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Abstract: 

 

In this paper, we introduce a method based on the Poisson distribution to show 

existence and qualitative properties of solutions for the problem 

   
Using operator-theoretical conditions on A. We show how several properties for 

fractional differences, including their own definition, are connected with the 

continuous case by means of sampling using the Poisson distribution. 
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I. Introduction 

The study of existence and qualitative properties of discrete solutions for fractional 

difference equations has drawn a great deal of interest [24].  Holm further developed 

and applied the tools of discrete fractional calculus to the arena of fractional 

difference equations.  In spite of the significant increase of research in this area, there 

are still many open questions regarding fractional difference equations [8,11]. In 

particular, the study of fractional difference equations with unbounded linear 

operators and their stability properties remains an open problem. These abstract 

fractional models, with unbounded operators, are closely connected with numerical 

methods.  We propose a novel method to deal with this problem based on the 

sampling of fractional differential equations by means of the Poisson distribution 

[5,9]. We will use it to prove the existence of a unique solution to the initial value 

problem. 

 

 

II. Mathematical Model using Poisson Distribution 

Mathematical understanding of the linear equation is meant as a preliminary critical 
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step for the subsequent analysis of full nonlinear models. The approach followed here 

is purely operator theoretic and has as main ingredient the use of the Poisson 

distribution: 

 

The method relies in to take advantage of the properties of this distribution when it is 

applied to continuous phenomena. More precisely, given a continuous evolution 

 we can discretize it by means of that we will call the Poisson 

transformation 

 

In this paper, we will show that when this procedure is applied to fractional models 

defined on the time scale , these transformations are well behaved and t perfectly 

in the discrete fractional concepts [13]. In other words, our approach is as follows: 

Suppose that a solution of the fractional Cauchy problem 

 

Exists. It happens, for instance, if A is the generator of a -semi group or A is 

sectorial and references therein. Then, by sampling each side of the above equation by 

means of the Poisson distribution, we obtain that   defined by a solution of 

 

Where  and  denote the fractional operators on  and , respectively, in the 

sense of Riemann-Liouville [11].  It is remarkable that by this mechanism we recover 

the concept of fractional nabla sum and difference operator introduced by Atici and 

Eloe [6], which has been used recently and independently of the method used here by 

other authors in order to obtain several qualitative properties of fractional difference 

equations, notably concerning stability properties.  We take advantage of this 

important connection to derive several sufficient conditions for stability in case of 

unbounded operators A.  Among others, in this paper we prove the following practical 

criteria in Hilbert spaces: Let A be the generator of a -semi group on a Hilbert 

space H such that  and satisfies. 

 

then, the solution of the fractional difference equation of order  

 

Exists and is stable for all initial conditions . 

The outline of this paper is as follows:  We give some preliminary background in 

notation and definitions. The remarkable fact is that we use here a particular choice of 

the definition introduced by Atici and Eloe in for the nabla operator [6]. This choice 

that has been used by other authors is proved to be the right notion in the sense that 

the following notable relation holds 

 

Where  denotes the Riemann-Liouville fractional derivative on  and  is 

defined.  Then, we can connect the Delta operator (i.e. the Riemann-Liouville 

fractional difference) in the right hand side with the Caputo-like fractional difference 
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by means of the identity [1] 

 

 

 

III. Forward Difference Equation 

For a real number a, we denote 

 

and we write .  Let X be a complex Banach space. We denote by  the 

vectorial space consisting of all vector-valued sequences  

The forward Euler operator is defined by 

 

For , we define recursively  by 

 

and is called the m-th order forward difference equation.  For instance, for any

, we have 

 

In particular, we obtain 

 

We also denote  where  is the identity operator, and 

 
We define 

 

 

Fractional Sum: 

Let .  For any given positive real number , the -th fractional sum of a 

function  is 

 

Where  

In particular, in case  we denote 

 

 

 

III. A Method Based on the Poisson Distribution 

For each , we recall that the Poisson distribution is defined by 

 

As expected,  and 
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The Poisson distribution arises in connection with Poisson processes.  In this section 

we will realize their application to abstract difference equations [12].  The method 

itself uses an idea of discretization of the derivative in time used. 

First, we recall some concepts.  Let  be strongly continuous, that is, for 

all  the map  is continuous on   we say that a family of bounded 

and linear operators  is exponentially bounded if there exists real numbers 

 and  such that 

 

We say that is bounded if   Note that if  is 

exponentially bounded then the Laplace transform 

 

Exists for all  

We recall that the Z-transform of a vector-valued sequence , is defined by 

 

Where  is a complex number.  Note that convergence of the series is given for |z| > R 

with R sufficiently large. 

An interesting connection between the vector-valued Z-transform and the vector-

valued Laplace transform can be given by means of the Poisson distribution. 

 

Example 

For  define 

 

Note the semi group property: 

 

We have the following interesting property of sampling 

 

For all   By the preceding theorem we obtain 

 

For all | | > 1 and 

 

In particular, for we deduce the identities 

 

Indeed, 
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and interchanging the role of  and  we obtain.  We finally remark that, for 

 we get the identity 

 
The next property connecting the continuous and discrete convolution will be very 

useful in the treatment of abstract difference equations. 

 

 

IV. Numerical Example 

A MATLAB program is composed according to the conditions. The program takes 

the system parameters and grid 

parameters  as inputs, and check the feasibility of the linear matrix 

inequalities.  To get an idea how close the conditions are to the necessary and 

sufficient conditions, the following system is tested, 

 

 

 

 

 

 

 

 

The system has two delay channels. From the special structure of the system, it is not 

difficult to show by solving the characteristic equations that the system is 

exponentially stable if and only if , i = 1; 2, where 

 

 

Other methods, such as the one covered in Cebotarev and Meiman (1949), may also 

be used to obtain this conclusion. 

