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Abstract

In this paper an attempt is made to extend some standard results in set theory on
the basis of soft set relations. Vague soft set relation mappings and inverse vague
soft set relation mappings are proposed, and some related properties are discussed.
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1. Introduction

Fuzzy set[1] was introduced as a mathematical tool to solve the problem and vagueness in
everyday life. For uncertain data Molodtsov [2] introduced soft set and other researchers
continued with fuzzy soft set [3—10], vague soft set [11, 12] and further extended to multi
Q-fuzzy [13-18] and genetic algorithms [19, 20]. In this paper we define the concept
of vague soft set relation mappings as extension to our earlier studies on vague soft sets
[21-31]. We examine vague soft set relation mappings by proving some theorems.
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Vague Soft Set Relation Mapping

In this section, we extend the concept of soft set mappings as proposed by Babitha [10]
to that of vague soft set mappings followed by examples to illustrate the operations of
the newly defined relations. We then propose a novel definition of inverse vague soft set
relation mappings and discuss some related properties.

Definition 1.1. Let f be a vague soft set function from (F, A) to (G, B).

1. The vague soft relation mapping induced by f, denoted by the notation ™ is a
mapping from (F, A) to (G, B), that maps R to f— (N), where £~ (N) is defined
by f7N) = {f(F(a1) x f(F(a2))|F(a1) x F(az) € R}.

2. The inverse vague soft set relation mapping induced by f , denoted by the notation
/<, is a mapping from (G, B) to (F, A) that maps T to < (T), where f~(T)
is defined by, f(T) = {F(a1) x F(a2)|f(F(a1)) x f(F(a2)) € T}.

u|p Ul U3
U = VY7~ A T
{ 0y (3) (9) }
A = {ay, ap,as,as}, and B = {by, bp}. Consider the vague soft set (F, A) and (G, B)
defined by

Example 1.2. Let

P =\%01.02 0206 0406}
Ui us
P =1707,03) 01,03 0306}
Fas) = | ) X }
(0.1,0.1)” (0.8,0.9)" (0.3, 03
— “1 -
flas) = (0.4,0.4)" (0.5,0.5)" (0.7, 07 }
and
_ U “2 i
Gy = { 0.6,0.5)" (0.6,0.8)" (0. 0) }
_ U “2 1
G(b2) = {(0.4, 0.5)" (0.9.0.9)" (1, ”}

Suppose a vague soft set function f from (F, A) to (G, B) is given by
f={F(a1) x G(b1), F(a2) x G(b1), F(az) x G(b2), F(as) x G(bp)}.

(1) If N be a vague soft set relation on (F, A) given by R = {F(ay) x F(a2), F(a3) X
F(ap), F(as) x F(ap}, then f7(R) = {G(b1) x G(b1), G(h2) x G(b2)}.



Vague Soft Set Relation Mappings... 3197

(2) If T be a vague soft set relation on (G, B) givenby T = {G(b1) x G(b1), G(b2) X
G (b))}, then f(T) = {F(a1) x F(a1), F(a1) x F(a2), F(a2) x F(ay), F(az) x
F(a1), F(a3) x F(a3), F(a3) x F(aa), F(as) x F(a3), F(as) x F(as)}.

Next, we will discuss some basic properties of vague soft set relation mappings and
inverse vague soft set relation mappings.

Theorem 1.3. If f is a vague soft set function from (F, A) to (G, B) and R, Q € (F, A),
then

LRCO= 7N C f(Q).
2. [TRUQ) =T (MU (D).

3. T MRNQ) C (RN £ (). If f is one-one, then £~ (RN Q) = £~ (R) N
f7(0).

Proof.

(1) VG(b1) x G(by) € f~ (M), there exists F(ay) x F(az) € R such that G(by) x
G(by) = f(F(ay)) x f(F(ay)) by Definition 1.1 (1). Since h C Q, we have
F(ay) x F(ap) € Q. Thus G(by) x G(by) € f~(Q). Hence f~ (M) C f~(Q).

(2) YG(by) x G(by) € f~ (MU Q), there exists F(ay) x F(ap) € R U Q such that
G(b1) x G(by) = f(F(a1)) x f(F(az)) by Definition 1.1 (1) where F(a;) x
F(ay) € Ror F(a)) x F(ay) € Q. Thus G(by) x G(by) € f~ R or G(by) x
G(b) € f7 Q. Hence f7(RUQ) C fT MU f7(Q).

