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Abstract

The (affine) development of a smooth curve in a smooth manifold M with respect to
an arbitrarily given affine connection in the bundle A(M) of affine frames over M

is well known (cf. S.Kobayashi and K.Nomizu, Foundations of Differential Geom-
etry, Vol.1). In this paper, we get the generalized affine development of a smooth
curve in M with respect to an arbitrarily given generalized affine connection in
A(M), and then investigate relationships among the covariant derivatives with re-
spect to an arbitrarily given linear connection ω in the bundle L(M) (⊂ A(M)) of
linear frames, the affine connection and a generalized affine connection in A(M)

which are related to the linear connection ω.
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Keywords: (affine) development, generalized affine development, linear (affine,
generalized affine) connection, covariant derivative.

0. Introduction

Let L(M) and A(M) be the linear frame and the affine frame bundles over an n-
dimensional C∞ manifold M respectively. Let γ̃ : L(M) ↪→ A(M) be the (princi-
pal fiber bundle) homomorphism of L(M) into A(M) with the group homomorphism
γ : GL(n; R) ↪→ A(n; R), ω (resp. ϕ) an arbitrarily given linear connection (resp. an
arbitrarily given tensorial 1-form of type (GL(n; R), Rn) ([2, p. 75])) which is defined
on L(M), and θ the canonical 1-form on L(M). Let ω̃ (resp. ω̄) be the affine (resp. the
generalized affine) connection such that γ̃ �ω̃ =: ω + θ (resp. γ̃ �ω̄ =: ω + ϕ) on L(M).

1This work was supported by the research grant of the Busan University of Foreign Studies in 2015.
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Let τ = xt (0 ≤ t ≤ 1) be a C∞ curve in M , and τ̃ t
0 (resp. τ̄ t

0) the affine (resp. the
generalized affine) parallel displacement of the affine tangent space Axt

(M) into Ax0(M)

with respect to ω̃ (resp. ω̄) in A(M). Then, the affine development C̃t = τ̃ t
0(xt )(0 ≤ t ≤

1) of the curve τ = xt (0 ≤ t ≤ 1) in M into Ax0(M) is well known ([2, Proposition 4.1,
p. 131]).

First of all in this paper, we get the generalized affine development C̄t = τ̄ t
0(xt ) of

the curve τ = xt (0 ≤ t ≤ 1) in M into Ax0(M) as follows.

Theorem 2.3. Let ω̄ be an arbitrarily given generalized affine connection in A(M), and
let τ = xt , 0 ≤ t ≤ 1, be a smooth curve in M . Let τ̄ t

0 be the parallel displacement of
Axt

(M) into Ax0(M) along τ with respect to the generalized affine connection (f orm) ω̄.
Then the generalized affine development C̄t = τ̄ t

0(xt ) (0 ≤ t ≤ 1) of the curve τ =
xt (0 ≤ t ≤ 1) in M into Ax0(M) is given as follows:

C̄t = τ̄ t
0(xt ) = τ̄ t

0(ẋt ) − τ t
0(ẋt ) (0 ≤ t ≤ 1),

where ẋt := dxt/dt and τ t
0 is the linear parallel displacement along τ from xt to x0

with respect to the linear connection ω in L(M) which is corresponding to ω̄ (γ̃ �(ω̄) =
ω + ϕ on L(M)) in A(M).

Let Y be a smooth cross section of M into the tangent bundle T M (or the affine
tangent bundle A(M) ×A(n;R) An) over M . Let ∇ẋt

Y, ∇̃ẋt
Y and ∇̄ẋt

Y be the covariant
derivatives of Y in the direction of the curve τ = xt (0 ≤ t ≤ 1) with respect to ω, ω̃ and ω̄

respectively. Then we obtain the following results.

Theorem 2.2. Letω be an arbitrarily given linear connection in L(M) and θ the canonical
1-form on L(M). Let ω̃ be the affine connection in A(M) such that γ̃ �(ω̃) = ω + θ on
L(M), and τ = xt (0 ≤ t ≤ 1) a C∞ curve in M . Let Y be a cross section of M into
T M (or A(M) ×A(n;R) An). Let ∇ẋt

(resp. ∇̃ẋt
) be the covariant differentiation along

τ with respect to ω (resp. ω̃). Then

(∇̃ẋt
Yt )t=0 = (∇ẋt

Yt + dC̃t

dt
)t=0,

where C̃t is the affine development of τ = xt (0 ≤ t ≤ 1) into Ax0(M).

