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Abstract 

 

Under the assumption that the risk-free interest rate dynamics follows the Ho-Lee 

interest rate model, we investigate the optimal investment strategy for portfolio 

selection with liability. Under the utility maximization criterion, the maximum 

principle is used to obtain the HJB equation for the value function, and we study the 

optimal investment strategies under quadratic utility. Finally, we obtain the 

closed-form solutions for the optimal investment strategies by applying the variable 

transformation approach. 
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1. Introduction 

Liability has a significant impact on asset allocation in many asset management 

institutions, such as in pension fund, bank, and insurance company. In recent years, 

studies on Asset - liability management have made some achievements. Sharpe and 

Tint [1] first present a single-period mean-variance asset-liability management model 
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and show that the optimal investment decision of a company should take its liabilities 

into account. Later, Kell and Muller [2] find that liabilities do have a significant effect 

on the efficient frontier. The role of liability has as well been studied by Leippold et al. 

[3] in a multiperiod setting by using the geometric approach and the embedding 

technique of Li and Ng [4]. Chiu and Li [5] generalize the mean-variance 

asset-liability management problem to a continuous-time setting and derive the 

analytical optimal portfolio strategy as well as the optimal initial funding ratio by 

using the stochastic LQ control. Xie and Li [6] consider the continuous-time 

mean-variance asset-liability management problem where the liability follows the 

Brownian motion with drift and derive the optimal strategy. Yi et al. [7] consider the 

impact of the uncertain exit time on the optimal asset-liability management strategy. 

Xie et al. [8] extend the model of Xie and Li [6] by assuming that the liability follows 

a geometric Brownian motion in a continuous-time incomplete market. Papi and 

Sbaraglia [9] studied the restrictive asset-liability management issues with the 

application of the principle of dynamic programming. These studies all make a 

contribution to enriching and developing the application of the portfolio theory in the 

asset - liability management to some extent，but the interest rates in the model are 

constant or determine the function of time. However, this assumption does not accord 

with the actual investment environment of investors and investment institutions．In 

this paper, the constant interest rate of asset - liability management issues has been 

extended to stochastic interest rate, therefore, on the basis of which optimal 

investment decision under quadratic utility function has been Studied. 

As a matter of fact, in most of the real-world situations, stochastic interest rate is 

an important factor which the investors should take into consideration. In recent years, 

many scholars have introduced stochastic interest rates into portfolio selection 

problems and have achieved some research results. For instance, Deelstra et al. [10] 

applied martingale approach to portfolio selection problems with the 

Cox-Ingersoll-Ross model and obtained the optimal investment strategy for power 

utility maximization in explicit form. Korn and Kraft [11] concerned the Ho-Lee 

model and the Vasicek model and applied dynamic programming to derive the 

optimal portfolios. Gao [12] and Josa-Fombellida [13] introduced stochastic interest 

rates into the management of pension funds respectively. However, the literatures 

have mentioned before only study the issue of portfolio investment with stochastic 

interest rate while ignore liabilities. It is without doubt that in financial practices, the 

investment process is often accompanied by liabilities. The introduction of liabilities 

will make the continuous time case of optimal portfolio selection model more 

practical. 
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In this paper, we introduce the liability of [14] of into the market model of [11]. 

The interest rate is assumed to be subject to interest rate Ho-Lee model stochastic 

process. The introduction of liability and stochastic interest rate make the market 

model fitter for the reality on the one hand, and also make it more operational and 

targeted, which can provide scientific basis for investors and investment institutions. 

Under the utility maximization criterion, the maximum principle is used to obtain the 

HJB equation for the value function, and we study the optimal investment strategies 

under quadratic utility. Finally, we obtain the closed-form solutions for the optimal 

investment strategies by applying the variable transformation approach. 

This paper is organized as follows: Section 2 presents the general problem 

framework and exposes the financial market structure. Section 3 applies dynamic 

programming principle to obtain a linear second-order partial different equation. In 

Section 4, we choose quadratic utility for our analysis and use variable change 

technique to obtain the optimal portfolios. In Section 5, we conclude the paper. 

