

On Bi-bi ideal and Quasi-bi ideal of Bi-Near Subtraction Ordered Semigroup

Firthous Fatima.S⁽¹⁾ and Jayalakshmi.S⁽²⁾

(1) *Department of Mathematics, Sadakathullah Appa College (Autonomous), Thirunelveli- 627 011, Tamil Nadu, India, kitherali@yahoo.co.in*

(2) *Department of Mathematics, sri parasakthi college for women (Autonomous), courtallam, Tamil Nadu, India, jayarajkutti@gmail.com*

Abstract

In this paper we introduce the notion of Bi-bi ideal, Quasi-bi ideals of bi-near subtraction Ordered semigroup. Also we give characterizations of Bi-bi ideal, Quasi-bi ideals of bi-near subtraction Ordered semigroup.

Mathematical subject classification: 06F35

Key words: subtraction Ordered semigroup, near subtraction Ordered semigroup, Bi-near subtraction Ordered semigroup Bi-bi ideal Quasi-bi ideal

1. Introduction

In 2007, Dheena [1] introduced Near Subtraction Algebra, Throughout his paper by a Near Subtraction Algebra, we mean a Right Near Subtraction Algebra. For basic definition one may refer to Pillz [5]. S.Lekkoksung [4] introduced the notation of Fuzzy ideals in Near Subtraction Ordered semigroups. Zekiye Ciloglu, Yilmaz Ceven [6] gave the notation of Fuzzy Near Subtraction semigroups.. Recently Firthous et.al [2, 3] introduced the notation of Bi bi-ideals and Quasi-bi ideal in Bi near subtraction semigroup. In this paper we shall obtained equivalent conditions for regularity in terms of Bi bi-ideals and Quasi-bi ideal of Bi-near subtraction ordered semigroups.

Given two subsets A and B of X the product $AB=\{ ab /a \in A \text{ and } b \in B \}$. Also we define another operator “*” on the class of subsets of X given by $A*B=\{ab-a(a'-b)/a, a' \in A, b \in B \}$.

2. Preliminaries :

Definition2.1

A non-empty subset X together with two binary operations “ $-$ ” and “ $.$ ” is said to be subtraction semigroup If

- (i) $(X, -)$ is a subtraction algebra
- (ii) $(X, .)$ is a semi group
- (iii) $x(y-z)=xy-xz$ and $(x-y)z=xz-yz$ for every $x, y, z \in X$.

Definition2.2

A non-empty subset X together with two binary operations “ $-$ ” and “ $.$ ” is said to be subtraction Ordered semigroup If

- (i) $(X, -)$ is a subtraction algebra
- (ii) $(X, ., \leq)$ is a Ordered semi group
- (iii) $x(y-z)=xy-xz$ and $(x-y)z=xz-yz$ for every $x, y, z \in X$.

Definition2.3

A non-empty subset X together with two binary operations “ $-$ ” and “ $.$ ” is said to be near subtraction semigroup if

- (i) $(X, -)$ is a subtraction algebra
- (ii) $(X, .)$ is a semi group and
- (iii) $(x-y)z=xz-yz$ for every $x, y, z \in X$.

Definition2.4

A non-empty subset X together with two binary operations “ $-$ ” and “ $.$ ” is said to be near subtraction Ordered semigroup if

- (i) $(X, -)$ is a subtraction algebra
- (ii) $(X, ., \leq)$ is a Ordered semi group and
- (iii) $(x-y)z=xz-yz$ for every $x, y, z \in X$.

Definition2.5

A non-empty subset S of X Is said to be Sub algebra if $x-y \in S$ whenever $x, y \in S$.

Definition2.6

A non-empty subset $S = S_1 \cup S_2$ of X Is said to be Bi- Sub algebra if S_1 is a Sub algebra in X_1 and S_2 is a Sub algebra in X_2

Definition 2.7

A non-empty subset I of X is said to be Right ideal if

- (i) $x-y \in I$ for every $x \in I$ and $y \in X$ and
- (ii) $IX \subseteq I$.

Definition2.8

A non-empty subset I of X is said to be Left ideal if

- (i) $x-y \in I$ for every $x \in I$ and $y \in X$ and

(ii) $XI \subseteq I$.

Definition 2.9

A non-empty subset I of X is said to be ideal if

- (i) $IX \subseteq I$ and
- (ii) $XI \subseteq I$.

Definition 2.10

An element $a \in X$ is said to be Regular if for each $a \in X$; $a = aba$, for some $b \in X$

Definition 2.11

A set $X = X_1 \cup X_2$ is said to be Bi- Regular, if both X_1 and X_2 is Regular.

Definition 2.12

A subset P of X is said to be Zero symmetric if $XP \subseteq X^*P$.

