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Abstract:

An inventory model with three different rates of production and quadratic demand
rate is considered. The shortages are allowed and deterioration rate is time dependent.
The objective is to determine the optimal total cost and the optimal time schedule of
the plan for the proposed model. To illustrate the results of this model, numerical
example is presented.
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1. INTRODUCTION

The inventory system is taking an important part of cost controlling in business. For
the last fifteen years, researchers in this area have extended investigation into various
models with considerations of item shortage, item deterioration, demand patterns,
item order cycles and their combinations.

The controlling and regulating of deteriorating items is a measure problem in any
inventory system. Certain products like vegetables, fruits, electronic components,
chemicals deteriorate during their normal storage period. Hence when developing an
optimal inventory policy for such products, the loss of inventory due to deterioration
cannot be ignored. The researchers have continuously modified the deteriorating
inventory models so as to more practicable and realistic. The analysis of deteriorating
inventory model is initiated by Ghare and Scheader [ 2 ] with a constant rate of decay.
Several researchers have extended their idea to different situations in deterioration on
inventory model. In all those models, the demand rate and the deterioration rate were
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constants, the replenishment rate was finite and no shortage in inventory was allowed.
Researchers started to develop inventory systems allowing time variability in one or
more than one parameter. Liquan Ji [ 5 ] developed EOQ inventory model with
shortages in starting and without shortages in ending. This was followed by another
model by Misra.U.K [ 7 ] with Weibull deteriorating items, permissible delay in
payments under inflation. Maragatham.M and Lakshmidevi.P.K [ 6 ] developed an
inventory model for non-instantaneous deteriorating items under conditions of
permissible delay in payments for n-cycles. Zhao.Xiao Yu [ 8 ] discussed a ordering
policy for Two — phase deteriorating items with changing deterioration rate. A
production inventory model with two rates of production, backorders and variable
production cycle is analyzed by Jhuma Bhowmick and G.P.Samauta. The optimal
values of inventory levels are derived using Hessian matrix.

In this paper, a continuous production control inventory model with three rates of
production for three different production costs and time dependent deterioration rate
for quadratic demand rate is developed. The production is started at one rate and after
some time it may be switched over to another rate is possible to real life situations.
Such a situation is desirable in the sense that starting at low rate of production, a large
quantum stock of manufactured items at the initial stage is avoided, leading to
reduction in the holding cost, the new production rate is used. For demand, the
quadratic function in time and time dependent deterioration rate is considered.
MATLAB R2007b is used to find the optimal values in numerical examples.

2. NOTATIONS AND ASSUMPTION
2.1 NOTATIONS

I, — The inventory level at time t;

I, — The inventory level at time ¢,

I, — The inventory level at time t,

[t5.t4] — The shortage period

T — The time length of the plan

I(t) — The inventory level at time t

p; — The production rate in [0, t;]

p, — The production rate in [t,, t,]

ps — The production rate in [t,, T]

h — The holding cost per unit per unit time

d — The deteriorating cost per unit per unit time
s — The shortage cost per unit per unit time
PC; — The production cost per unit in [0, t,]
PC, — The production cost per unit in [t,, t,]
PCs — The production cost per unit in [t,, T]
TC - The total cost per unit time

ATC — The average total cost per unit time
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2.2ASSUMPTIONS

The demand rate f(t) =a + bt + ct?,¢c >0,b>a >0

The deterioration rate 8(t) = at,a > 0

The production rates p; > p, > p;

The shortages are allowed.

There is no replacement or repair of deteriorated items during the cycle
under consideration.

6. The deterioration is instantaneous.

uhwN R

3. MODEL FORMULATION

The production of the item is started initially at t = 0 at a rate p,. When t = t;, the
rate of production is switches over to p,(> p,) and the production is stopped at time
t, and the inventory depleted at a rate f(t). The inventory level reaches zero at t5.1t is
decided to backlog demand up to t = t, which occur during stock — out line. The
production is started at a faster rate p;(> p, > p,) so as to clear the backlog and
when the inventory level reaches zero (ie), the backlog cleared, the next production
cycle starts.

At the time duration [0, t,], the production is at the rate p; and the consumption by
demand. At the time duration [t,,t,], the production is at the rate p, and the
consumption by demand. At the time duration [t,,t5], there is no production, but only
consumption by demand. At the time duration [t3,t,], the shortages is allowed. [t,T]
is the duration of time to backlog at production rate p;. The cycle then repeats itself
after time T. The deterioration is instantaneous with the rate at in the duration
[0, t3].The model is represented by figure(1).

Alnventory level

T
IL; T Time
[
|
|
|

Figure(1) — A production inventory model
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The change of inventory level can be described as follows
dl(t)

+0I) =p—f(D),0<t<t; (1)
d
’@+a@ﬁ@y_m fO.t <t<t, 2)
d
'@ + Ot = —F(O),t, <t <ty (3)
d
§?=—ﬂ&%<t<u (4)
di(t)
—- =P =[O, t,<t<T (5)
With  boundary conditions I(0) =0,I(t,) =1,,I(t,) = L,,1(t3) = 0,I(t,) =
I, (T)=0 (6)
The solution of the above equations are given by
Py [plt at—¥—7+%—$—%— 15],0<t<t1
w2 pz(t—tl)—a(t—tl)—:(t —t,° )—;(t’—t13)+p2a(t3—t13)—%(t3—tlg)
e_z b(: a 4 (413 5 5 E It‘l<t<t2
16 = N . —?(t -t )—;(t -t )‘+lle B » (7)
e‘T[—a(t—tZ)—g(tZ—tzz)—g(tz—tzz)—?(tz—tzz)—%(t“—tz“)—%(ts— )+ e ] t,<t<t,
—a(t—tz)—:—(tz—t;z)—g(tz—tzz),t3<t<t4
\ pa(t— ) —alt— tA)—'g(tZ— ) =2t~ 62+ Lt <t <T

