

t-Graceful Labeling ($t \geq 2$) and 1 modulo t Graceful Labeling ($t \geq 3$) of Even Cycles C_n with Parallel P_3 Chords

V. Srividya¹, R. Govindarajan² and S. Manikandan³

¹*Associate Professor, Department of Mathematics
Bharathi Women's College, Chennai – 108
mylaporevidya@gmail.com*

²*Associate Professor and HOD of Mathematics
D.G. Vaishnav College, Chennai – 106
govindarajan.babu57@gmail.com*

³*Assistant Professor, Department of Mathematics
R.V. Government Arts College, Chengalpattu – 1
manikandansankaranarayanan69@gmail.com*

Abstract

In this paper we have proved that every even cycle C_n ($n \geq 6$) with parallel P_3 chords have t -graceful labeling for $t \geq 2$ and one modulo t -graceful labeling for $t \geq 3$.

Keywords: Graceful labeling, t -graceful labeling, 1 modulo t graceful labeling, cycles with parallel P_3 chords.

Subject Classification: 05C78.

1. Introduction

A graph labeling is an assignment of integers to the vertices (or) edges or both subject to certain conditions. Labeled graphs serve as useful models in a broad range of applications such as coding theory, X-ray crystallography, circuit design and communication network addressing. Labeling in graph theory gained popularity after the mid sixties of 20th century. Most graph labeling methods trace their origin to the β -valuation introduced by Rosa [6] in 1967. The β -labelings were later renamed as graceful by Golomb [2]. In the intervening years variations in graceful labelings came into existence.

By a graph $G = (V, E)$ we mean a finite undirected graph without loops (or) multiple edges where $|V(G)| = p$, $|E(G)| = q$. A graceful labeling of a graph G with q edges is an injection $f : V(G) \rightarrow \{0, 1, 2, \dots, q\}$ such that when each edge xy is assigned the label $|f(x) - f(y)|$ the resulting edge labels are distinct and are $\{1, 2, 3, \dots, q\}$. A graph G which admits graceful labeling is called a graceful graph. Several classes of graphs have been shown to be graceful. Study on gracefulness of cycle related graphs initiated from Rosa's result [6] that cycle C_n is graceful iff $n \equiv 0$ (or) $3 \pmod{4}$.

A t -graceful labeling of a graph $G = (V, E)$ with q edges is an injection $f : V(G) \rightarrow \{0, 1, 2, \dots, q+t-1\}$ such that the set of edge labels induced by the absolute value of the difference of the labels of the adjacent vertices is $\{t, t+1, t+2, \dots, q+t-1\}$. This is a generalization of graceful labeling which was introduced by Slater [10] in 1982 and also by Maheo and Thuillier [4] in 1982. They have shown that cycle C_n is t -graceful

iff either $n = 0$ or $1 \pmod{4}$ with t -even and $t \leq \frac{(n-1)}{2}$ (or) $n = 3 \pmod{4}$ with t -odd

and $t \leq \frac{n^2-1}{2}$. Seoud and Elsakhawi [8] have proved that paths and ladders are

arbitrarily graceful which shows that they are t -graceful for all t .

Another variation of graceful labeling was one modulo t graceful labeling which was introduced by Ramachandran and Sekar [5] in 2013. For a positive integer t , a graph G with q edges is said to be one modulo t -graceful if there is an injection ϕ from $V(G)$ to $\{0, 1, t, t+1, 2t, 2t+1, \dots, t(q-1), t(q-1)+1\}$ such that ϕ induces a bijection ϕ^* from $E(G)$ to $\{1, t+1, 2t+1, \dots, t(q-1)+1\}$ where $\phi^*(uv) = |\phi(u) - \phi(v)|$ for each edge uv . Some of the graphs that they have proved to be one modulo t -graceful for all t are paths, star, caterpillars. In 2002 Sekar [7] proved that paths P_m , cycles C_n if $n = 0 \pmod{4}$, $K_{m,n}$, caterpillars, crown $C_n \odot K_1$, cycles C_{2n} with path P_m attached at each vertex of the cycle are one modulo-three graceful. He conjecture that every one modulo-three graceful graph is graceful. For a detailed survey on graceful labeling graphs, refer to the dynamic survey of graph labeling by Gallian [1]. In this paper we prove that every even cycle C_n ($n \geq 6$) with parallel P_3 chords is t -graceful for $t \geq 2$ and one modulo t -graceful for $t \geq 3$.

2. Main Result

In this section we prove two theorems on variation of graceful labeling for even cycles C_n with parallel P_3 chords. Here C_n denote the cycle of length n and P_3 denotes a path of order 3. The basic definitions of some of the required concepts are reviewed in this section.

