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Abstract:

In this paper, we introduce a method based on the Poisson distribution to show
existence and qualitative properties of solutions for the problem

cA%u(n) = Au(n+ 1),n € Ngy; u(0) =u, € X.

Using operator-theoretical conditions on A. We show how several properties for
fractional differences, including their own definition, are connected with the
continuous case by means of sampling using the Poisson distribution.
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I. Introduction

The study of existence and qualitative properties of discrete solutions for fractional
difference equations has drawn a great deal of interest [24]. Holm further developed
and applied the tools of discrete fractional calculus to the arena of fractional
difference equations. In spite of the significant increase of research in this area, there
are still many open questions regarding fractional difference equations [8,11]. In
particular, the study of fractional difference equations with unbounded linear
operators and their stability properties remains an open problem. These abstract
fractional models, with unbounded operators, are closely connected with numerical
methods. We propose a novel method to deal with this problem based on the
sampling of fractional differential equations by means of the Poisson distribution
[5,9]. We will use it to prove the existence of a unique solution to the initial value
problem.

I1. Mathematical Model using Poisson Distribution
Mathematical understanding of the linear equation is meant as a preliminary critical
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step for the subsequent analysis of full nonlinear models. The approach followed here
is purely operator theoretic and has as main ingredient the use of the Poisson
distribution:

n

t
pn(t) = e_tm, ne NO) t 2 O

The method relies in to take advantage of the properties of this distribution when it is
applied to continuous phenomena. More precisely, given a continuous evolution
u(t),t €[0,] we can discretize it by means of that we will call the Poisson
transformation

u(n) = f ) Ou®dt,  ne N,
0

In this paper, we will show that when this procedure is applied to fractional models
defined on the time scale R, these transformations are well behaved and t perfectly
in the discrete fractional concepts [13]. In other words, our approach is as follows:
Suppose that a solution of the fractional Cauchy problem
D%u(t) = Au(t), t =0, 0<a<l,
Exists. It happens, for instance, if A is the generator of a Cy-semi group or A is
sectorial and references therein. Then, by sampling each side of the above equation by
means of the Poisson distribution, we obtain that u(n) defined by a solution of
A%u(n) = Au(n + 1), ne€ N,
Where D% and A% denote the fractional operators on R, and N, respectively, in the
sense of Riemann-Liouville [11]. It is remarkable that by this mechanism we recover
the concept of fractional nabla sum and difference operator introduced by Atici and
Eloe [6], which has been used recently and independently of the method used here by
other authors in order to obtain several qualitative properties of fractional difference
equations, notably concerning stability properties. We take advantage of this
important connection to derive several sufficient conditions for stability in case of
unbounded operators A. Among others, in this paper we prove the following practical
criteria in Hilbert spaces: Let A be the generator of a C,-semi group on a Hilbert
space H such that {u € C: Re(u) > 0} c p(A) and satisfies.

Su
Re(y > oll = D7l < o0
then, the solution of the fractional difference equation of order @ € (0,1)
cA%u(n) = Au(n+1),n € N,
Exists and is stable for all initial conditions u, € D(A).
The outline of this paper is as follows: We give some preliminary background in
notation and definitions. The remarkable fact is that we use here a particular choice of
the definition introduced by Atici and Eloe in for the nabla operator [6]. This choice
that has been used by other authors is proved to be the right notion in the sense that
the following notable relation holds

f P (ODSU(O)dE = A%u(n),  n € N
0

Where DF denotes the Riemann-Liouville fractional derivative on R, and u(n) is
defined. Then, we can connect the Delta operator (i.e. the Riemann-Liouville
fractional difference) in the right hand side with the Caputo-like fractional difference
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by means of the identity [1]
cA%u(n) = cA%*u(n) — k*~*(n + 1)u(0), n € No.

I11. Forward Difference Equation
For a real number a, we denote
N,={a,a+1,a+2....}
and we write N; = N. Let X be a complex Banach space. We denote by s(N,; X) the
vectorial space consisting of all vector-valued sequences f: N, — X.
The forward Euler operator A,: s(Ng; X) — s(Ng; X) is defined by
Af(®)=f(t+1D —f(), tEN,
For m € N,, we define recursively AT': s(Ng; X) — s(Ng; X) by
A= Ao A,
and is called the m-th order forward difference equation. For instance, for any f €
s(Ng; X), we have
m

apfm =) (1) nmifm+p,  nen,

In particula;,z\?ve obtain
(Bsf)(n) = f(n+1)—f(n), nEN,

We also denote A%= I,, where I,:s(N,; X) — s(Ng; X) is the identity operator, and