Theorem 2.6. Let ω be an arbitrarily given linear connection in L(M) and ϕ an arbitrarily
given tensorial 1-form on L(M) of type (GL(n; R), Rn). Let ω̄ be the generalized affine
connection in A(M) such that γ̃ �(ω̄) = ω + ϕ on L(M), and τ = xt (0 ≤ t ≤ 1) a
C∞ curve in M . Let Y be a cross section of M into T M (or A(M) ×A(n;R) An). Let
∇ẋt

(resp. ∇̄ẋt
) be the covariant differentiation along τ with respect to ω (resp. ω̄).

Then

(∇̄ẋt
Yt )t=0 = (∇ẋt

Yt + dC̄t

dt
)t=0,

where C̄t is the generalized affine development of τ = xt (0 ≤ t ≤ 1) into Ax0(M).
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1. Preliminaries

In general, when we regard Rn as an affine space, we denote it by An. The group
A(n; R)(= GL(n; R) × Rn) of all affine transformations of An is represented by the
group of all matrices of the form

ã =
(

a ξ

0 1

)
, (1.1)

where a = (ai
j )i,j ∈ GL(n; R) and ξ = (ξ i), ξ ∈ Rn, is a column vector. The element

ã in (1.1) maps a point η of An into aη + ξ . We have the following exact sequence (cf.
[2, p.125]):

0 ↪→ Rn α
↪→ A(n; R)

β−→ GL(n; R) −→ 1. (1.2)

The tangent space Tx(M) of an n-dimensional smooth manifold M at x (∈ M), regarded
as an affine space, is denoted by Ax(M) and is called the affine tangent space. An affine
frame of the manifold M at x (∈ M) consists of a point p ∈ Ax(M) and a linear frame
(X1, . . . , Xn) at x; it is denoted by ũ := (X1, ..., Xn; p). We denote by A(M) the set of
all affine frames of M and define the projection π̃ : A(M) → M by setting π̃(ũ) = x

for every affine frame ũ at x. Then, A(M)(M, A(n; R), π̃) is a principal fiber bundle
over M with group A(n; R). We call A(M)(M, A(n; R), π̃) the bundle of affine frames
over M (cf. [1, 2]).

Let L(M) be the bundle of linear frames over M . Corresponding to the natural
group homomorphisms β : A(n; R) → GL(n; R) and γ : GL(n; R) ↪→ A(n; R), we
have principal fiber bundle homomorphisms β̃ : A(M) → L(M) and γ̃ : L(M) ↪→
A(M). Namely, β̃ : A(M) → L(M) maps (X1, . . . , Xn; p) into (X1, . . . , Xn), and
γ̃ : L(M) ↪→ A(M) maps (X1, . . . , Xn) into (X1, . . . , Xn; 0x), where 0x ∈ Ax(M) is
the point corresponding to the origin of Tx(M). In particular, L(M) can be considered
as a subbundle of A(M).

A generalized affine connection of M is a connection in the principal fiber bundle
A(M) of affine frames over M . We denote by Rn the Lie algebra of the vector group
Rn. Corresponding to the exact sequence (1.2) of groups, we have the following exact
sequence of the Lie algebras (cf. [2, p.127]):

0 ↪→ Rn ↪→ a(n; R) −→ gl(n; R) −→ 0. (1.3)

Therefore,

a(n; R) = gl(n; R) + Rn (semidirect sum) (cf. [2, p.127]). (1.4)

Let ω̄ be the connection form of a generalized affine connection of M . Then γ̃ �ω̄ is an
a(n; R)-valued 1-form on L(M), where γ̃ �ω̄ is the pull back of ω̄ by γ̃ . Let

γ̃ �ω̄ = ω + ϕ, (cf. [2, Proposition 3.1, p.127]), (1.5)
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be the decomposition corresponding to a(n; R) = gl(n; R)+Rn, so that ω is a gl(n; R)-
valued 1-form on L(M) and ϕ is an Rn-valued 1-form on L(M). Here ϕ is a tensorial
1-form on L(M) of type (GL(n; R), Rn) ([2, §5 of Chapter II]), and hence corresponds
to a tensor field of type (1,1) on M .