Definition 2.13

A subset B of X is said to be Bi-ideal if $BXB \cap BX^*B \subseteq B$.

Definition 2.14

A subset Q of X is said to be Quasi-ideal if $QX \cap XQ \cap X^*Q \subseteq Q$.

Definition 2.15

A non-empty subset $X = X_1 \cup X_2$ together with two binary operations “-“ and “.” is said to be bi-near subtraction semigroup (right) if

- (i) $(X_1, -.)$ is a near-subtraction semigroup
- (ii) $(X_2, -.)$ is a subtraction semigroup.

3. Bi-near Subtraction Ordered Semigroup

Definition 3.1

A non-empty subset $X = X_1 \cup X_2$ together with two binary operations “-“ and “.” is said to be bi-near subtraction Ordered semigroup (right) if (i) $(X_1, -.)$ is a near-subtraction Ordered semigroup (ii) $(X_2, -.)$ is a subtraction Ordered semigroup.

Example 3.2

Let $X_1 = \{0, 1, 2, 3\}$ in which “-“ and “.” be defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

.	0	1	2	3
0	0	0	0	0
1	0	1	0	0
2	0	0	2	0
3	0	0	0	3

Then $(X_1, -, .)$ is a near-subtraction Ordered semi group
 Let $X_2=\{0, 1, 2, 3\}$ in which “-“ and “.” be defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

.	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Then $(X_2, -, .)$ is a subtraction Ordered semi group.

Note 3.3

Obviously, every Bi -near subtraction Ordered semi group is Bi- near subtraction semi group. But the converse is not true

Example 3.4

Let $X_1=\{0, a, b, c\}$ in which “-“ and “.” be defined by

-	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

.	0	a	b	c
0	0	0	0	0
a	0	a	0	0
b	0	0	b	0
c	0	0	0	c

Then $(X_1, -, .)$ is a near-subtraction semi group not a near-subtraction Ordered semigroup

Let $X_2=\{0, a, b, 1\}$ in which “-“ and “.” be defined by

-	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

.	0	a	b	1
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
1	0	a	b	1

Then $(X_2, -, .)$ is a subtraction semi group not a subtraction Ordered semigroup
 Hence, every Bi_ near subtraction semi group need not be a Bi_ near subtraction ordered semi group.

4. Bi- bi ideals of Bi-near Subtraction Ordered Semigroup

Definition 4.1

A non-empty subset $B = B_1 \cup B_2$ of X is said to be Bi-bi ideal, if B_1 is Bi-ideal in X_1 and B_2 is ideal in X_2 .

Example 4.2

Let $X_1 = \{0, a, b, c\}$ in which “-“ and “.” be defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

.	0	1	2	3
0	0	0	0	0
1	0	1	0	0
2	0	0	2	0
3	0	0	0	3

Then $B_1 = \{0, 1\}$ is bi-ideal in X_1

Let $X_2 = \{0, a, b, 1\}$ in which “-“ and “.” be defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

.	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Then $B_2 = \{0, 1, 2\}$ is ideal in X_2 .

Proposition: 4.3

The set of all Bi-bi ideals of a Bi-near subtraction ordered semi group form a Moore System on X .

Proof:

Let B_i be a set of all Bi-bi ideals in X .

Let $B = \bigcap B_i, i \in I$. Then $B = \bigcap (B'_i \cup B''_i)$

Since Intersection of all B'_i are Bi-ideal and Intersection of all B''_i are ideal, B is a Bi-bi ideal of X .

Proposition:4.4

If B is a Bi -bi ideal of a Bi-near subtraction ordered semi group X and S is a subalgebra of X , then $B \cap S$ is a Bi-bi ideal of S .

Proof:

Let B be a Bi-bi ideal of X . Then $B \cap S = (B_1 \cup B_2) \cap S = (B_1 \cap S) \cup (B_2 \cap S)$

Since $B_1 \cap S$ is a bi-ideal of S and $B_2 \cap S$ is an ideal of S , $B \cap S$ is a Bi-bi ideal of S .

Theorem;4.5

Let $X = X_1 \cup X_2$ be a Bi-near subtraction ordered semi group and let B be a Bi-ideal of X . Then B is a Bi-bi ideal of X if and only if there exist two proper subsets X_1 and X_2 of X such that

- (i) $X = X_1 \cup X_2$ where X_1 and X_2 are proper subsets of X
- (ii) $(B \cap X_1)$ is a Interior-ideal of $(B_1, -.,.)$
- (iii) $(B \cap X_2)$ is a ideal of $(B_2, -.,.)$

Proof:

Assume that B is a Bi-bi ideal of X . Thus there exist two subsets B_1 and B_2 of B such that $B = B_1 \cup B_2$ Where B_1 is a Bi-ideal of X_1 and B_2 is a ideal of X_2 .