 

 

2. Problem Formulation 

Throughout this paper we denote by ( )E the expectation operator, [0, ]T  the 

fixed and finite time horizon of the investment. Assumed that 
1 2( ( ), ( ))W t W t is a 

2-dimensional standard adapted and independent Brownian motion on a filtered 

complete probability space ( , , ( ) , )
0

pt t T
, where ( )

0t t T
 is generated 

by
1 2( ( ), ( ))W t W t . 

We consider a financial market where three assets are traded continuously 

over [0, ]T . One of the assets is a savings account with price ( )B t  at time t , whose 

price process ( )B t satisfies the following differential equation 

( ) ( ) ( )dB t B t r t dt  

Where ( )r t  denotes the short rate which can be interpreted as the annualized as 

interest for the infinitesimal period [ , ]t t dt , and ( )r t  is supposed to be stochastic 

process. 

In this paper a short rate is assumed to be driven by the stochastic differential 

equation 
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2( ) ( ) ( )dr t a t dt bdW t  

and as explicit examples we will consider the Ho-Lee model given by
~

( ) ( ) ( )a t a t b t , 

where 0b are constants and
~

( ), ( )a t t are assumed to be deterministic and continuous 

function of the time t . 

The second asset is a stock with the price ( )S t at time t , whose price process ( )S t is 

given by 

1 1 1 2 2( ) ( )[ ( ) ( ) ( ) ( ) ( )]dS t S t u t dt t dW t t dW t  

Where
1 1 2( ), ( ), ( )u t t t are supposed to be deterministic and Borel-measurable bounded 

functions on[0, ]T . 

The third asset is a bond with maturity
1T T , whose price dynamics ( )P t follows 

3 3 2( ) ( )[ ( ) ( ) ( ) ( ) ( )]dP t P t r t dt t t dt t dW t  

Where ( )t is the deterministic function, we have
3 1( ) ( )t b T t in the Ho-Lee model 

[11]. 

Suppose the investor has an initial wealth 0w and the initial liabilities ( )l l ¡  at 

time 0t , so investors were net initial wealth
0 0x u l  at time 0t . The investor’s 

accumulative liability at time t is denoted by ( )L t , and ( )L t satisfies the following SDE: 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( )dL t c t dt d t dW t d t dW t  

Where
1( )d t is the volatility of stock prices caused by liabilities,

2 ( )d t is the volatility of 

interest rates caused liabilities,
1 2( ), ( ), ( )c t d t d t are assumed to be deterministic and 

continuous function of the time t . 

Assume that the investor invests the market value of his wealth 1( )t and 2 ( )t into 

the stock and the bond at time t respectively, [0, ]t T , and let 1 2( ) ( ( ), ( ))t t t . Clearly, 
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the amount invested in the risk-free asset satisfies
1 2( ) ( ) ( )X t t t , in 

which ( )X t represents the net wealth of the investor at time t .Suppose that short-selling 

of stocks and borrowing at the interest rate of the bond is allowed and there is neither 

transaction cost nor consumption. The wealth process ( )X t corresponding to trading 

strategy ( )t is subject to the following equation 

1 2 1 2

( ) ( ) ( )
( ) ( ( ) ( ) ( )) ( ) ( ) ( )

( ) ( ) ( )

dB t dS t dP t
dX t X t t t t t dL t

B t S t P t
 

i.e., 

1 1 2 3

1 1 1 1 1 2 2 3 2 2

( ) [ ( ) ( ) ( )( ( ) ( )) ( ) ( ) ( ) ( )]

[ ( ) ( ) ( )] ( ) [ ( ) ( ) ( ) ( ) ( )] ( )

dX t r t X t t u t r t t t t c t dt

t t d t dW t t t t t d t dW t
 

The set of all admissible investment strategy ( )t is denoted by { ( ) :0 }t t T . 

Suppose that the investor's objective is to find a portfolio ( )t such that the expected 

utility of terminal wealth is maximized. Mathematically, the portfolio selection for 

utility maximizing is formulated as 

( )
max ( ( ))

t
EU X t   (1) 

where utility function ( )U satisfies the first-order derivative ( ) 0U and the second 

order derivative ( ) 0U . The properties of convex function known the existence and 

uniqueness of the optimal investment strategy 1 2( ) ( ( ), ( ))t t t investors expected 

utility of terminal wealth maximum value. 