A generalized affine connection (form) ω̄ is called an affine connection (form) if, in
(1.5), the Rn-valued 1-form ϕ is the canonical 1-form θ on L(M), i.e.,

θ(X) = u−1(π�(X)) for X ∈ Tu(P ), (u ∈ L(M), P = (L(M)). (1.6)

From now on, we denote by ω̃ and ω̄ affine connections (forms) and generalized
affine connections (forms) in the principal fiber bundle A(M) of all affine frames over
M respectively.

For later use, we introduce the following lemmas.

Lemma 1.1 ([2, Proposition 3.1, p.127]). Let ω̄ be a generalized affine connection
(f orm) on A(M) and let

γ̃ �ω̄ = ω + ϕ,

where ω is gl(n; R)-valued and ϕ is Rn-valued. Then

(1) The correspondence between the set of all generalized affine connection forms
on A(M) and the set of all pairs consisting of a connection form on L(M) and a
tensorial 1-form on L(M) of type (GL(n; R), Rn) given by ω̄ → (ω, ϕ) is 1 : 1.

(2) The homomorphism β̃ : A(M) → L(M) maps horizontal subspaces in A(M) into
horizontal subspaces in L(M).

The following lemma is an immediate consequence of Lemma 1.1.

Lemma 1.2 ([2, Theorem 3.3, p.129]). The principal fiber bundle homomorphism β̃ :
A(M) → L(M) maps every affine connection on A(M) into a linear connection on
L(M). Moreover, the map, which is defined by (1) of Lemma1.1, between the set of all
affine connections in A(M) and the set of all linear connections in L(M) is a one-to-one
correspondence.

2. Connections in the bundle of affine frames

2.1. The bundle of affine frames over a C∞ manifold

Let M be an n-dimensional C∞ manifold. For each x ∈ M , an affine frame at x consists
of a point p ∈ Ax(M) and a linear frame u = (X1, . . . , Xn) at x; it will be denoted by
(u; p) = (X1, . . . , Xn; p). We denote by A(M) the set of all affine frames of M . An
affine frame ũ = (u; p) ∈ Ax(M) is considered as a map of An onto the affine tangent
space Ax(M);

ũ = (u; p) : An � η �−→ u(η) + p ∈ Ax(M).
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We define an action of A(n; R) on A(M) by

ũã := ũ ◦ ã (ũ ∈ A(M), ã ∈ A(n; R)),

where ũ ◦ ã is the composite of the affine transformations ã : An → An and ũ : An →
Ax(M). Hence, we get

ũã(= (u; p)(a; ξ)) = (ua; uξ + p) ∈ Ax(M) ⊂ A(M),

( u ∈ L(M), p ∈ Ax(M), a ∈ GL(n; R), ξ ∈ Rn ).
(2.1)

We define the projection π̃ : A(M) → M by setting π̃(ũ) = x for every affine frame
ũ at x. Let (U ; x1, . . . , xn) and (V ; y1, . . . , yn), U ∩ V �= ∅, be local coordinate
neighborhoods of M . Since, for ũ = (u; p) ∈ π̃−1(U ∩ V ),

ũ = (u; p) = (∂/∂x1 · · · ∂/∂xn)[a(u) ξ(p)]
= (∂/∂y1 · · · ∂/∂yn)[b(u) η(p)], (2.2)

(a(u), b(u) ∈ GL(n; R); ξ(p), η(p) ∈ Rn), we get the transition function φUV on U∩V

which is defined by

φUV = [(∂xi/∂yj )]ij ≡
(

(∂xi/∂yj )ij 0
0 1

)
∈ A(n; R). (2.3)

Then, A(M)(M, A(n; R), π̃) becomes a principal fiber bundle over M with group
A(n; R). Such a principal fiber bundle A(M) is called the bundle of affine frames
over M .

Here, we define a fiber bundle associated with a principal fiber bundle as follows ([1,
2, 3]). Let P(M, G, π) be a principal fiber bundle and F a manifold on which G acts
on the left. On the product manifold P × F , we let G act on the right as follows: an
element a ∈ G maps (u, ξ) ∈ P × F into (ua, a−1ξ) ∈ P × F . The quotient space of
P × F by this group action is denoted by E = P ×G F . We call E or more precisely
E(M, F, G, P ) the fiber bundle over the base manifold M , with fiber F and structure
group G, which is associated with the principal fiber bundle P(M, G, π).

