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Abstract

In this paper, we introduce the degenerate Boole numbers and polynomials and
give some identities related to these numbers and polynomials. Specially we relate
degenerate Boole polynomials to Euler polynomials and Boole polynomials. We
also study higher order degenerate Boole polynomials.
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1. Introduction

As is well known, the Euler polynomials are given by the generating function to be

2 > "
— le’” = ,,2—(:) En(x)—,  (see [1-3,5,6,8-10]).

et

When x = 0, E,, = E, (0) are called the Euler numbers. In [3] and [10], L. Carlitz
considered the degenerate Euler polynomials as follows:

R "
— U +Aa)r =) & |A)—. (L.1)
1+t +1 X:(:) BT

When x = 0, §,(A) = &,(0 | 1) are called the degenerate Euler numbers. Note that
Alin%é‘n(x | 2) = En(x), (n = 0).

Let p be a fixed odd prime number. Throughout this paper, Z,, Q, and C, will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
the algebraic closure of Q,,.

Let f be a continuous function on Z,. Then the fermionic p-adic integral on Z, is
defined by T. Kim to be

pN-1

) = [ f@diae = fim Y e+ 9V,
P x=0

1.2
o (1.2)
= li —1)* - -10]).
Jlim Y fO(=1), (see[1-3.5.6.8-10])
x=0
In [4, 7], the Boole polynomials are given by the generating function to be
0.¢] tn
L+ 0"dpu_1(y) = ———— 1+ =) 2Bl (x]s)—. 1.3
/Z,,( Y dpa ) = gy D go n(xls) — (1.3)
When x = 0, Bl,,(s) = Bl,(0|s) are called the Boole numbers.
From (1.3), we have
[ G sy ) = 281,61, (14)
/

P

In the viewpoint of (1.1), we consider the degenerate Boole numbers and polynomials
and we investigate some properties of these numbers and polynomials.
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2. Degenerate Boole polynomials

=1
Let us assume that A, ¢ € C,, such that | Az |, < pr~1. From (1.2), we note that

/ Sx+Ddpu—1(x) +/ fx)dp—1(x) =2f(0) (see[1-3,5,6,8-10]). (2.1)
ZP ZP

Let us take f(x) = (1 4 log(1 + )\t)%)” in (2.1), then we get

2
14 (1 4+ log(1 + Ar)E)s

(1 + log(1 + At) %)™

(2.2)
In the viewpoint of (1.3), we define the degenerate Boole polynomials as follows:

/ (1 +log(1 +A0)HY ™ dp_ (y) =
Zp

: — (I +log1 + 20D = Y Bl (xlo=. (23
1+ (1 +log(1 + A1) 1))s e n!

When x = 0, B, 5 (s) = ‘B, 1 (0]s) are called the degenerate Boole numbers.

It is well-kown fact that the generating function of the Stirlng number of the first kind
is given by

o0 l
(log(1 +1)" =m! 3" S, m);—!, (see [6, 8]),

l=m

and the Stirling number of the second kind is defined by the generating function to be

€ —1)"=> Sm, n)fm, (see [6, 81).

m=n

The following observation is useful for our further theory and is well-known. For
the completeness of this paper, we record as lemma.

Lemma 2.1. For n > 0, we have

(1+log(1 + 75" =Y (Z A () S (1, m)) %

n=0

m=0
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Proof. By binomial theorem, we get

1 o 1 1
(1 +1log(1 4 Ar)7)* = 2“%“%“ +Ar)F)™

1 1
= E — (x)m— (log(1 + Ar))"
)J" m!

n4n

- A
W Y i m

n=m

(Z A S (1, m)) =

0

3
I
S

IIP”18

Now we explain degenerate Boole polynomials by Boole polynomials.

Theorem 2.2. Forn > 0, we have

Bl (x]s) = A" S (0, m) Bl (x|s).
m=0

Proof. We take fermionic p-adic integration on both sides (2.2)and apply the proof of
Lemma 2.1, then we have the following equation: forn > 0

Z AT, m) f (¢ + 5Vt 1(y) = 2Bl 1 (xls). (2.4)
=0
Now apply (1.4), we have the result. |

We can relate degenerate Boole polynomials to Euler polynomials as follwos:

Corollary 2.3. For n > 0, we have

281, ,.(x|s) = szn "S1(n,m)Sy(m,)s El( )

m=0 =0

Proof. We observe that

Gt symdiai(y) = > Si0m. 1) /Z (x +sy)'du_1(y),
)4 1=0 )4

and

/ e(x—i—sy)tdlu l(y) — 2 ext — isnE )_C i
7 B est +1 "\s /n!’