Definition 2.1.

A chord of a cycle is an edge joining two otherwise non-adjacent vertices of a cycle.

Definition 2.2.

A graph G is called a cycle with parallel P_3 chords [9] if G is obtained from the cycle $C_n : v_0 v_1 \dots v_{n-1} v_0$ ($n \geq 6$) by adding disjoint paths P_3 's between the pair of vertices v_1

$v_{n-1}, \dots, v_2 v_{n-2}, \dots v_\alpha v_\beta$ where $\alpha = \left\lceil \frac{n}{2} \right\rceil - 1$, $\beta = \left\lceil \frac{n}{2} \right\rceil + 2$ if n is odd (or) $\beta = \left\lceil \frac{n}{2} \right\rceil + 1$ if n

is even. Then by definition G has $N = [3n-2]/2$ vertices and $M = 2n-2$ edges.

Theorem 2.1.

Every even cycle C_n ($n \geq 6$) with parallel P_3 chords is t -graceful for all $t \geq 2$.

Proof.

If $t = 1$, it is graceful and it was proved by Sethuraman and Elumalai [9]. Hence $t \geq 2$ is considered. Let G be an even cycle C_n with parallel P_3 chords G has $N = \frac{3n-2}{2}$ vertices and $M = 2n-2$ edges. Let $v_0 v_1 v_2 \dots v_{n-1}$ be a Hamiltonian path in G as shown in the figure 1. Labeling of the vertices is considered for the following 2 cases.

Case 1. If $n \equiv 0 \pmod{4}$

Define $f : V(G) \rightarrow \{0, 1, 2, \dots, M+t-1\}$ as follows

$$f(v_0) = 0$$

$$f(v_1) = 2n+t-3$$

$$f(v_2) = 1$$

$$f(v_{p+2i}) = f(v_p) - i, 1 \leq i \leq 2, p = 3, 9, 15, \dots, N-8$$

$$f(v_{q+2}) = f(v_q) - 2, q = 1, N-4$$

$$= f(v_q) - 3, q = 7, 13, 19, \dots, N-10$$

$$f(v_{2i}) = i+1, 2 \leq i \leq \frac{N-5}{2}$$

$$f(v_{N-3}) = f(v_{N-2}) - (t+1)$$

$$f(v_{N-1}) = f(v_{N-2}) - t$$

Thus the entire N vertices are labeled and clearly f is an injection from $V(G) \rightarrow \{0, 1, 2, \dots, M+t-1\}$. Let E_1, E_2, E_3, E_4 denote the sets of edges of G given by

$$E_1 = \{v_0v_1, v_1v_2, v_0v_3, v_2v_3, v_1v_6\}$$

$$E_2 = \{v_3v_4, v_4v_5, \dots, v_{N-5}v_{N-4}\}$$

$$E_3 = \{v_{N-4}v_{N-3}, v_{N-4}v_{N-1}, v_{N-3}v_{N-2}, v_{N-2}v_{N-1}\}$$

$$E_4 = E(G) - (E_1 \cup E_2 \cup E_3)$$

The induced edge labels for the edges in the above sets are given below as

$$E'_1 = \{M+t-1, M+t-2, \dots, M+t-5\}$$

$$E'_2 = \{M+t-6, M+t-7, \dots, M+t-10, M+t-13, M+t-14, \dots, M+t-18, M+t-21, \dots, t+6, t+5\}$$

$$E'_3 = \{t+3, t+2, t+1, t\}$$

$$E'_4 = \{t, t+1, \dots, q+t-1\} - (E'_1 \cup E'_2 \cup E'_3)$$

Clearly $E'_1 \cup E'_2 \cup E'_3 \cup E'_4 = \{t, t+1, t+2, \dots, M+t-1\}$. Hence the graph G admits t -graceful labeling for all $t \geq 2$. An illustration of the labeling defined in the above theorem is given in Figure 1.