Now, we define a map ν between the affine tangent bundle and the tangent (vector)
bundle over the base manifold M by

ν : (A(M) ×A(n;R) An) � [ũ, η] �−→ uη + p ∈ (L(M) ×GL(n;R) Rn) = T M, (2.4)

(ũ = (u; p) ∈ A(M), η ∈ An). This map ν is well defined. In fact, if

[ũ, η] = [ṽ, ζ ] for ũ = (u; p) and ṽ = (v; q) (π̃(ũ) = π̃(ṽ)),

then there exists ã = (a; ξ) (ã−1 = (a−1; −a−1ξ)) ∈ A(n; R) such that

[ũ, η] ã = [ṽ, ζ ]. (2.5)
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From (2.1) and (2.5), we have

ũã = (ua; uξ + p) = (v; q) = ṽ, ã−1η = a−1η − a−1ξ = ζ. (2.6)

We get from (2.4) and (2.6)

ν([ũ, η]) = uη + p,

ν([ṽ, ζ ]) = ν([(ua; uξ + p); a−1(η − ξ)]) = uη + p.
(2.7)

So, the map ν is well defined.

The map ν is bijective. In fact, ν is evidently surjective. In order to show the fact
that ν is injective, we assume that

ν([ũ; η]) = ν([ṽ; ζ ]) (ũ = (u; p), ṽ = (v; q) ∈ A(M); η, ζ ∈ An). (2.8)

Then, since π̃(ũ) = π̃(ṽ), there uniquely exists a ∈ GL(n; R) such that v = ua. From
this fact, (2.4) and (2.8), we get

ua = v, uη + p = vζ + q = uaζ + q. (2.9)

From (2.9), we have

ζ = a−1η + a−1u−1(p − q). (2.10)

Putting ã = (a; u−1(q −p)) (ã−1 = (a−1; −a−1u−1(q −p))) ∈ A(n; R), then we have
from (2.1), (2.9) and (2.10),

(ũ; η)ã = (ũã; ã−1η) = ((ua; q); a−1η + a−1u−1(p − q)) = (ṽ; ζ ).

So ν is injective. Hence the map ν is bijective.
Eventually, the total space (i.e., the bundle space) of the affine tangent bundle over M

is naturally homeomorphic with that of the tangent (vector) bundle over M; the distinction
between the two is that the affine tangent bundle is associated with A(M) whereas the
tangent (vector) bundle is associated with L(M). Thus,

{Y | Y : M −→ T M = (L(M) ×GL(n;R) Rn) is a C∞ cross section}

and

{Y | Y : M −→ A(M) ×A(n;R) An (the affine tangent bundle) is a C∞ cross section}

are naturally 1:1 correspondent.



Connections in affine frame bundles 7

2.2. Affine connections

Let τ = xt , 0 ≤ t ≤ 1, be a smooth curve in M . The affine parallel displacement
along τ is an affine transformation of the affine tangent space Ax0(M) at x0 onto the
affine tangent space Ax1(M) at x1 which is defined by the given affine connection in
A(M). Let τ̃ t

s be the affine parallel displacement along the curve τ from xt to x0. A cross
section of M into the affine tangent bundle (associated with A(M)) is called a point field.
Let p be a point field defined along τ so that pxt

is an element of Axt
(M) for each t .

Then τ̃ t
0(pxt

) describes a curve in Ax0(M). We identify the curve τ = xt with the trivial
point field along τ , that is, the point field corresponding to the zero vector field along τ .
Then the affine development (cf. [1, 2, 4]) of the curve τ in M into the affine tangent
space Ax0(M) is the curve τ̃ t

0(xt ) in Ax0(M), where τ̃ t
0 is the affine parallel displacement

Axt
(M) → Ax0(M) along τ (in the reversed direction) from xt to x0. The following

lemma is well known.

Lemma 2.1 ([2, Proposition 4.1, p.131]). Given a curve τ = xt , 0 ≤ t ≤ 1, in M , set
Zt := τ t

0(ẋt ), where τ t
0 is the parallel displacement with respect to an arbitrarily given

linear connection (f orm) ω (γ̃ �ω̃ = ω + θ) along τ from xt to x0 and ẋt = dxt/dt . Let
C̃t , 0 ≤ t ≤ 1, be the curve in Ax0(M) starting from the origin (that is C̃0 = x0) such
that dC̃t/dt = Zt for every t . Then C̃t is the affine development of τ into Ax0(M).