4 n=0
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Then apply (2.4) in the proof of Theorem 2.2.
The following theorem shows the inversion of Theorem 2.2
Theorem 2.4. For m > 0, we have
m
Bly(x|s) =Y Bly 1 (x[s)A" " Sy(m, n).
n=0
. 1 At .
Proof. By replacing ¢ by X(e — 1) in (2.3), we get
= 1
—(1+1)* = Bl AT — (M —1)"
Tar 2_:0 na (XA (e = 1)
00 00 o
=D Bl (xHAT" Y Spm, mA" —
' m!
n=0 m=n
) m m
=3 (Z %[n,x(x|s)xm—"52(m,n)> —.
m=0 \n=0 m!
Now apply (1.3), we have the result. [

We list some properties on degenerate Boole polynomials.

Theorem 2.5. Forn > 0, we have

i) Bl (s + Dls) + Blya(sxls) = Y (sx)uA" " S (n, m).
m=0

(i)  Blya(sls) + Bly(s) = So.n-
Proof.

(i) From (2.3), we note that

o0

> (Blus(s(x + DIs) + Blys(sx|s))
n=0

tn
n!
B 1

1 (14 log(1 + Anh)s
= (1 + log(1 + Ar)7)*™

=2 (f(smx"—mw» m>) o

n=0 \m=0

(1 4+ (1 4+ log(1 + 20)")*)(1 + log(1 + Ar)7)**

now comparing the coefficients of the above equations, we have the result.
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(i1) Let us take x = 0 in (i), B, 1 (s|s) + Bl 1 (s) = So.n, (n > 0). |

For the distribution relation, we consider the following integral equation: d € N with
d =1 (mod 2), we have

d—1

fZ fa+ddp(x) + /Z f@dpi@) =2) D'fD). (25
r P 1=0

Theorem 2.6. For n > 0, we have

n k
Bl (5) + Bl (sdls) = Bloa(s) + Y Y (Z)(sdnsl (k, DA*TIBL, g (s)

k=0 [=0
d—1 n
=3 Y (=D DA S1 (0, m).
[=0 m=0

Proof. We apply f(x) = (1 +log(1 + )Lt)%)” in (2.5), then we have

f (1 4+ log(1 + A0)") du_ (x)
ZP

) d—1

14 (14 log(l + A)x)sd =

This is equivalent to

(=D (1 +log(1 4+ 1) %)

(1+ (1 + log(1 +u)i)fd)/ (1 4+ log(1 + A)") ¥ du_y (x)
ZP

d—1 (2.6)

=23 (= D'(1 +log(1 + A7),
=0

Thus, by (2.6), we get

00 n k n
> (2%[;1,A(s) +Y > (Z) (sd)iS1(k, l)x"—’zastn_k,us)) %

n=0 k=0 =0

o [ d-1 n )
- Z (22(_1)1 Z(Sl)m)&n_m»% (n, m)) %

n=0 =0 m=0

2.7)

By comparing the coefficients in (2.7), we get

n k
Blop(s)+ Y (Z) (sd); S1(k, DA !B, 1 (5)

k=0 [=0
d—1 n
=D Y (=D DA Si(n, m).
(=0 m=0
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For k € N, let us define the degenerate Boole polynomials of order k as follows:

o0

k
1 LA k)
: I+ (1+log(1+20)%)) =) Bl <x|s) . (28)
<1+(1+10g<1+w)s> ( ) =E

n=0

When x = 0, %[% (s) = %[ff)k (O|s) are called the degenerate Boole numbers of
order k.

We apply Lemma 2.1 to multiple fermionic p-adic multiple integral on Z, x Z, x
- X Zp, then we have the following.

Lemma 2.7. For m > 0, we have

m
2FBIY, (x[s) =D A" nlSy (m, n)
n=0

SX1+ - sxp +x
X/ / ( ! ‘ )du_l(xl)---d,u—l(xk).
Z, Zp n

Proof. We note that

fz f (1 +log(1 + At)F ) 95 () - dpy (xp)

( + (1 + log(1 +m) )
=Y 2k» [(kk(xls)
n=0

We observe that

k
) (1 +log(1 + Mﬁ)x (2.9)

/ / (1 +log(1 + At)m) S+ 5 b gy ey e dpy ()

:Z/ /Z (sx1+ -+ Sxk +x)du 1) - dp— 1 (o)X " (log(1 + At))"
n=0 P

n

Z/ / <sx1+ - sxg +x>du L) - dpy (A" 210

n

)me

x n! Z S1(m, n)

= Z (ZA’" "n!81(m, n)/ /z (le +m+sxk+x>du_1(m) cdu— l(xk)> t—,
m=0 )4

n
n=0

By comparing the coefficients of (2.9) and (2.10), we have the result. |
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The higher-order Boole polynomials are given by the generating function to be

k
) (1+1)"

o0 t”
= > 2°BI (x]s)—.
n!

n=0

1+t tsatxg () ---du_i(x :(—
/Zp /Zp( ) p—1(x1) - - - dp—1(xg) NIRRT

Thus we have

[ [ i sne e 0 i 0) = 2B 1), 02 0),
Zp Zp

(2.11)
Now we can see degenerate Boole polynomials via Boole polynomials.
Theorem 2.8. For m > 0, we have
m
BV, (x[s) =D A"y (m, n) BIP (x[s).
n=0
Proof. Apply (2.11) to Lemma 2.7. [

It is easy to show that

- X
/ s | XA sx F ) pdp—1(x1) - d -y () = ZSl(n,l)El(k) <;>S1,
Zp 2y 1=0

(2.12)

where E l(k) (x) are the higher-order Euler polynomials which are given by the generating

function to be
2 \* NI
xt __ -
(et-i-l) ¢ —%En (x)n!'