A= A},
We define
I'(a+j)
ALY o—m 7
KO =rorgrn: LN

Fractional Sum:
Let « > 0. For any given positive real number a, the a-th fractional sum of a
function f is

t
1 —
Vaf (1) = frag 2.6 = s+ DTF(S),

Where t e N, and t% = UG
r(t

In particular, in case a = 0 we denote

- —a - In—k+a)
A=Y M= 2 et —k+ D
k=0

) =Y k(= f (), neN,
k=0

I11. A Method Based on the Poisson Distribution

For each n € N, we recall that the Poisson distribution is defined by
n

t
pn(t) = e‘tm, t > 0.
As expected, p,;(t) > 0 and
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f po(t)dt =1, neN,
0

The Poisson distribution arises in connection with Poisson processes. In this section
we will realize their application to abstract difference equations [12]. The method
itself uses an idea of discretization of the derivative in time used.

First, we recall some concepts. Let s: R, — S(X) be strongly continuous, that is, for
all x € X the map t — S(t)x is continuous on R,. we say that a family of bounded
and linear operators {S(t)}t = 0 is exponentially bounded if there exists real numbers
M > 0 and w € R such that

[ISOI] < Me®t,  ¢=0.

We say that {S(t)}t =0is bounded if w =0. Note that if {S(¢)}t =0 is
exponentially bounded then the Laplace transform

S(x = f e M S()xdt, xeX
0
Exists for all Re(1) > w.

We recall that the Z-transform of a vector-valued sequence f € s(N,; X), is defined by

oo

f) = 27 F()
=0
Where z is a complex number. Note that convergence of the series is given for |z| > R
with R sufficiently large.
An interesting connection between the vector-valued Z-transform and the vector-

valued Laplace transform can be given by means of the Poisson distribution.

Example
For « > 0 define
a-—1
— t>
9.0 ={T@ ¢
0 t<o0

Note the semi group property:
9a+p =9a*9gp >0
We have the following interesting property of sampling
. o] B o . tn+a+1 B F(n+ a)
Guln) = f pu(D)g, (Ddt = f e it = Tt
For all n € N,. By the preceding theorem we obtain
a

a —
k*(z) = G =17
For all |z| > 1 and
k*B(m) = (k* « kF)(n), a,B > 0.
In particular, for a, f > 0 we deduce the identities
A"“(A"Eu)(n) =A@ By(n) = A B (A~ u)(n), vn € N,.
Indeed,
A‘“(A‘Bu) = A(kﬁ * u) = k“(kﬁ * u) = (k“ * kﬁ) s u = kOB x«y = A+By,

= k%(n),



A Study on Qualitative Properties of Stochastic Difference Equations and Stability 3125

and interchanging the role of « and g we obtain. We finally remark that, for a, § >
0, we get the identity

A=kP = k% « kP = |o+B

The next property connecting the continuous and discrete convolution will be very
useful in the treatment of abstract difference equations.

IVV. Numerical Example
A MATLAB program is composed according to the conditions. The program takes
the system parameters 1,4,B;,C;,D;;,i=1.2,....,K,j=1.2,..,K, and grid
parameters N;,i = 1,2, ..., K, as inputs, and check the feasibility of the linear matrix
inequalities. To get an idea how close the conditions are to the necessary and
sufficient conditions, the following system is tested,
x(t) = Ax(t) + Byy(t — 1) + Boy,(t — 13),
y1(6) = Cyx(t),
Y2(t) = Cox(£) + Dyyy1(E —11) + Doy y,(t —13),

0 050 0 00O

-05-050 0 0 O

A=| 1 0-20 00
0 0 0-090 0
0 0 1 0 -10
0 0 0 0 1-1
0 0 0
—-0.5 0 0
1 -2 0
B, = 0 B, —1-1.45 |
0 0 0
0 0 0

0
Dax = ( 0 ). D22 = (0 0.5
The system has two delay channels. From the special structure of the system, it is not
difficult to show by solving the characteristic equations that the system is
exponentially stable if and only if r; € (0,r; max), i = 1; 2, where
rymax = 2m,
r,max = 4.7388.
Other methods, such as the one covered in Cebotarev and Meiman (1949), may also
be used to obtain this conclusion.
For three given ratios v/5,1/+/2 and 1/v/5 of r, /r,, the maximum r, that satisfies the
conditions are computed by using MATLAB program with a bisection process, and
the results for difference N, and N, are listed in the following tables
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/1y = V5
N, 2 3 4 Analytical
N, 1 1 2
romax | 2.8028 | 2.8087 | 2.8094 | 2.8099
r/r,=1 V2
N, 1 1 2 Analytical
N, 1 2 3
rymax | 4.6850 | 4.7354 | 47381 | 4.7388
r/r,=1 V5
N, 1 2 2 Analytical
N, 2 3 4
rymax | 4.7354 | 47381 | 47386 | 4.7388

It can be seen from the tables that the results approach the analytical results very
quickly. The grid has been chosen so that h,/h, is not too far from 1 in order to
minimize the need for a large W in to reduce conservatism.