Proof. Let u0 be any point in L(M) such that π(u0) = x0, and ut the horizontal lift of
xt in L(M) with respect to the linear connection ω. Let ũt be the horizontal lift of xt in
A(M) with respect to the affine connection (form) ω̃ such that ũ0 = u0. Since, by virtue
of Lemma 1.1, the homomorphism β̃ : A(M) → L(M) = A(M)/Rn maps ũt into ut ,
there is a curve ãt in Rn ⊂ A(n; R) such that ũt = ut ãt and ã0 is the identity. Then,
since ãt ∈ Rn ⊂ A(n; R), we can put

ãt =
(

In ξ̃ (t)

0 1

)
, ã−1

t =
(

In −ξ̃ (t)

0 1

)
(2.11)

for each t .
Here we shall find a necessary and sufficient condition for ãt in order that ũt be

horizontal with respect to the affine connection (form) ω̃. From Leibniz’s formula, we
get ˙̃ut = u̇t ãt + ut

˙̃at . (2.12)

We obtain by virtue of (2.12) and Lemma 1.1

ω̃( ˙̃ut) = Ad(ã−1
t )(ω̃(u̇t )) + ã−1

t
˙̃at

= Ad(ã−1
t )(ω(u̇t ) + θ(u̇t )) + ã−1

t
˙̃at

= Ad(ã−1
t )(θ(u̇t )) + ã−1

t
˙̃at ,

(2.13)

since the curve ut in L(M) is a horizontal curve with respect to the linear connection
(form) ω in L(M) by the above assumption. Thus, by virtue of (2.11) and (2.13), we get



8 Joon-Sik Park

the fact that ũt is horizontal with respect to the affine connection (form) ω̃ if and only if

θ(u̇t ) = −˙̃at ã−1
t = ãt (dãt

−1/dt) = dãt
−1/dt. (2.14)

Now, in order to obtain the affine development, we assume that the curve ũt = ut ãt in
A(M) is horizontal with respect to the affine connection ω̃. Then from (2.11) and (2.14),
we obtain

Zt := τ t
0(ẋt ) = (u0 ◦ ut

−1)(ẋt ) = u0(θ(u̇t )) = −u0(dξ̃ (t)/dt). (2.15)

Since ã−1
t ∈ A(n; R) and ut

−1(xt ) ∈ An, we have from (2.11)

C̃t = τ̃ t
0(xt ) = ũ0(ũ

−1
t (xt ))

= u0(ã
−1
t (ut

−1(xt ))) = u0(ut
−1(xt ) − ξ̃ (t)) = −u0(ξ̃ (t)).

(2.16)

By the help of (2.15) and (2.16), we obtain dC̃t/dt = τ t
0(ẋt ) = Zt . �

We investigate relationships between covariant differentiations with respect to a linear
connection ω and the affine connection ω̃ (γ �(ω̃) = ω + θ) which is defined by ω.

Let ω be an arbitrarily given linear connection in the bundle L(M) of linear frames
over an n-dimensional C∞ manifold M . Let ω̃ be the affine connection in A(M) such
that

γ̃ �(ω̃) = ω + θ on L(M). (2.17)

Let Y be a C∞ cross section of M into T M (or A(M)×A(n;R)A
n) and τ = xt (0 ≤ t ≤ 1)

a (piecewise) C∞ curve in M . The covariant derivative (∇ẋt
Yt )t=0, (Yt := Yxt

), of Y

along τ with respect to the linear connection (form) ω is defined by

(∇ẋt
Yt )t=0 = lim

t→0

τ t
0(Yt ) − Y0

t
, (2.18)

where τ t
0 is the linear parallel displacement with respect to the linear connection (form)

ω along the curve τ from xt to x0. Similarly the covariant derivative (∇̃ẋt
Yt )t=0 of Y

along τ with respect to the affine connection (form) ω̃ is defined by

(∇̃ẋt
Yt )t=0 = lim

t→0

τ̃ t
0(Yt ) − Y0

t
, (2.19)

where τ̃ t
0 is the affine parallel displacement with respect to the affine connection (form)