By considering the continuity at t,l, = —a(t,— t3) —S(tﬁ - t3%) —
(4
3(0,3 - t5°) (8)
By considering the continuity at t,
(thz
L=e zk@yﬁg+(%—45N—@3—Q%+—@3—a%+

ba
2t - 69 + 2 (65 - 6] (9)
By considering the continuity at t,,

2 2 3 3 3 4
L= e_at21 p.t, — at bt~ ¢ty +plat1 aat,® bat; caft1 (10)
1= 1l — 4l — - - - -
2 3 6 6 8
Therefore, after considering the continuity points, the solution becomes
[ _at® bt? ct? pat® aat® Dbat* cat® 0
¢ f (ptoat—— _TJ’T_T_T_T’ “t<t
bt?  ct® at aat?
P PR P NSRS LSRG
ez ¢ 38 6 e <t<t,
bat* cat
I(t) = 8 10 (11)

at®

b c aa ba ca
e'T[—a(t— ty) — = (@2 —t) — = (@t —ty9) —?(t3 -t — E(t“f— t.9) _E(ts -3t <t<t,
4 S

b c
—alt—ty) —- (2 —tH) -z -ty <t <t,
4 9

b c
pat—t)—alt—t) — - — ) -z (@ — ;D + L t,<t<T
4 ]
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Total inventory carried over the period
[0,T] = [ I(Odt + [Z1(O)dt + [2I(t)dt (12)
1 2

Total number of deteriorating items in [0,t5] = pt; + p,(t, — t,) — fff(t)dt
= puty +pa(t, — 1)) — aty — =bts? —~ct5® (13)
Total shortage occurred in [t3,T] = — f:“ I(t)dt — f:[(t)dt (14)
3 4

Total number of units produced in [0,T] = p.t; + po(t, — t1) + ps(T —t,) (15)
Total cost TC = HC + DC —SC + PC

= | 1©dt + [21©Odt + [21©dt] +d [pity + (6, = 0) = [;* F(©)dde]
-s [_ f::l(t)dt - ftz I(t)dt] + [PCipty + PCop,(t; — t1) + PCsps(T —t,)] (16)

Consider the non linear programming f = TC(ty,t,, ts,t,,T) subject to the
constraints

i =t — 1y,

t, —t; <T —t,,

t,>0,t,=>20,t3>20,t,=>20,T >0 (17)

4 NUMERCIAL EXAMPLE

S.Nojalb| ¢ 0 p4p2p3hcdciscpeqpc,pezTime schedule ATC
1 [12/0.003/0.002/4|6|8(2|3|6|10|12 |15 0.1 8.906
0.2

2.4427

2.5842

2.6842

2 [22/0.003/0.002/4(6|8|2|3|6(/10(12|15 0.1 8.0119
0.2

2.3027

2.3985

2.4985

3 [32/0.003/0.002(4 |68 (2(3(6]10|12 |15 0.1 6.9658
0.2

2.1758

2.2303

2.3303

4 1j2/0.003/0.002/4 |6 |8(2|3(6|10|12 |15 0.1 8.906
0.2

2.4427

2.5842

2.6842
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5 |13/0.0030.002({4 |68 (2(3(6]10|12 |15 0.1 8.7188
0.2
2.2555
2.336
2.436
6 |1}4/0.003/0.002/4|6|8|2|3|6/10|12 |15 0.1 8.2931
0.2
2.1338
2.1744
2.2744
7 ]1j2/0.003/0.002|4|6|8|2|3|6/10|12 |15 0.1 8.906
0.2
24427
2.5842
2.6842
8 [12/0.004(0.002/4 |6 (8|2|3|6]/10|12 |15 0.1 8.9069
0.2
24421
2.5834
2.6834
9 [1j2/0.0050.002({4 |68 (2(3|6]|10|12 |15 0.1 8.9078
0.2
2.4416
2.5827
2.6827
0.003/0.002/4|6|8|2|3|6|10|12 |15 0.1 8.906
0.2
2.4427
2.5842
2.6842
0.003/0.003/4|6|8|2|3|6|10|12 |15 0.1 8.886
0.2
2.4486
2.5894
2.6894
0.003/0.004/416|8|2|3|6/10|12 |15 0.1 8.8657
0.2
2.4554
2.5949
2.6949
0.003/0.002/4|6|8|2(3|6/10|12 |15 0.1 8.906
0.2
24427

10 1

N

111

N

12 1

N

13 1

N
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2.5842
2.6842
0.003/0.002|4 |6 (24|23 (6|10 |12 |15 0.1 16.685
0.2
2.9141
3.1982
3.2982
0.003/0.002|/4 |6 |32/2|3|6/10|12 |15 0.1 20.129
0.2
3.0897
3.4282
3.5282

14 |1

N

15 1

N

5.CONCLUSION

A continuous production inventory model for time dependent deteriorating items with
shortages in which three different rates of production and quadratic demand rate is
considered. The case of change of production is very useful in practical situations. By
starting at a low rate of production, a large quantum stock of manufactured item, at
the initial stage is avoided, leading to reduction in the holding cost. The variation in
production rate provides a way resulting consumer satisfaction and earning potential
profit.

The total cost of the system and the optimal values for time schedule are derived for
quadratic demand rate and time dependent deterioration rate.
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