1)𝑚𝑎𝑛−𝑚𝑢𝑚,                                    (11) 
 

with initial values 𝑢𝑖 ∈ ℕ for 0 ≤ 𝑖 < 𝑚 and at least one of them is not zero. Clearly, the 

characteristic polynomial of (11) is given by (4). With this connection, we can easily obtain the 

following Lemma. 

 

Lemma 3.1. Let 𝑚 ≥ 2 and let {𝑢𝑛}𝑛=0
∞  be an integer sequence satisfying the recurrence 

formula (7). Then the closed formula of 𝑢𝑛 is given by 

 

𝑢𝑛 = 𝑐𝛼𝑛 + 𝑂(𝑑−𝑛)       (𝑛 → ∞),                                                         (12) 
 

where 𝑐 > 0, 𝑑 > 1, and  𝛼 ∈ −(−(𝑎1 + 1), −𝑎1)  is the negative real zero of 𝑓(𝑥). 
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Proof. Let 𝛼, 𝛼1, 𝛼2, … , 𝛼𝑡 be the distinct roots of 𝑓(𝑥)  =  0; where 𝑓(𝑥) is the characteristic 

polynomial of (11), which is given by (4). From (𝑎) of Theorem 2.2 we know that 𝛼 is the 

simple root of 𝑓(𝑥)  =  0. Let 𝑟𝑗 be the corresponding multiplicity of the root 𝛼𝑗 for each 

𝑗 = 1,2,3, … , 𝑡. From the properties of 𝑚𝑡ℎ- order linear recursive sequences, 𝑢𝑛 can be 

expressed as follows (cf. [17]): 

    𝑢𝑛 = 𝑐𝛼𝑛 + ∑ 𝑃𝑖(𝑛)𝛼𝑖
𝑛

𝑡

𝑖=1

,                                                               (13) 

 

where 𝑃𝑖(𝑛) ∈ ℝ[𝑛],  deg 𝑃𝑖(𝑛) = 𝑟𝑖 − 1,   𝑟1 + 𝑟2 + ⋯ + 𝑟𝑡 = 𝑚 − 1, and 𝑐 ∈ ℝ.  From (𝑖𝑖) of 

Theorem 2.2 we have |𝛼𝑖| < 1  for 1 ≤ 𝑖 ≤ 𝑡. Since each 𝛼𝑖 of the second term in (9) goes to 0 

as 𝑛 → ∞, we can find constants 𝑀, 𝑑 ∈ ℝ  with 𝑑 >  1 for 𝑛 >  𝑛0 such that 

 

|∑ 𝑃𝑖(𝑛)𝛼𝑖
𝑛

𝑡

𝑖=1

| ≤ ∑|𝑃𝑖(𝑛)𝛼𝑖
𝑛|

𝑡

𝑖=1

≤ 𝑀𝑑−𝑛, 

 

completing the proof of the Lemma.  

∎ 
 

     With the help of the previous Lemma, we can easily verify the following results. 

 

Theorem 3.2. Let {𝑢𝑛} be an 𝑚𝑡ℎ- order sequence defined by (11) with the restriction  

𝑎1 ≥ 𝑎2 ≥ ⋯  ≥ 𝑎𝑚 > 1.  For any positive real number 𝛽 > 2, there exists a positive integer 𝑛1 

such that 

⌊(∑
1

𝑢𝑘

⌊𝛽𝑛⌋

𝑘=𝑛

)

−1

⌋ = 𝑢𝑛 − 𝑢𝑛−1,    (𝑛 ≥ 𝑛1). 

Letting 𝛽 → +∞ in Theorem 3.2 we can immediately deduce the following. 

 

Corollary 3.3. Let {𝑢𝑛} be an 𝑚𝑡ℎ- order sequence defined by (11) with the restriction  

𝑎1 ≥ 𝑎2 ≥ ⋯  ≥ 𝑎𝑚 > 1.  Then there exists a positive integer 𝑛2 such that 

⌊(∑
1

𝑢𝑘

+∞

𝑘=𝑛

)

−1

⌋ = 𝑢𝑛 − 𝑢𝑛−1,    (𝑛 ≥ 𝑛2). 

 One may follow the proofs of Theorem 1 and Corollary 1 in [17] to prove the above results. 
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