Case 2. If $n \equiv 2 \pmod{4}$

Define $f : V(G) \rightarrow \{0, 1, 2, \dots, M+t-1\}$ as follows

$$f(v_0) = 0$$

$$f(v_1) = 2n+t-3$$

$$f(v_2) = 1$$

$$f(v_{p+2i}) = f(v_p) - i, 1 \leq i \leq 2, p = 3, 9, 15, \dots, N-5$$

$$f(v_{q+2}) = f(v_q) - 3, q = 7, 13, 19, \dots, N-7$$

$$= f(v_q) - 2, q = 1$$

$$f(v_{2i}) = i+1, 2 \leq i \leq \frac{N-2}{2}$$

$$f(v_{N-1}) = f(v_{N-2}) + t$$

From the above definition it is clearly seen that f is an injection from the vertex set of G to $\{0, 1, 2, \dots, M+t-1\}$. Let E_1, E_2, E_3, E_4 denote the sets of edges of G given by

$$E_1 = \{v_0v_1, v_1v_2, v_0v_3, v_2v_3, v_1v_6\}$$

$$E_2 = \{v_3v_4, v_4v_5, \dots, v_{N-3}v_{N-2}\}$$

$$E_3 = \{v_{N-2}v_{N-1}, v_{N-1}v_{N-4}\}$$

$$E_4 = E(G) - (E_1 \cup E_2 \cup E_3)$$

The edge labels induced by the absolute values of the difference of the label of adjacent vertices in the above sets are given below as

$$E'_1 = \{M+t-1, M+t-2, \dots, M+t-5\}$$

$$E'_2 = \{M+t-6, M+t-7, \dots, M+t-10, M+t-13, M+t-14, \dots, M+t-18, M+t-21, \dots, t+3, t+2\}$$

$$E'_3 = \{t, t+1\}$$

$$E'_4 = \{t, t+1, t+2, \dots, M+t-1\} - (E'_1 \cup E'_2 \cup E'_3)$$

Clearly $E'_1 \cup E'_2 \cup E'_3 \cup E'_4 = \{t, t+1, \dots, M+t-1\}$. From the above vertex labeling the edge

labels are distinct and graph G admits t -graceful labeling.

An illustration is given in Figure 1.

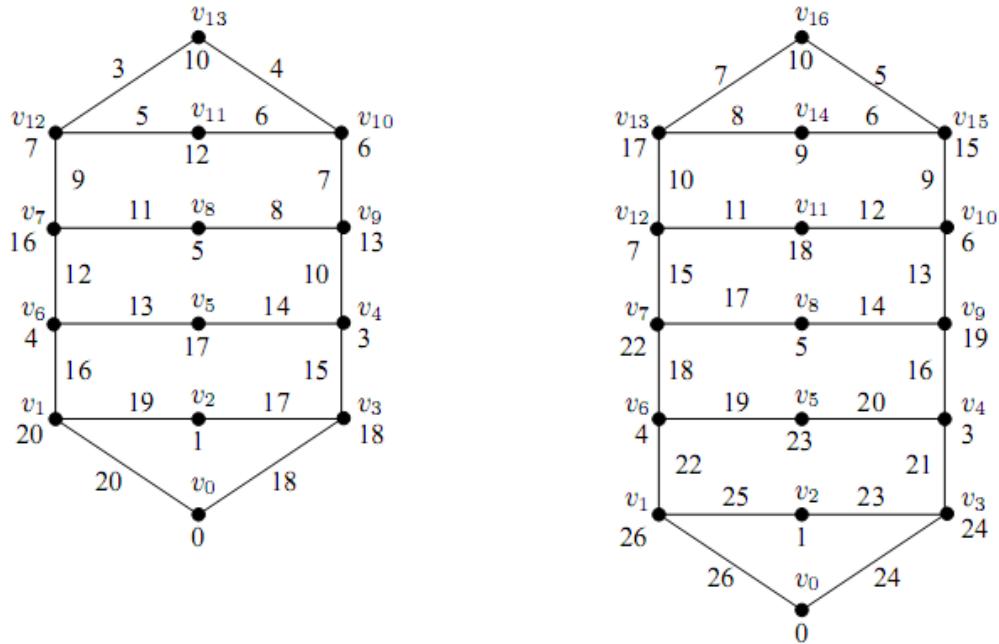


Figure 1. 3-graceful labeling of C_{10} and 5-graceful labeling of C_{12} with parallel P_3 chords

Theorem 2.2.

Every even cycle C_n ($n \geq 6$) with parallel P_3 chords is 1 modulo t -graceful for all $t \geq 3$.

Proof.

