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Abstract

In this paper, we introduce the degenerate Boole numbers and polynomials and
give some identities related to these numbers and polynomials. Specially we relate
degenerate Boole polynomials to Euler polynomials and Boole polynomials. We
also study higher order degenerate Boole polynomials.

AMS subject classification: 11B68, 11S40, 11S80.
Keywords: Degenerate Boole polynomial, Boole polynomial, Euler polynomial,
higher order degenerate Boole polynomial.

∗Corresponding author.



2 Dong-Jin Kang, Joohee Jeong, and Seog-Hoon Rim

1. Introduction

As is well known, the Euler polynomials are given by the generating function to be

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n! , (see [1-3,5,6,8-10]).

When x = 0, En = En(0) are called the Euler numbers. In [3] and [10], L. Carlitz
considered the degenerate Euler polynomials as follows:

2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞∑
n=0

ξn(x | λ)
tn

n! . (1.1)

When x = 0, ξn(λ) = ξn(0 | λ) are called the degenerate Euler numbers. Note that
lim
λ→0

ξn(x | λ) = En(x), (n ≥ 0).

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
the algebraic closure of Qp.

Let f be a continuous function on Zp. Then the fermionic p-adic integral on Zp is
defined by T. Kim to be

I−1(f ) =
∫

Zp

f (x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

f (x)µ−1(x + pNZp)

= lim
N→∞

pN−1∑
x=0

f (x)(−1)x, (see [1-3,5,6,8-10]).

(1.2)

In [4, 7], the Boole polynomials are given by the generating function to be

∫
Zp

(1 + t)x+sydµ−1(y) = 2

1 + (1 + t)s
(1 + t)x =

∞∑
n=0

2Bln(x|s) t
n

n! . (1.3)

When x = 0, Bln(s) = Bln(0|s) are called the Boole numbers.
From (1.3), we have ∫

Zp

(x + sy)ndµ−1(y) = 2Bln(x|s). (1.4)

In the viewpoint of (1.1), we consider the degenerate Boole numbers and polynomials
and we investigate some properties of these numbers and polynomials.
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2. Degenerate Boole polynomials

Let us assume that λ, t ∈ Cp such that | λt |p < p
−1
p−1 . From (1.2), we note that

∫
Zp

f (x + 1)dµ−1(x) +
∫

Zp

f (x)dµ−1(x) = 2f (0) (see [1-3,5,6,8-10]). (2.1)

Let us take f (x) = (1 + log(1 + λt)
1
λ )sx in (2.1), then we get

∫
Zp

(1 + log(1 + λt)
1
λ )x+sydµ−1(y) = 2

1 + (1 + log(1 + λt)
1
λ )s

(1 + log(1 + λt)
1
λ )x.

(2.2)

In the viewpoint of (1.3), we define the degenerate Boole polynomials as follows:

1

1 + ((1 + log(1 + λt)
1
λ ))s

(1 + log(1 + λt)
1
λ )x =

∞∑
n=0

Bln,λ(x|s) t
n

n! . (2.3)

When x = 0, Bln,λ(s) = Bln,λ(0|s) are called the degenerate Boole numbers.

It is well-kown fact that the generating function of the Stirlng number of the first kind
is given by

(log(1 + t))m = m!
∞∑

l=m

S1(l, m)
t l

l! , (see [6, 8]),

and the Stirling number of the second kind is defined by the generating function to be

(et − 1)n =
∞∑

m=n

S2(m, n)
tm

m! , (see [6, 8]).

The following observation is useful for our further theory and is well-known. For
the completeness of this paper, we record as lemma.

Lemma 2.1. For n ≥ 0, we have

(1 + log(1 + λt)
1
λ )x =

∞∑
n=0

(
n∑

m=0

λn−m(x)mS1(n, m)

)
tn

n! .
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Proof. By binomial theorem, we get

(1 + log(1 + λt)
1
λ )x =

∞∑
m=0

(x)m
1

m!(log(1 + λt)
1
λ )m

=
∞∑

m=0

1

λm
(x)m

1

m!(log(1 + λt))m

=
∞∑

m=0

λ−m(x)m

∞∑
n=m

S1(n, m)
λntn

n!

=
∞∑

n=0

(
n∑

m=0

λn−m(x)mS1(n, m)

)
tn

n! .

�

Now we explain degenerate Boole polynomials by Boole polynomials.

Theorem 2.2. For n ≥ 0, we have

Bln,λ(x|s) =
n∑

m=0

λn−mS1(n, m)Blm(x|s).

Proof. We take fermionic p-adic integration on both sides (2.2)and apply the proof of
Lemma 2.1, then we have the following equation: for n ≥ 0

n∑
m=0

λn−mS1(n, m)

∫
Zp

(x + sy)mdµ−1(y) = 2Bln,λ(x|s). (2.4)

Now apply (1.4), we have the result. �

We can relate degenerate Boole polynomials to Euler polynomials as follwos:

Corollary 2.3. For n ≥ 0, we have

2Bln,λ(x|s) =
n∑

m=0

m∑
l=0

λn−mS1(n, m)S1(m, l)slEl

(
x

s

)
.

Proof. We observe that∫
Zp

(x + sy)mdµ−1(y) =
m∑

l=0

S1(m, l)

∫
Zp

(x + sy)ldµ−1(y),

and ∫
Zp

e(x+sy)tdµ−1(y) = 2

est + 1
ext =

∞∑
n=0

snEn

(
x

s

)
tn

n! .
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Then apply (2.4) in the proof of Theorem 2.2. �

The following theorem shows the inversion of Theorem 2.2

Theorem 2.4. For m ≥ 0, we have

Blm(x|s) =
m∑

n=0

Bln,λ(x|s)λm−nS2(m, n).