 

 

3. The Optimal Investment Strategy 

The maximum principle is used to obtain the HJB equation for the value function, 

and we study the optimal investment strategies under quadratic utility. Finally, we 

obtain the closed-form solutions for the optimal investment strategies by applying the 

variable transformation approach. 

We define the value function ( ), ,H t r x  as 
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( )
( ) max [ ( ( )) | ( ), , ( ) ],

t
E U X tH t Xr tx x r t r  

with terminal condition ( ( ), ),H r xT U x . 

In order to make the article more readability, we omit the symbol ( )t in the 

following expressions. 

According to dynamic programming principle, we obtain the following HJB 

equation 

2

( )

1
( ) sup ( , , ) 0

2
t x r rr

t

H rx c H aH b H F t x   (2) 

Where , , , , ,t r rr x xx rxH H H H H H  represent the partial derivatives of the value function 

( ), ,H T r x  with respect to variables , ,t r x  respectively. 

2

1 1 2 3 1 1 1

2

1 2 2 3 2 1 2 2 3 2

1
( , , ) ( ) ( )

2

1
( ) ( )

2

x x xx

xx xr

F t x u r H H d H

d H b d H

 

The optimal conditions satisfy 

1 1 1 1 1 1 2 2 3 2 2 2

1

3 1 2 2 3 2 3 3

2

( , , )
( ) ( ) ( ) 0

( , , )
( ) 0

x xx xx xr

x xx xr

F t x
u r H d H d H b H

F t x
H d H b H

 

Solving the equations gets the optimal solution 

* 2 1 1
1 2

11

( ) x

xx

Hu r d

H
  (3) 

* 2 2 1 1 2 2 1
2 2

3 3 3 1 31

( )
[ ] x xr

xx xx

H Hu r d db

H H
  (4) 

Putting (3), (4) into HJB equation (2), we obtain 
2 2

2 2

2 1

1 1
( ( ) ) ( ) 0

2 2

x x xr xr

t x x r rr

xx xx xx

H H H H
H rxH K t c H aH b H K t b b

H H H
  (5)  

Where 

2 22 1
1

1

( )1 1
( ) [ ]

2 2

u r
K t ， 1

2 1 2 2

1

( ) ( )
d

K t u r d  

The wealth process ( )X t corresponding to trading strategy * *

1 2, is subject to the 

following equation 
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2 22 1 1 2 2 1 1 1

2

1 11

1 1 1 1 1 2 2 3 2 2

( ) ( ) ( )
( ) [ ( ) ( ) [ ( ) ] ]

[ ( ) ( ) ( )] ( ) [ ( ) ( ) ( ) ( ) ( )] ( )

x xr

xx xx

H Hu r d d d u r
dX t r t X t b dt

H H

t t d t dW t t t t t d t dW t

  (6)  

4. Quadratic utility 

Assume that the expression of quadratic utility is of the form 

2 1
( ) ,

2
U x x wx x

w
 and 0w , and equations (4) are solved in such a utility function. 

We assume that the value function has the following structure 

2( ) ( , ) ( , ), , (, )t P t r x wQ t r x D t rH r x   (7) 

with terminal condition ( , ) 1, ( , ) 1, ( , ) 0P T r Q T r D T r ，where ( , ), ( , ), ( , )P t r Q t r D t r  is the 

unknown function，our goal is to find the analytical expression ( , ), ( , )P t r Q t r and ( , )D t r  

so that (7) is the equation (5) Solutions. 

The partial derivatives are following 

2

tt t tPx wQH x D ， 2x P QxH w ， 2rxr rP xH wQ  

2xxH wQ ， 2

rr r rP x wQH x D ， 2

rr rr rr r rP x wQ xH D  

Plugging , , , , ,t r rr x xx xrH H H H H H  into (5) get 

2

2 2

1 1

2 2

2 2

2 22
2 1

1
[ (2 2 ( )) ( 2 ) ] [ ( 2 ( ))

2

1
( ( ) )2 ( ) ] [ ( ( ) )

2

( )1
] 0

2 2 2 4

r
t rr r t

r r r
rr r t

r r
r rr

Q
xw Q r K t Q b Q a b Q b P r K t P

Q

PQ P Q
K t c wQ b P a b P b b D K t c P

Q Q

K t PP PP b b
aD b D

w Q w Q w Q

 

We obtain ( , ), ( , )P t r Q t r and ( , )D t r  satisfy the following second order partial differential 

equations respectively. 