Taking $B_1 = B \cap X_1$ and $B_2 = B \cap X_2$.

Conversely, let B be a nonempty subset of X satisfying conditions (i), (ii) and (iii).

Hence

$$\begin{aligned}
 & (B \cap X_1) \cup (B \cap X_2) \\
 &= ((B \cap X_1) \cup B) \cap ((B \cap X_2) \cup X_2) \\
 &= ((B \cup B) \cap (X_1 \cup B)) \cap ((B \cup X_2) \cap (X_1 \cup X_2)) \\
 &= (B \cap (B \cup X_1)) \cap ((B \cup X_2) \cap X) \\
 &= B \cap (B \cup X_2) \text{ (since } B \subseteq B \cup X_1 \text{ and } B \cup X_2 \subseteq B) \\
 &= B. \text{ (since } B \subseteq B \cup X_2)
 \end{aligned}$$

Thus, $(B \cap X_1) \cup (B \cap X_2) = B$.

Hence, B is a Bi-bi-ideal of X .

Proposition:4.6

Let X be a Zero- Symmetric Near subtraction ordered semi group. A Subset B of X is a Bi ideal then $BXB \subseteq B$.

Proof:

Let $B = B_1 \cup B_2$ Where B_1 is a Bi ideal of X_1 and B_2 is a ideal of X_2 . Since X is a Zero- Symmetric, $XB \subseteq X^*B$.

Now, $BXB = (B_1 \cup B_2)x(B_1 \cup B_2) = (B_1X \cup B_2X) (B_1 \cup B_2) \subseteq (B_1X \cup B_2) (B_1 \cup B_2) = B_1X$
 $(B_1 \cup B_2) \cup B_2 (B_1 \cup B_2) \subseteq B_1XB_1 \cup B_2X B_2 \subseteq B_1 \cup B_2 = B$

Thus $BXB \subseteq B$.

Proposition:4.7

Let X be a Zero- Symmetric Near subtraction ordered semi group. If Subset B is a Bi-bi ideal of X , then Bx and x^1B are Bi-bi ideal of X , where $x, x^1 \in X$ and x^1 is the distributive element in X .

Proof:

Clearly B_x is a bi- subalgebra of X and $B_x X B_x \subseteq B X B_x \subseteq B_x$.

B_x is a Bi-bi ideal of X . Again $x^1 B$ is a bi-Subalgebra. Since x^1 is the distributive element in X and $x^1 B X x^1 B \subseteq x^1 B X B \subseteq x^1 B$. Thus $x^1 B$ is a Bi-bi ideal of x .

5. Quasi-bi ideals of Bi-near Subtraction Ordered Semigroup

Definition 5.1

A non-empty subset $Q = Q_1 \cup Q_2$ of X is said to be Quasi-bi ideal, if Q_1 is Quasi-ideal in X_1 and Q_2 is ideal in X_2 .

Example 5.2

Let $X_1 = \{0, a, b, c\}$ in which “-“ and “.” be defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

.	0	1	2	3
0	0	0	0	0
1	0	1	0	0
2	0	0	2	0
3	0	0	0	3

Then $Q_1 = \{0, b\}$ is Quasi-ideal in X_1

Let $X_2 = \{0, a, b, 1\}$ in which “-“ and “.” be defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

.	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Then $Q_2 = \{0, a, b\}$ is ideal in X_2 .

Note 5.3

Obviously, every quasi-bi ideal is Bi-bi ideal in a bi-near subtraction ordered semigroup. But the converse is not true

Example 5.4

Let $X_1 = \{0, a, b, c\}$ in which “-“ and “.” be defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	3	2
2	2	2	0	2
3	3	0	3	0

.	0	1	2	3
0	0	0	0	0
1	0	1	0	0
2	0	0	2	0
3	0	0	0	3

Here $S_1 = \{0, 1\}$ is bi-ideal but not Quasi-ideal in X_1

Let $X_2 = \{0, a, b, 1\}$ in which “-“ and “.” be defined by

-	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

.	0	a	b	1
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
1	0	a	b	1

Then $S_2 = \{0, a, b\}$ is an ideal in X_2 . Hence, every Bi- bi ideal need not be a Quasi.bi ideal.

Proposition: 5.5

The set of all Quasi-bi ideals of a Bi-near subtraction ordered semi group form a Moore System on X.

Proof:

Let Q_i be a set of all Quasi-bi ideals in X.

Let $Q = \bigcap Q_i, i \in I$. Then $Q = \bigcap (Q_i' \cup Q_i'')$

Since Intersection of all Q_i' are Quasi-ideal and Intersection of all Q_i'' are ideal, B is a Quasi -bi ideal of X.

Proposition:5.6

If Q is a Quasi -bi ideal of a Bi-near subtraction ordered semi group X and S is a subset of X, then $Q \cap S$ is a Quasi -bi ideal of S.