Therefore, by (2.11), (2.12) and Theorem 2.8, we obtain the following corollary.

Corollary 2.9. For m > 0, we have

m

n
k (k) m—n k) [ X l
A, o) = Y3 simmsi D EP (2)!

n=0 [=0
Now we study some properties of higher order degenerate Boole numbers.

Theorem 2.10.
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For m > 0, we have

o BOoH= Y (11,--rl~,lk)%(“’k(s)”'%[’“(S)'

Ii+-+l=n
(i) BIY, () = D ("N (k +n — 1), Si(m, n).
n=0

Proof.
(i) From (2.8), we easily note that

k
o n
k) t 1
2B = ( )

o 1+ (1 +log(1 + An)1)®

o0
n "

n=0114--+l=n

(i1)
ad " 1 «
DB = T )
=0 : 1+ (1 +1log(1 + Ar)%)S
> _(k+n—1
=Y ( ! )aog(l + )"
n=0
— r;)(—l)"k_”(k +n—1), m; S (m, n))\m%
=2 (Z(—l)"k’"‘"(k +n = 1), Si0m, n)) -
m=0 \n=0 m!

The following theorem shows the inversion of Theorem 2.4.

Theorem 2.11. For m > 0, we have

m
=0
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1
Proof. By replacing t by X(e’\’ — 1) in (2.9), we get

oo
PRERTAAOE f f (1 580 gy (o) d ey ()
Zp Z,

m=0
> 1 /1 "
=Y 2B (xls)— (— (M = 1)
= 7, n! \ A

o0 o tm
= ZZk‘Blﬁf)k(xls) Z A8 (m, n)%
— m=n ’

m

0 m
t
= Z (Z Zk%[;ki(xls)km_”Sz(m,n)> —.
’ m!
m=0 \n=0
[ |

Now, we consider the degenerate Boole polynomials of the second kind with order
k as follows:

fz f (1 4 log(1 4 A)7) ™27 =S8Ex gy () - dpy (x)

k
:< 2 - > (1+1og(1+m%> sz%[f,"}( 5).

1+ (1+log(l+4 At)x)s
(2.13)

In the following, we can see the relation higher order degenerate Boole polynomials
of the second kind to higher order degenerate Boole numbers or polynomials.

Theorem 2.12. For n > 0, we have

B, (x]s) = ZZ( ><Sk+x)l'k’” '$1m, DB (5)

m=0 [=0

_ ZZ( )( )mm 151 m, BIY  (kls).

m=0 [=0

Proof. From (2.13) the definition of higher order degenerate Boole polynomials of the
second kind, we can interpretate following two ways:

(0.8]
k) t 1 sk+x
sz%[ S (xls )— - (Z 2"%[2‘3@)%) (1 + log(1 +xt)»)
m=0
00 n k
n sk + x k—I k k) "
:Z(ZZ(Q( z )m Si1(k, D2BLZL () |
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Now we give the relation higher order degenerate Boole polynomials of the second
kind to higher order Euler polynomials as follows:

Theorem 2.13. For m > 0, we have

m n
2B, (xls) = S0 S AT S (m, m) 81, DE® (x + sk).
n=0 [=0

Proof. We observe that

(0.¢]
> 2kBilY, (xls)

m=0

:/ / (1+log(1+M)%)‘S"l‘m"“‘s"k+xdu_1(X1)---du—l(xk)
Zp Zp

> —SX] —8X3 — - —SXgp+ X
:Z/ / ( )du_l()c1)"'dll~—1(xk)
n=0 Zp Zp

n

x A (log(1 + Ar))"

o0
= Z/ / (—sx1 —sx2 — -+ —sxp +xX)pdp—_1(x1) - - - dpe—1(xg)
n=0"Zp Zp
o
)Lmtm
—n
X A ZSl(m,n) o
m=n
(0,0) m
- Z(Z A1 (m, )
m=0 “n=0
tm
X f oo | (—sxp —sx2 — o = sxp + X)pd 1 (x1) - - ~du—1(Xk)>—,-
Zp Zp m.
We observe that
/ / (—=sxp —sx2 — -+ —sxp +X)pdp_1(x1) - - dp—1(xg)
ZP ZP
n
= Siln, l)/ o | (sxr—sxy — o — s 0 dpe (k) - d e (v)
1=0 Zp Zp

n l
= Z(—s)l&(n,l)/ / (x1 xp e g ’ﬁ) dp—1(x1) -~ dp—1 ()
1=0 Zp Zp §

= (=5)'$1(n. HE® (—;ﬁ): > S1n DEP (x + sk).
=0 =0
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