ω̃ along the curve τ from xt to x0. Then, using the notations as in the course of the proof
of Lemma 2.1, we get from (2.11)

τ̃ t
0(Yt ) = ũ0(ũ

−1
t (Yt ) = ũ0(ã

−1
t ut

−1)(Yt ) = u0(ut
−1(Yt ) − ξ̃ (t)), (2.20)

since ã−1
t ∈ A(n; R) and ut

−1(Yt ) ∈ An. From (2.19) and (2.20), we obtain

(∇̃ẋt
Yt )t=0 = lim

t→0

u0ut
−1(Yt ) − Y0 − u0(ξ̃ (t))

t
. (2.21)
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Since ã0 ∈ A(n; R) is the identity, from (2.11) we have ξ̃ (0) = 0(∈ Rn). From this fact,
(2.18) and (2.21), we get

(∇̃ẋt
Yt )t=0 =

(
∇ẋt

Yt − u0

(
dξ̃ (t)

dt

))
t=0

. (2.22)

By the help of (2.16) and (2.22), we obtain

(∇̃ẋt
Yt )t=0 =

(
∇ẋt

Yt + dC̃t

dt

)
t=0

. (2.23)

Therefore we get

Theorem 2.2. Letω be an arbitrarily given linear connection in L(M) and θ the canonical
1-form on L(M). Let ω̃ be the affine connection in A(M) such that γ̃ �(ω̃) = ω + θ on
L(M), and τ = xt (0 ≤ t ≤ 1) a C∞ curve in M . Let Y be a cross section of M into
T M (or A(M) ×A(n;R) An). Let ∇ẋt

(resp. ∇̃ẋt
) be the covariant differentiation along

τ with respect to ω (resp. ω̃). Then

(∇̃ẋt
Yt )t=0 =

(
∇ẋt

Yt + dC̃t

dt

)
t=0

,

where C̃t is the affine development of τ = xt (0 ≤ t ≤ 1) into Ax0(M).

2.3. Generalized affine connections

As in the subsection 2.2, let τ = xt , 0 ≤ t ≤ 1, be a smooth curve in M . The generalized
affine parallel displacement along τ is a generalized affine transformation of the affine
tangent space Ax0(M) at x0 onto the affine tangent space Ax1(M) at x1 which is defined
by a given generalized affine connection in A(M). Let τ̄ t

s be the generalized affine
parallel displacement along the curve τ from xt to xs . In particular, τ̄ t

0 is the generalized
affine parallel displacement Axt

(M) → Ax0(M) along τ (in the reversed direction) from
xt to x0. The generalized affine development of the curve τ in M into the affine tangent
space Ax0(M) is the curve τ̄ t

0(xt ) in Ax0(M). Now we obtain the following theorem.

Theorem 2.3. Let ω̄ be an arbitrarily given generalized affine connection in A(M), and
let τ = xt , 0 ≤ t ≤ 1, be a smooth curve in M . Let τ̄ t

0 be the parallel displacement of
Axt

(M) into Ax0(M) along τ with respect to the generalized affine connection (f orm) ω̄.
Then the generalized affine development C̄t = τ̄ t

0(xt ) (0 ≤ t ≤ 1) of the curve τ =
xt (0 ≤ t ≤ 1) in M into Ax0(M) is given as follows:

C̄t = τ̄ t
0(xt ) = τ̄ t

0(ẋt ) − τ t
0(ẋt ) (0 ≤ t ≤ 1),

where ẋt := dxt/dt and τ t
0 is the linear parallel displacement along τ from xt to x0 with

respect to the linear connection ω in L(M) which is corresponding to ω̄ (γ̃ �(ω̄) = ω+ϕ)

in A(M).
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Proof. For the generalized affine connection ω̄ in A(M), γ̃ �(ω̄) = ω+ϕ, where ω (resp.
ϕ) is the linear connection (resp. Rn-valued 1-form) on L(M) (cf. Lemma 1.1). Let
u0 be a point in L(M) such that π(u0) = x0, and ut the horizontal lift of xt in L(M)

with respect to the linear connection ω. Let ūt be the horizontal lift of xt in A(M) with
respect to the generalized affine connection (form) ω̄ such that ū0 = u0. Since, by virtue
of Lemma 1.1, the homomorphism β̃ : A(M) → L(M) = A(M)/Rn maps ūt into ut ,
there exists a curve āt in Rn ⊂ A(n; R) such that ūt = ut āt and ā0 is the identity. Then,
since āt ∈ Rn ⊂ A(n; R), we can put