2
2 2

1

1
(2 2 ( )) ( 2 ) 0

2

( , ) 1

r
t rr r

Q
Q r K t Q b Q a b Q b

Q

Q T r

  (8) 

2 2

1 2

1
( 2 ( )) ( ( ) )2 ( ) 0

2

( , ) 1

r r r
t rr r

PQ P Q
P r K t P K t c wQ b P a b P b b

Q Q

P T r
  

(9) 
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2 22
2 1

2

( )1
( ( ) ) 0

2 2 2 4

( , ) 0

r r
t r rr

K t PP PP b b
D K t c P aD b D

w Q w Q w Q

D T r

  (10) 

The solution of the equation (8)-(10) satisfies the following three theorems 

Theorem1 Assume that the solution to (8) is ( ) ( )( , ) A t B t rQ t r e ,with terminal condition 

( ) 0,A T and ( ) 0B T , then 

2

1

1
( ) 2( ), ( ) ( 2 ) ( ) ( ) 2 ( )

2

T

t
B t T t A t a b B s b B s K s ds  

 

Proof Plugging ( ) ( )( , ) A t B t rQ t r e into (8) get 

2 2

1

1
[( 2) ( ) ( 2 ) ( ) ( ) 2 ( )] 0

2
Q B r A t a b B t b B t K t  

Letting 2 0B and noting that ( ) 0B T , we have ( ) 2( )B t T t . ( )A t satisfies the 

following equation 

2 2

1

1
( ) ( 2 ) ( ) ( ) 2 ( ) 0

2

( ) 0

A t a b B t b B t K t

A T

 

Its solution is 

2

1

1
( ) ( 2 ) ( ) ( ) 2 ( )

2

T

t
A t a b B s b B s K s ds  

 

Theorem2 Assume that the solution to (9) is ( )( , ) ( ) E t rP t r F t e , with terminal 

condition ( ) 1F T  and, ( ) 0E T then 

3 3( ) ( )
( )

2( ) ( ( ) )2 , ( ) ( )

T t

t s
TK s ds K z dz

A t

t
F t e K s c we e E t B t  

Where 

2 2

3 1

1
( ) 2 ( ) ( ) ( ) 2 ( ) ( )

2
K t K t r b B t aB t b D t B t  

 

Proof Plugging ( ) ( )( , ) A t B t rQ t r e into (9) get, we have 
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( ( ) ( )) 2 2

1

2 ( )

2

1
[ ( ) ( ) ( ) ( 2 ( )) ( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( ) ( )] ( ( ) )2

E t B t r

A t

e F t F t E t r r K t F t a b F t E t b F t E t

b F t B t b F t E t B t K t c we

 

Noting that ( ) ( )E t B t  and theorem1, we have ( ) ( ) 2( )E t B t T t . So ( )F t satisfies 

2 2 ( )

1 2

1
( ) [(2 ( ) ( ) ( ) 2 ( )] ( ) ( ( ) )2

2

( ) 1

A tF t K t r b B t aB t b B t F t K t c we

F T

 

Solving the equation get 

3 3( ) ( )
( )

2( ) ( ( ) )2

T t

t s
TK s ds K z dz

A t

t
F t e K s c we e  

Where 

2 2

3 1

1
( ) 2 ( ) ( ) ( ) 2 ( )

2
K t K t r b B t aB t b B t  

 

Theorem3 Assume that the solution to (10) is ( )( , ) ( ) H t rD t r G t e , with terminal 

condition ( ) 0G T and, ( ) 0H T then 

5 ( )

4( ) ( )

t

s
T K z dz

t
G t K s e ds

 

Where 
2 2 2 2 2

1
4 2( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ( ) ) ( )

2 2 4A t A t A t

K t F t b E t F t b E t F t
K s K t c F t

w w we e e  

2 2

5

1
( ) 2 ( ( ) ( ))

2
K s r aH t b B t  

 

Proof Plugging ( ) ( )( , ) A t B t rQ t r e , ( )( , ) ( ) E t rP t r F t e and ( , ) ( ) ( )D t r G t H t r into(10)get, we 

have 

( ( ) ( )) 2 2

2 2 2 2 2

1
2( ) ( ) ( )