If $t = 1$, it is a graceful labeling and proved by Sethuraman and Elumalai [9]. If $t = 2$ the labeling is an odd graceful labeling which was proved in our paper [3]. Let G be an even cycle C_n with parallel P_3 chords. By definition G has $N = \frac{3n-2}{2}$ vertices and

$M = 2n-2$ edges. Let $v_0 v_1 v_2 \dots v_{N-1}$ be a Hamiltonian path in G . Labeling of the vertices is obtained for two cases given below

Case 1. If $n \equiv 0 \pmod{4}$

Define the vertex labeling $\phi : V(G) \rightarrow \{0, 1, t, 1+t, 2t, 2t+1, \dots, t(M-1), t(M-1)+1\}$ as follows

$$\phi(v_0) = 0$$

$$\phi(v_1) = (2n-3)t+1$$

$$\phi(v_2) = t$$

$$\phi(v_3) = (2n-5)t+1$$

$$\begin{aligned}
\phi(v_{2i+2}) &= t(i+2), 1 \leq i \leq \left\lceil \frac{N-7}{2} \right\rceil \\
&= t(i+3), \text{ if } i = \left\lceil \frac{N-5}{2} \right\rceil \\
\phi(v_{2i+p}) &= \phi(v_p) - ti, 1 \leq i \leq 2, p = 3, 9, 15, \dots, N-8 \\
\phi(v_{q+2}) &= \phi(v_q) - 3t, \text{ if } q = 7, 13, 19, \dots, N-10 \\
&= \phi(v_q) - 2t, \text{ if } q = N-4 \\
\phi(v_{N-1}) &= \phi(v_{N-2}) - 1
\end{aligned}$$

From the above vertex labeling it is seen that all the vertices have distinct labels and clearly ϕ is an injection from $V(G) \rightarrow \{0, 1, t, t+1, 2t, 2t+1, \dots, t(M-1), t(M-1)+1\}$. Let A, B, C, D denote the sets of edges of G given by

$$\begin{aligned}
A &= \{v_0v_1, v_1v_2, v_0v_3, v_2v_3, v_1v_6\} \\
B &= \{v_3v_4, v_4v_5, \dots, v_{N-5}v_{N-4}\} \\
C &= \{v_{N-4}v_{N-3}, v_{N-4}v_{N-1}, v_{N-3}v_{N-2}, v_{N-2}v_{N-1}\} \\
D &= E(G) - (A \cup B \cup C)
\end{aligned}$$

Let A', B', C', D' denote the edge labels induced by the edges in the above sets as given below

$$\begin{aligned}
A' &= \{(M-1)t+1, (M-2)t+1, \dots, (M-5)t+1\} \\
B' &= \{(M-6)t+1, (M-7)t+1, \dots, (M-10)t+1, (M-13)t+1, (M-14)t+1, \dots, (M-18)t+1, \\
&\quad (M-21)t+1, \dots, 6t+1, 5t+1\} \\
C' &= \{3t+1, 2t+1, t+1, 1\} \\
D' &= \{1, t+1, 2t+1, \dots, t(M-1)+1\} - (A' \cup B' \cup C')
\end{aligned}$$

and $A' \cup B' \cup C' \cup D' = \{1, t+1, 2t+1, \dots, t(M-1) + 1\}$. Hence the above graph is one modulo t -graceful for $t \geq 3$. An illustration is given in Figure 2.

Case 2. If $n \equiv 2 \pmod{4}$

Define the vertex labeling $\phi : V(G) \rightarrow \{0, 1, t, 1+t, 2t, \dots, t(M-1)+1\}$ as follows

$$\begin{aligned}
\phi(v_0) &= 0 \\
\phi(v_1) &= (2n-3)t+1 \\
\phi(v_2) &= t \\
\phi(v_3) &= (2n-5)t+1 \\
\phi(v_{2i+2}) &= t(i+2), 1 \leq i \leq \left\lceil \frac{N-4}{2} \right\rceil \\
\phi(v_{2i+p}) &= \phi(v_p) - ti, 1 \leq i \leq 2, p = 3, 9, 15, \dots, N-5 \\
\phi(v_{q+2}) &= \phi(v_q) - 3t, q = 7, 13, 19, \dots, N-7 \\
\phi(v_{N-1}) &= \phi(v_{N-2}) + 1
\end{aligned}$$

From the above vertex labeling it is clearly seen that all the vertices have been given distinct labels and ϕ is an injection from the vertex set of G to $\{0, 1, t, t+1, t+1, \dots, t(M-1), t(M-1)+1\}$. Let A, B, C, D denote the set of edges of G given by

$$A = \{v_0v_1, v_1v_2, v_0v_3, v_2v_3, v_1v_6\}$$

$$B = \{v_3v_4, v_4v_5, \dots, v_{N-4}v_{N-3}, v_{N-3}v_{N-2}\}$$

$$C = \{v_{N-1}v_{N-2}, v_{N-1}v_{N-4}\}$$

$$D = E(G) - (A \cup B \cup C)$$

The edge labels induced by the absolute difference of the labels of adjacent vertices in the above sets are given below in the sets A' , B' , C' , D' as