āt =
(

In ξ̄ (t)

0 1

)
, ā−1

t =
(

In −ξ̄ (t)

0 1

)
(2.24)

for each t .
Here we shall find a necessary and sufficient condition for āt in order that ūt be

horizontal with respect to the generalized affine connection (form) ω̄. From Leibniz’s
formula, we get

˙̄ut = u̇t āt + ut
˙̄at . (2.25)

Since the curve ut in L(M) is a horizontal lift with respect to ω, we obtain by virtue of
(2.25) and Lemma 1.1

ω̄( ˙̄ut) = Ad(ā−1
t )(ω̄(u̇t )) + ā−1

t
˙̄at

= Ad(ā−1
t )(ω(u̇t ) + ϕ(u̇t )) + ā−1

t
˙̄at

= Ad(ā−1
t )(ϕ(u̇t )) + ā−1

t
˙̄at .

(2.26)

Thus, by virtue of (2.24) and (2.26), we get the fact that ūt is horizontal with respect to
the generalized affine connection (form) ω̄ if and only if

ϕ(u̇t ) = −˙̄at ā−1
t = āt (dāt

−1/dt) = dāt
−1/dt. (2.27)

Now, in order to obtain the generalized affine development, we assume that the curve
ūt = ut āt in A(M) is horizontal with respect to the generalized affine connection ω̄.
Then we get

τ̄ t
0(ẋt ) = (ū0 ◦ ū−1

t )(ẋt ) = (u0 ◦ ā−1
t ◦ ut

−1)(ẋt ). (2.28)

Since ut
−1(ẋt ) ∈ An and ā−1

t ∈ A(n; R), we get from (2.24)

ā−1
t (ut

−1(ẋt )) = ut
−1(ẋt ) − ξ̄ (t). (2.29)

By virtue of (2.28) and (2.29), we obtain

τ̄ t
0(ẋt ) = τ t

0(ẋt ) − u0(ξ̄ (t)). (2.30)

On the other hand, we have

C̄t = τ̄ t
0(xt ) = ū0(ū

−1
t (xt )) = u0(ā

−1
t (ut

−1(xt ))) = u0(ā
−1
t (0))), (2.31)
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since ut
−1 ∈ L(M) ⊂ A(M) and xt = 0xt

∈ Txt
(M). We get from (2.24) and (2.31)

C̄t = −ū0(ξ̄ (t)) = −u0(ξ̄ (t)). (2.32)

Therefore, by virtue of (2.30) and (2.32), the generalized affine development C̄t of a
curve τ = xt (0 � t � 1) in M into Ax0(M) is given as follows:

C̄t = τ̄ t
0(ẋt ) − τ t

0(ẋt ), (2.33)

where τ̄ t
0 and τ t

0 are parallel displacements along τ from xt to x0 with respect to the
generalized affine and the linear connections respectively. �

From the course of the proof of Theorem 2.3, we get the following corollary.

Corollary 2.4. Let ω̄ be an arbitrarily given generalized affine connection in A(M) such
that γ̃ �ω̄ = ω + ϕ. Let τ = xt (0 ≤ t ≤ 1) be a smooth curve in M , and ut a horizontal
lift of τ = xt in L(M) with respect to ω. Let ūt be a smooth curve in A(M) such that
π̃(ūt ) = xt and ū0 = u0. Then, ūt is the horizontal lift of τ = xt in A(M) with respect
to ω̄ if and only if, for each t ,

ūt = ut āt (āt ∈ Rn ⊂ A(n; R)) and ϕ(u̇t ) = dā−1
t /dt.

Proof. This is clear from (2.27) and Lemma 1.1. �

The following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.5. Let ω̄ be an arbitrarily given generalized affine connection in A(M)

such that γ̃ �ω̄ = ω + ϕ. Let C̄t be the generalized affine development of a curve
τ = xt (0 ≤ t ≤ 1) in M into Ax0(M). Then (i) if ẋt is parallel along τ = xt with
respect to the generalized affine connection ω̄ in A(M), then C̄t = ẋt |t=0 − τ t

0(ẋt ), (ii)
if ẋt is parallel along τ = xt with respect to the linear connection ω in L(M), then
C̄t = τ̄ t

0(ẋt ) − ẋt |t=0.