1
[ ( ) ( ) ( ) ( ) ( ) ( ) ( )]

2

( ) ( ) ( ) ( ) ( ) ( )
( ( ) ) ( )

2 2 4

H t E t r

A t A t A t

e G t G t H t r aG t H t b G t H t

K t F t b E t F t b E t F t
K t c F t

w w we e e
 

Noting that ( ) ( )H t E t  and theorem 1, we have ( ) 2( )E t T t . So ( )G t satisfies 

2 2 2 2 2
2 2 1

2( ) ( ) ( )

( )1 ( ) ( ) ( ) ( ) ( )
( ) ( )[2 ( ( ) ( ))] ( ( ) ) ( )

2 2 2 4

( ) 0

A t A t A t

K t F t b E t F t b E t F t
G t G t r aH t b B t K t c F t

w w we e e

G T

 

Solving the equation get 
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5 ( )

4( ) ( )

t

s
T K z dz

t
G t K s e ds  

Where 
2 2 2 2 2

1
4 2( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ( ) ) ( )

2 2 4A t A t A t

K t F t b E t F t b E t F t
K s K t c F t

w w we e e
 

2 2

5

1
( ) 2 ( ( ) ( ))

2
K s r aH t b B t  

 

Theorem4 If the utility function is 

2 1
( ) ,

2
U x x wx x

w  
and 0w , 

the optimal portfolio of the problem (1) is given by 

* 2 1 1 2 1
1 2 2

11 1

( ) ( )
[ ]

2

u r d u r P
x

wQ
  (11) 

* 2 2 1

2 2

3 3 31

2 2 1 1 2 2 1

2

3 3 3 1 31

( )
[ ( )]

( )
[ ( )]

2

u r b
B t x

u r d db P
B t

wQ

  (12) 

and wealth optimal expectation 

6 6
0 0

( ) ( )

7
0

( ) (0) ( )

t t
tK s ds K z dz

EX t X e K s e ds  

Where ,P Q are determined by Theorem 1 and Theorem 2 

2 22 1
6 2

1

( )
( ) ( ) ( ( ) ) ( )

u r
K t r t bB t  

2 22 1 1 2 2 1 1 1
7 2

1 11

( ) ( ) ( )
( ) ( ( ) ) ( )

2 2

u r d d d u rP P
K t bB t

wQ wQ
 

Proof By theorem 1 and theorem 3 have 

( )
, ( )

2 2

x xr

xx xx

H HP B t P
x B t x

H wQ H wQ
 

Plugging Theorem 1 to Theorem3 conclusions into (3) and (4) get, we have the 

optimal investment strategies under quadratic utility 

* 2 1 1 2 1
1 2 2

11 1

( ) ( )
[ ]

2

u r d u r P
x

wQ
 

* 2 2 1

2 2

3 3 31

2 2 1 1 2 2 1

2

3 3 3 1 31

( )
[ ( )]

( )
[ ( )]

2

u r b
B t x

u r d db P
B t

wQ

 

Under the optimal investment strategy, the expected value of the wealth process 

satisfies 
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2 2 2 22 1 2 1

2 2

1 1

1 2 2 1 1 1

1 1

( ) ( )
( ) [[ ( ) ( ( ) ) ( )] ( ) ( ( ) )

2

( ) ( )
( ) ]

2

u r u r P
dEX t r t bB t EX t

wQ

d d d u rP
bB t dt

wQ

 

Solving the equation get

 
6 6

0
( ) ( )

7
0

( ) (0) ( )

t t

s
tK s ds K z dz

EX t X e K s e ds  

Where 

2

2 2 1
6 2

1

( )
( ) ( ) ( ( ) ( )

u r
K t r t bB t  

2 22 1 1 2 2 1 1 1
7 2

1 11

( ) ( ) ( )
( ) ( ( ) ) ( )

2 2

u r d d d u rP P
K t bB t

wQ wQ
 

 

 

5．Conclusions 

Under the assumption that the risk-free interest rate dynamics follows the 

Ho-Lee interest rate model, we investigate the optimal investment strategy for 

portfolio selection with liability. Under the utility maximization criterion, the 

maximum principle is used to obtain the HJB equation for the value function, and we 

study the optimal investment strategies under quadratic utility. Finally, we obtain the 

closed-form solutions for the optimal investment strategies. 
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