It should be pointed out that the distribution of non smooth points of U;;($) in this
case is rather simple. Preliminary study indicates that it is much more difficult to
obtain a stability bound that is close to the analytical limit using this discretization
method if U;;(&) has more complicated distribution of non smooth points.

V. Conclusion

This paper we considered the coupled differential-difference equations with multiple
delay channels with single delay in each channel is a more reasonable representation
of a large class of practical systems since it more faithfully represents the problem
size.

References:

[1] T. Abdeljawad. On Riemann and Caputo fractional differences. Comput.
Math. Appl. 62 (2011), 1602-1611.

[2] T. Abdeljawad and F.M. Atici. On the definitions of nabla fractional operators.
Abstract and Applied Analysis, volume 2012, (2012), 1-13.
doi:10.1155/2012/406757.

[3] W. Arendt, C. Batty, M. Hieber and F. Neubrander. Vector-valued Laplace
Transforms and Cauchy Problems. Monographs in Mathematics. vol. 96.
Birkhe=auser, Basel, 2001.

[4] F. M. Atici and P. W. Eloe. A transform method in discrete fractional calculus.
Int. J. Di erence Equ. 2 (2) (2007), 165{176.



A Study on Qualitative Properties of Stochastic Difference Equations and Stability 3127

[5]
[6]

[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

F. M. Atici and P. W. Eloe. Initial value problems in discrete fractional
calculus. Proc. Amer. Math. Soc., 137(3), (2009), 981-989.

F. M. Atici and P. W. Eloe. Discrete fractional calculus with the nabla
operator. Electronic Journal of Qualitative Theory of Differential Equations, 3
(2009), 1-12.

F.M. Atici and S. Seng=ul. Modeling with fractional difference equations. J.
Math. Anal. Appl., 369 (2010), 1-9.

F.M. Atici and P.W. Eloe. Linear systems of fractional nabla difference
equations. Rocky Mountain J. Math. 41(2) (2011), 353{370.

F. Atici and P. Eloe. Two-point boundary value problems for finite fractional
difference equations. J. Differ. Equ. Appl. 17 (2011), 445-456.

B. Baeumer and M.M. Meerschaert. Stochastic solutions for fractional Cauchy
problems. Fract. Calc. Appl. Anal. 4 (2001), 481{500.

E. Bazhlekova. Subordination principle for fractional evolution equations.
Fract. Calc. Appl. Anal. 3(3) (2000), 213{230.

D. Baleanu, K. Diethelm and E. Scalas, Fractional Calculus: Models and
Numerical Methods.World Scientific, 2012.

S. Calzadillas, C. Lizama and J. G. Mesquita. A united approach to discrete
fractional calculus and applications. Submitted.

J. Cermak, T. Kisela, and L. Nechvatal. Stability and asymptotic properties of
a linear fractional difference equation. Adv. Difference Equ. 122 (2012), 1-14.
J. Cermak, T. Kisela, and L. Nechvatal. Stability regions for linear fractional
differential systems and their discretizations. Appl. Math. Comput. 219 (12)
(2013), 7012{7022.

E. Cuesta, C. Palencia, A numerical method for an integro-differential
equation with memory in Banach spaces: Qualitative properties. SIAM J.
Numer. Anal., 41 (3) (2003), 1232{1241.

E. Cuesta, C. Lubich and C. Palencia. Convolution quadrature time
discretization of fractional diffusion-wave equations. Math. Comp. 75 (254)
(2006), 673{696.

E. Cuesta.Asymptotic behaviour of the solutions of fractional integro-
differential equations and some time discretizations. Discrete Contin. Dyn.
Syst. 2007, Dynamical Systems and Differential Equations. Proceedings of the
6th AIMS International Conference, suppl., 277{285.

I.K. Dassios, D.I. Baleanu and G.I. Kalogeropoulos. On non-homogeneous
singular systems of fractional nabla difference equations. Appl. Math.
Comput. 227 (2014), 112{131.

J.B. Diaz and T.J. Osler. Differences of fractional order. Math. Comp. 28
(1974), 185-202.

K.J. Engel and R. Nagel. One-parameter semigroups for linear evolution
equations. Graduate Texts in Mathematics, 194. Springer-Verlag, New York,
2000.

R. Ferreira. Calculus of Variations on Time Scales and Discrete Fractional
Calculus. Ph.D. thesis, Universidade de Aveiro, 2010.



3128 M. Reni Sagayaraj and P. Manoharan