Finally, we investigate relationships among covariant derivatives with respect to
connections in L(M)(⊂ A(M)) and A(M).

Let ω be an arbitrarily given linear connection in L(M)(⊂ A(M)), ϕ an arbitrarily
given tensorial 1-form on L(M) of type (GL(n; R), Rn) (cf. [2, §5 of Chapter II). Let
ω̃ and ω̄ be the affine and the generalized affine connections in A(M) respectively such
that

γ̃ �(ω̃) = ω + θ and γ̃ �(ω̄) = ω + ϕ on L(M). (2.34)

The covariant derivative (∇̄ẋt
Yt )t=0, (Yt := Yxt

), of a cross section Y along a curve
τ = xt (0 ≤ t ≤ 1) with respect to the generalized affine connection (form) ω̄ is defined
by

(∇̄ẋt
Yt )t=0 = lim

t→0

τ̄ t
0(Yt ) − Y0

t
, (2.35)
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where τ̄ t
0 is the generalized affine parallel displacement with respect to the generalized

affine connection (form) ω̄ along the curve τ from xt to x0. Using the notations as in the
course of the proof of Theorem 2.3, we get from (2.24)

τ̄ t
0(Yt ) = ū0(ū

−1
t (Yt ) = ū0(ā

−1
t ut

−1)(Yt ) = u0(ut
−1(Yt ) − ξ̄ (t)), (2.36)

since ā−1
t ∈ A(n; R) and ut

−1(Yt ) ∈ An. From (2.35) and (2.36), we obtain

(∇̄ẋt
Yt )t=0 = lim

t→0

u0ut
−1(Yt ) − Y0 − u0(ξ̄ (t))

t
. (2.37)

Since ā0 ∈ A(n; R) is the identity, from (2.24) we have ξ̄ (0) = 0(∈ Rn). From this fact,
(2.35) and (2.37), we get

(∇̄ẋt
Yt )t=0 =

(
∇ẋt

Yt − u0

(
dξ̄ (t)

dt

))
t=0

. (2.38)

By virtue of (2.32) and (2.38), we get

(∇̄ẋt
Yt )t=0 =

(
∇ẋt

Yt + dC̄t

dt

)
t=0

. (2.39)

Therefore we obtain

Theorem 2.6. Let ω be an arbitrarily given linear connection in L(M) and ϕ an arbitrarily
given tensorial 1-form on L(M) of type (GL(n; R), Rn). Let ω̄ be the generalized affine
connection in A(M) such that γ̃ �(ω̄) = ω + ϕ on L(M), and τ = xt (0 ≤ t ≤ 1) a
C∞ curve in M . Let Y be a cross section of M into T M (or A(M) ×A(n;R) An). Let
∇ẋt

(resp. ∇̄ẋt
) be the covariant differentiation along τ with respect to ω (resp. ω̄).

Then

(∇̄ẋt
Yt )t=0 =

(
∇ẋt

Yt + dC̄t

dt

)
t=0

,

where C̄t is the generalized affine development of τ = xt (0 ≤ t ≤ 1) into Ax0(M).

By the help of Theorems 2.2 and 2.6, we get

Corollary 2.7. Let ω be an arbitrarily given linear connection in L(M) and θ the
canonical 1-form on L(M). Let ϕ be an arbitrarily given tensorial 1-form on L(M)

of type (GL(n; R), Rn). Let ω̃ (resp. ω̄) be the affine (resp. the generalized aff ine)

connection in A(M) such that γ̃ �(ω̃) = ω + θ (resp. γ̃ �(ω̄) = ω + ϕ) on L(M),
and τ = xt (0 ≤ t ≤ 1) a C∞ curve in M . Let Y be a cross section of M into
T M (or A(M) ×A(n;R) An). Let ∇̃ẋt

(resp. ∇̄ẋt
) be the covariant differentiation along

τ with respect to ω̃ (resp. ω̄). Then

(∇̄ẋt
Yt )t=0 =

(
∇̃ẋt

Yt + d(C̄t − C̃t )

dt

)
t=0

,

where C̃t (resp. C̄t ) is the affine (resp. the generalized aff ine) development of
τ = xt (0 ≤ t ≤ 1) into Ax0(M).
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