Conversely, since RU Q D Rand RU Q D Q,wehave f7(RU Q) D f~(N)
and f7 (MU Q) D f7(Q) by (). Thus fT(RUQ) D f (MU f7(Q).
Therefore f7(RU Q) = f~ (R) U fF~(Q).

(3) Since RN Q Cc Rand RN Q C Q,wehave TR N Q) C f~(N) and
fTMNQ)C f7(Q)by (). Thus f7(RNQO) C [T RN f7(Q).
Conversely, VG (b)) x G(by) € f~(N) N f7(Q), we have G(by) x G(by) €
f7 (M) and G(by) x G(b2) € £~ (Q). By Definition 1.1 (1), there exists F(a;) x
F(ay) € 9N such that G(by) x G(by) = f(F(ay)) x f(F(az)) and there exists
F((@1)) x F((a2)) € Q suchthat G(b1) x G(b2) = f(F((a1))) x f(F((a2))).
Thus f(F(a1) x f(F(a2)) = f(F((al) ) X f(F((a2))) = G(by) X G (b2),
which implies that f(F(a1)) = f(F((al) )) and f(F(az)) = f(F(a)). If f
is one- one, then F(al) = F((al) )yand F(ap) = F((az) ). Thus F(a1) x F(az) =
F((al)) X F((az)) € RN Q. By Definition 1.1 (1) G(by) x G(by) € f~ (RN
Q). Therefore f~(R) N f7(Q) C f~ (NN Q). Hence if f is one-one, then
fTRNQ) = f7M)N Q). u
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Theorem 1.4. Let f be a vague soft set function from (F, A) to (G, B), T, S € (G, B).
Then

I.TCS= f(T)C f(S).
2. fT(TUS) = f(T)U f(9).
3.5 NS) = fT(T)Nn f(9).

Proof.

(1) VF(a1) x F(ap) € f(T), f(F(a1)) x f(F(az)) € T by Definition 1.1 (2).
Since T C S, wehave f(F(ay)) x f(F(az)) € S. Thus F(a;) x F(az) € f<(S).
Hence f(T) C f<(S).

(2) VF(a)) x F(ay) € f~(T US), f(F(a1)) x f(F(az)) € (T US). By Definition
1.1 (2) f(F(a1)) x f(F(az)) € (T) or f(F(a1)) x f(F(az)) € (S). Thus
F(a))xF(ap) € f~(T)or F(a;)x F(ay) € f~(S)implies that F (a;) x F(ay) €
(YU f(S). Thus f~(TUS) C f(T)U f(S).

Conversely, since TUS D Tand TUS D S,wehave f (T US) D f(T)and
fT@US) D f(S)by(1). Thus f~(TUS) D f(T)U f=(S).
Therefore f (T US) = f~(T)U f=(S).

(3) SinceT'NS C TandTNS C S,wehave f ~(TNS) C f~(T)and f ~(TNS) C
TS by (). So fT(TNS)C f(T)N f(S).

Conversely, VF(a1) x F(az) € f~(T)N f(S), thus F(a;) x F(ay) € f~(T)
and F(a)) x F(az) € f~(S). By Definition 1.1 (2), f(F(a1)) x f(F(az)) € T and
f(F(a) x f(F(a)) € S,1e. f(F(a1)) X f(F(az)) € (T'NS). Thus F(a1) x F(az) €
(T NS). Hence f~(T)N f=(S) C f~(T' NS). Therefore f~(T NS) =
(M Nf(S). u
Theorem 1.5. Let f be a vague soft set function from (F, A) to (G, B), N € (F, A)
and T € (G, B). We will have the following.

L. f=(f7 (M) DNR.If fisone-one, then f~(f~(N) =R
2. f7(f(T) CT.If fissurjective, then f~(f(T)) =T.

Proof.
(1) VF(ay) x F(ap) € R, we have f(F(ay)) x f(F(ay)) € f— (N). By Definition
1.1 (2), F(a1) x F(az) € f~(f~(N)). Hence f~(f~ (R)) D N.

Conversely, VF (a1) x F(az) € f~(f~ (N)), we have f(F(al)) X f(F(ayp)) €
7 (N). By Definition 1.1 (2), there exists F ((al)) x F (az)) € N such that
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F(F(@)x f(F(az) = f(F((@))x f(F((a2))), whichimplies that f (F (a1)) =
f(F((@))) and f(F(a2) = f(F((a))). If [ is one-one, then F(a) =
F((a1)) and F(a2) = F((a2)). Thus F(a1) x F(a2) = F((a1) ) x F((a2)) € %K.
Thus if f is one-one, then f < (f~ (R)) = R.