$$A' = \{(M-1)t+1, (M-2)t+1, \dots, (M-5)t+1\}$$

$$B' = \{(M-6)t+1, (M-7)t+1, \dots, (M-10)t+1, (M-13)t+1, (M-14)t+1, \dots, (M-18)t+1, (M-21)t+1, \dots, 3t+1, 2t+1\}$$

$$C' = \{1, t+1\}$$

$$D' = \{1, t+1, 2t+1, 3t+1, \dots, (M-1)t+1\} - (A' \cup B' \cup C')$$

and $A' \cup B' \cup C' \cup D' = \{1, t+1, 2t+1, \dots, (M-1)t+1\}$.

Hence the above graph is one modulo t -graceful for $t \geq 3$.

An illustration is given in Figure 2.

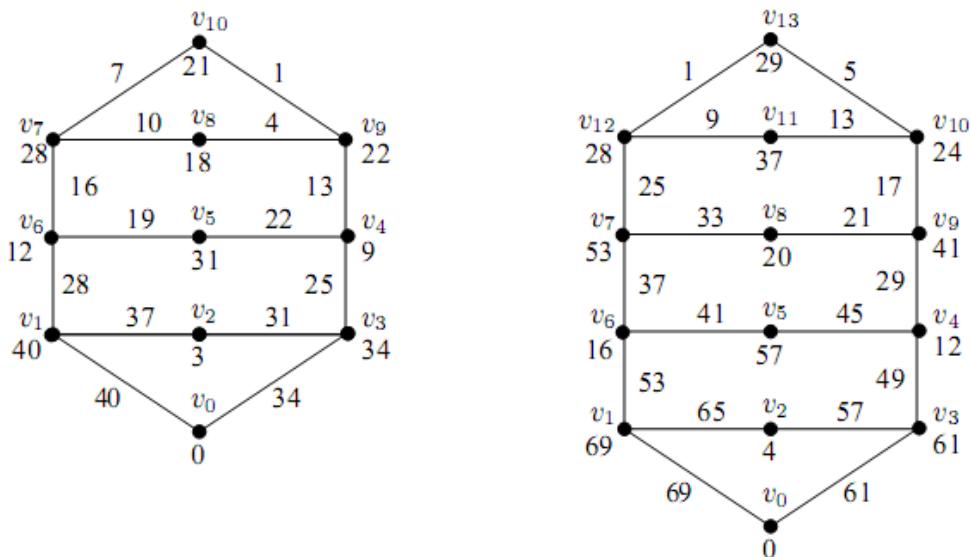


Figure 2. One modulo 3-graceful labeling of C_8 and one modulo 4-graceful labeling of C_{10} with parallel P_3 chords

3. Conclusion

In this paper we have applied two labelings on even cycle C_n ($n \geq 6$) with parallel P_3 chords to show that they are t -graceful for $t \geq 2$ and one modulo t graceful for $t \geq 3$.

References

- [1] J.A. Gallian, A dynamic survey of graph labeling, *Electronics Journal of Combinatorics*, 17 (2014), #DS6.
- [2] S.W. Golomb, How to number a graph in graph theory and computing, R.C. Read ex., Academic Press, New York (1972), 23–37.
- [3] R. Govindarajan and V. Srividya, Odd graceful labeling of cycle with parallel P_k chords, *Annals of Pure and Applied Mathematics*, 8(2) (2014), 123–129.
- [4] M. Maheo and H. Thuillier, On d -graceful graphs, *Ars. Combin.*, 13 (1982), 181–192.
- [5] V. Ramachandran and C. Sekar, One modulo N gracefulness of acyclic graphs, *Ultra Scientist*, 25(3)A (2013), 417–424.
- [6] A. Rosa, On certain valuation of the vertices of a graph, *Theory of graphs, Proceedings of the Symposium*, Rome, Gordon and Breach, New York (1967), 349–355.
- [7] C. Sekar, Studies in graph theory, Ph.D. Thesis, Madurai Kamaraj University (2002).
- [8] M.A. Seoud and E.a. Elsahawi, On variations of graceful labeling, *Ars. Combin.*, 87 (2008), 127–138.
- [9] G. Sethuraman and A. Elumalai, Gracefulness of a cycle with parallel P_k chords, *Australian Journal of Combinatorics*, 32 (2005), 205–211.
- [10] P.J. Slater, On k -graceful graphs, *Proceedings of 13th S.E. Conference on Combinatorics, Graph Theory and Computing* (1982), 53–57.