Proof:

Let Q be a Quasi -bi ideal of X. Then $Q \cap S = (Q_1 \cup Q_2) \cap S = (Q_1 \cap S) \cup (Q_2 \cap S)$

Since $Q_1 \cap S$ is a Quasi-ideal of S and $Q_2 \cap S$ is an ideal of S, $Q \cap S$ is a Quasi -bi ideal of S.

Theorem:5.7

Let $X = X_1 \cup X_2$ be a Bi-near subtraction ordered semi group and let Q be a Quasi -ideal of X . Then Q is a Quasi -bi ideal of X if and only if there exist two proper subsets X_1 and X_2 of X such that

- (i) $X = X_1 \cup X_2$ where X_1 and X_2 are proper subsets of X
- (ii) $(Q \cap X_1)$ is a Quasi i-ideal of $(X_1, -,.)$
- (iii) $(Q \cap X_2)$ is a ideal of $(X_2, -,.)$

Proof:

Assume that Q is a Quasi -bi ideal of X . Thus there exist two subsets Q_1 and Q_2 of Q such that $Q = Q_1 \cup Q_2$ Where Q_1 is a Quasi -ideal of X_1 and Q_2 is a ideal of X_2 .

Taking $Q_1 = Q \cap X_1$ and $Q_2 = Q \cap X_2$.

Conversely, let Q be a nonempty subset of X a satisfying conditions (i), (ii) and (iii).

Hence

$$\begin{aligned}
 & (Q \cap X_1) \cup (Q \cap X_2) \\
 &= ((Q \cap X_1) \cup Q) \cap ((Q \cap X_2) \cup X_2) \\
 &= ((Q \cup Q) \cap (X_1 \cup Q)) \cap ((Q \cup X_2) \cap (X_1 \cup X_2)) \\
 &= (Q \cap (Q \cup X_1)) \cap ((Q \cup X_2) \cap X) \\
 &= Q \cap (Q \cup X_2) \text{ (since } Q \subseteq Q \cup X_1 \text{ and } Q \cup X_2 \subseteq X) \\
 &= Q. \text{ (since } Q \subseteq Q \cup X_2)
 \end{aligned}$$

Thus, $(Q \cap X_1) \cup (Q \cap X_2) = B$.

Hence, Q is a Quasi -bi-ideal of X .

Theorem:5.8

Let X be a Zero- Symmetric Bi-Near subtraction ordered semi group. If Q is a Quasi-bi ideal of X . If the element of Q are bi- regular then Q is a Quasi-ideal.

Proof:

Let $x \in QX \cap XQ$ Then $x = bx = x'b'$ for some b, b' in Q and x, x' in X .

Since Q is bi-regular, (i.e.,) $bb_1b = b_1$ for some b_1 in Q .

Now, $x = bx = (bb_1b)x = (bb_1)(bx) = (bb_1)(x'b') \in QX \cap XQ \subseteq Q$.

Hence B is a Quasi-ideal.

Theorem:5.9

Let X be a Zero- Symmetric Bi- Near subtraction ordered semigroup. If Q is a bi-ideal of X . If the element of Q are bi- regular then Q is a Quasi-bi ideal.

Proof:

Let $x \in Q$. Since Q is Quasi-bi ideal, therefore $Q = Q_1 \cup Q_2$ Where Q_1 is a Quasii-ideal of X_1 and Q_2 is a ideal of X_2 . Every element of Q is a Bi-regular, then every element of Q_1 and Q_2 is a Bi-regular By above theorem, Q_1 is a Quasi-ideal of X_1 and Q_2 is a ideal of X_2 . Hence Q is a Quasi-bi ideal.

References

- [1] Dheena.P and Sathesh kumar.G On Strongly Regular Near- Subtraction semi groups, Commun. Korean Math. Soc.22 (2007), No.3, pp.323-330.
- [2] Firthous Fatima.S, Mahalakshmi.V and.Jayalakshmi.S On Bi-bi ideals of Bi- Near Subtraction semigroup, Advances in Algebra, 7(1), 2014, 29-34, Research India Publications.
- [3] Firthous Fatima.S and.Jayalakshmi.S On Quasi-bi ideals of Bi- Near Subtraction semigroup, IJMA 5(11), 2014, 22-24.
- [4] Lekkokulg.S, On Fuzzy ideals in Near Subtraction Ordered semigroup, Int.j. Contemp. Math.Sciences, 7(24), 1199-1204.
- [5] Pilz Gunter, Near-Rings, North Holland, Amsterdam, 1983
- [6] Zekiye Ciloglu, Yilmaz Ceven, On Fuzzy Near Subtraction semigroups, SDU Journal of Science (E-Journal), 2014, 9(1):193-202.