(2) By Definition 1.1, VG (b1) x G(by) € f— (f T (T)), there exists F(a;) x F(ay) €
f(T) suchthat G(b1) x G(by) = f(F(a1)) x f(F(ay)). Thus G(b1) x G(by) =
f(F(a1)) x f(F(a2)) € T. Hence f~(f*(T)) CT.

Conversely, VG (b1) x G(by) € T, if f is surjective, then there exists F'(ay), F(ay) €
(F, A) such that G(b1) = f(F(ay)) and G(by) = f(F(az)). Thus f(F(aj)) x
f(F(ay)) = G(by) x G(by) € T, which implies that F(a;) x F(az) € f<(T)). By
Definition 1.1 (1), G(b1) x G(b2) = f(F(a1)) x f(F(a»)) € f~(f(T)). Therefore
if f is surjective, then f~(f~(T)) =T. [ |

Theorem 1.6. Let f be a vague soft set function from (F, A) to (G, B), X € (F, A).

1. If f is surjective and R is reflexive, then f~ (N) is a reflexive vague soft set
relation on (G, B).

2. If f is bijective and N is anti-reflexive, then £~ (R) is an anti-reflexive vague soft
set relation on (G, B).

3. If N is symmetric, then £~ () is a symmetric vague soft set relation on (G, B).

Proof.

(1) YG(b) € (G, B), if f is surjective, then there exists F(a) € (F, A) such that
G(b) = f(F(a)). If N is reflexive, then F(a) x F(a) € N, thus G(b) x G(b) =
f(F(a)) x f(F(a)) € f~(N),1ie. f~(N)is a vague reflexive soft set relation
on (G, B).

(2) YG(b) € (G, B), if f is bijective, then there exists F(a) € (F, A) such that
G(b) = f(F(a)). If N is anti-reflexive, then F(a) x F(a) ¢ N, thus G(b) x
G(b) = f(F(a)) x f(F(a)) ¢ f~(N),ie. f7(N) is an anti-reflexive relation
on (G, B).

(3) If G(by) x G(b2) € f~ (R), then there exists F(a;) x F(ay) € N such that
G(by) x G(by) = f(F(ay)) x f(F(az)), which implies that G(b1) = f(F(ay))
and G(by) = f(F(ap)). If N is symmetric, then F(a;) x F(az) € N, thus
G(by) x G(by) = f(F(ay)) x f(F(ap)) € f7(N). Therefore f~(N) is a
symmetric vague soft relation on (G, B). |

Theorem 1.7. Let f be a vague soft set function from (F, A) to (G, B), T € (G, B).

1. If T is reflexive, then f < (T) is a reflexive vague soft set relation on (F, A).
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2. If T is anti-reflexive, then f (T) is an anti-reflexive vague soft set relation on
(F, A).

3. If T is symmetric, then = (R) is a symmetric vague soft set relation on (F, A).

Proof.

(1) YF(a) € (F, A), f(F(a)) € (G, B). If T isreflexive, then f(F(a)) X f(F(a)) €
T, which implies that F(a) x F(a) € f~ (T) by Definition 1.1. Thus f~(T) is
a reflexive vague soft set relation on (F, A).

(2) YF(a) € (F,A), f(F(a)) € (G, B). If T is anti-reflexive, then f(F(a)) X
f(F(a)) ¢ T, whichimplies that F(a) x F(a) ¢ f* (T) by Definition 1.1. Thus
f(T) is an anti-reflexive vague soft set relation on (F, A).

(3) VF(a)) x F(ap) € f(T), then f(F(ay)) x f(F(az)) € T. If T is symmetric,
then f(F(az)) x f(F(ay)) € T, which implies that F(az) x F(a;) € f(T) by
Definition 1.1. Thus f < (T) is a symmetric vague soft set relation on (F, A). W

2. Conclusion

Throughout this paper we have made an attempt to widen the set theoretical aspect of
vague soft sets. We define the vague soft set relation mappings and inverse vague soft
set relation mappings are proposed, and some related properties are discussed. Ordering
of a vague soft set is defined and we prove some set theoretical results based on it. To
extend this work one could generalize these concepts to fuzzy soft sets so that problems
regarding uncertainty could be solved more easily.
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