For three given ratios  and 1/  of  the maximum  that satisfies the 

conditions are computed by using MATLAB program with a bisection process, and 

the results for difference  and are listed in the following tables 
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 2 3 4 Analytical 

 1 1 2 

 2.8028 2.8087 2.8094 2.8099 

 

 

 1 1 2 Analytical 

 1 2 3 

 4.6850 4.7354 4.7381 4.7388 

 

 

 1 2 2 Analytical 

 2 3 4 

 4.7354 4.7381 4.7386 4.7388 

 

 

It can be seen from the tables that the results approach the analytical results very 

quickly. The grid has been chosen so that   is not too far from 1 in order to 

minimize the need for a large W in to reduce conservatism. 

It should be pointed out that the distribution of non smooth points of  in this 

case is rather simple. Preliminary study indicates that it is much more difficult to 

obtain a stability bound that is close to the analytical limit using this discretization 

method if has more complicated distribution of non smooth points. 

 

 

V. Conclusion 

This paper we considered the coupled differential-difference equations with multiple 

delay channels with single delay in each channel is a more reasonable representation 

of a large class of practical systems since it more faithfully represents the problem 

size. 

 

 

References: 

 

[1]  T. Abdeljawad. On Riemann and Caputo fractional differences. Comput. 

Math. Appl. 62 (2011), 1602-1611. 

[2]  T. Abdeljawad and F.M. Atici. On the definitions of nabla fractional operators. 

Abstract and Applied Analysis, volume 2012, (2012), 1-13. 

doi:10.1155/2012/406757. 

[3]  W. Arendt, C. Batty, M. Hieber and F. Neubrander. Vector-valued Laplace 

Transforms and Cauchy Problems.  Monographs in Mathematics. vol. 96. 

Birkh•auser, Basel, 2001. 

[4]  F. M. Atici and P. W. Eloe. A transform method in discrete fractional calculus. 

Int. J. Di erence Equ. 2 (2) (2007), 165{176. 



A Study on Qualitative Properties of Stochastic Difference Equations and Stability 3127 

[5]  F. M. Atici and P. W. Eloe. Initial value problems in discrete fractional 

calculus. Proc. Amer. Math. Soc., 137(3), (2009), 981-989. 

[6]  F. M. Atici and P. W. Eloe. Discrete fractional calculus with the nabla 

operator. Electronic Journal of Qualitative Theory of Differential Equations, 3 

(2009), 1-12. 

[7]  F.M. Atici and S. Seng•ul. Modeling with fractional difference equations. J. 

Math. Anal. Appl., 369 (2010), 1-9. 

[8]  F.M. Atici and P.W. Eloe. Linear systems of fractional nabla difference 

equations. Rocky Mountain J. Math. 41(2) (2011), 353{370. 

[9]  F. Atici and P. Eloe. Two-point boundary value problems for finite fractional 

difference equations. J. Differ. Equ. Appl. 17 (2011), 445-456. 

[10]  B. Baeumer and M.M. Meerschaert. Stochastic solutions for fractional Cauchy 

problems. Fract. Calc. Appl. Anal. 4 (2001), 481{500. 

[11]  E. Bazhlekova. Subordination principle for fractional evolution equations. 

Fract. Calc. Appl. Anal. 3(3) (2000), 213{230. 

[12]  D. Baleanu, K. Diethelm and E. Scalas, Fractional Calculus: Models and 

Numerical Methods.World Scientific, 2012. 

[13]  S. Calzadillas, C. Lizama and J. G. Mesquita. A united approach to discrete 

fractional calculus and applications. Submitted. 

[14]  J. Cermak, T. Kisela, and L. Nechvatal. Stability and asymptotic properties of 

a linear fractional difference equation. Adv. Difference Equ. 122 (2012), 1-14. 

[15]  J. Cermak, T. Kisela, and L. Nechvatal. Stability regions for linear fractional 

differential systems and their discretizations. Appl. Math. Comput. 219 (12) 

(2013), 7012{7022. 

[16]  E. Cuesta, C. Palencia, A numerical method for an integro-differential 

equation with memory in Banach spaces: Qualitative properties. SIAM J. 

Numer. Anal., 41 (3) (2003), 1232{1241. 

[17]  E. Cuesta, C. Lubich and C. Palencia. Convolution quadrature time 

discretization of fractional diffusion-wave equations. Math. Comp. 75 (254) 

(2006), 673{696. 

[18]  E. Cuesta.Asymptotic behaviour of the solutions of fractional integro-

differential equations and some time discretizations.  Discrete Contin. Dyn. 

Syst. 2007, Dynamical Systems and Differential Equations. Proceedings of the 

6th AIMS International Conference, suppl., 277{285. 

[19]  I.K. Dassios, D.I. Baleanu and G.I. Kalogeropoulos. On non-homogeneous 

singular systems of fractional nabla difference equations. Appl. Math. 

Comput. 227 (2014), 112{131. 

[20]  J.B. Diaz and T.J. Osler. Differences of fractional order. Math. Comp. 28 

(1974), 185-202. 

[21]  K.J. Engel and R. Nagel. One-parameter semigroups for linear evolution 

equations. Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 

2000. 

[22]  R. Ferreira. Calculus of Variations on Time Scales and Discrete Fractional 

Calculus. Ph.D. thesis, Universidade de Aveiro, 2010. 

 



3128  M. Reni Sagayaraj and P. Manoharan 

 

 

 

 