Proof. By replacing t by
1

λ
(eλt − 1) in (2.3), we get

1

1 + (1 + t)s
(1 + t)x =

∞∑
n=0

Bln,λ(x|s)λ−n 1

n!(e
λt − 1)n

=
∞∑

n=0

Bln,λ(x|s)λ−n

∞∑
m=n

S2(m, n)λm tm

m!

=
∞∑

m=0

(
m∑

n=0

Bln,λ(x|s)λm−nS2(m, n)

)
tm

m! .

Now apply (1.3), we have the result. �

We list some properties on degenerate Boole polynomials.

Theorem 2.5. For n ≥ 0, we have

(i) Bln,λ(s(x + 1)|s) + Bln,λ(sx|s) =
n∑

m=0

(sx)mλn−mS1(n, m).

(ii) Bln,λ(s|s) + Bln,λ(s) = δ0,n.

Proof.

(i) From (2.3), we note that

∞∑
n=0

(
Bln,λ(s(x + 1)|s) + Bln,λ(sx|s)) tn

n!

= 1

1 + (1 + log(1 + λt)
1
λ )s

(1 + (1 + log(1 + λt)
1
λ )s)(1 + log(1 + λt)

1
λ )sx

= (1 + log(1 + λt)
1
λ )sx

=
∞∑

n=0

(
n∑

m=0

(sx)mλn−mS1(n, m)

)
tn

n! ,

now comparing the coefficients of the above equations, we have the result.
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(ii) Let us take x = 0 in (i), Bln,λ(s|s) + Bln,λ(s) = δ0,n, (n ≥ 0). �

For the distribution relation, we consider the following integral equation: d ∈ N with
d ≡ 1 (mod 2), we have∫

Zp

f (x + d)dµ−1(x) +
∫

Zp

f (x)dµ−1(x) = 2
d−1∑
l=0

(−1)lf (l). (2.5)

Theorem 2.6. For n ≥ 0, we have

Bln,λ(s) + Bln,λ(sd|s) = Bln,λ(s) +
n∑

k=0

k∑
l=0

(
n

k

)
(sd)lS1(k, l)λk−l

Bln−k,λ(s)

=
d−1∑
l=0

n∑
m=0

(−1)l(sl)mλn−mS1(n, m).

Proof. We apply f (x) = (1 + log(1 + λt)
1
λ )sx in (2.5), then we have∫

Zp

(1 + log(1 + λt)
1
λ )sxdµ−1(x)

= 2

1 + (1 + log(1 + λt)
1
λ )sd

d−1∑
l=0

(−1)l(1 + log(1 + λt)
1
λ )sl.

This is equivalent to

(1 + (1 + log(1 + λt)
1
λ )sd)

∫
Zp

(1 + log(1 + λt)
1
λ )sxdµ−1(x)

= 2
d−1∑
l=0

(−1)l(1 + log(1 + λt)
1
λ )sl.

(2.6)

Thus, by (2.6), we get
∞∑

n=0

(
2Bln,λ(s) +

n∑
k=0

k∑
l=0

(
n

k

)
(sd)lS1(k, l)λk−l2Bln−k,λ(s)

)
tn

n!

=
∞∑

n=0

(
2

d−1∑
l=0

(−1)l
n∑

m=0

(sl)mλn−mS1(n, m)

)
tn

n! .
(2.7)

By comparing the coefficients in (2.7), we get

Bln,λ(s) +
n∑

k=0

k∑
l=0

(
n

k

)
(sd)lS1(k, l)λk−l

Bln−k,λ(s)

=
d−1∑
l=0

n∑
m=0

(−1)l(sl)mλn−mS1(n, m).

�
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For k ∈ N, let us define the degenerate Boole polynomials of order k as follows:(
1

1 + (1 + log(1 + λt)
1
λ )s

)k (
1 + (1 + log(1 + λt)

1
λ )

)x =
∞∑

n=0

Bl
(k)
n,λ(x|s) t

n

n! . (2.8)

When x = 0, Bl
(k)
n,λ(s) = Bl

(k)
n,λ(0|s) are called the degenerate Boole numbers of

order k.
We apply Lemma 2.1 to multiple fermionic p-adic multiple integral on Zp × Zp ×

· · · × Zp, then we have the following.

Lemma 2.7. For m ≥ 0, we have

2k
Bl

(k)
m,λ(x|s) =

m∑
n=0

λm−nn!S1(m, n)

×
∫

Zp

· · ·
∫

Zp

(
sx1 + · · · + sxk + x

n

)
dµ−1(x1) · · · dµ−1(xk).

Proof. We note that∫
Zp

· · ·
∫

Zp

(1 + log(1 + λt)
1
λ )sx1+···+sxk+xdµ−1(x1) · · · dµ−1(xk)

=
(

2

1 + (1 + log(1 + λt)
1
λ )s

)k (
1 + log(1 + λt)

1
λ

)x

=
∞∑

n=0

2k
Bl

(k)
n,λ(x|s) t

n

n!

(2.9)

We observe that∫
Zp

· · ·
∫

Zp

(1 + log(1 + λt)
1
λ )sx1+···+sxk+xdµ−1(x1) · · · dµ−1(xk)

=
∞∑

n=0

∫
Zp

· · ·
∫

Zp

(
sx1 + · · · + sxk + x

n

)
dµ−1(x1) · · · dµ−1(xk)λ

−n(log(1 + λt))n

=
∞∑

n=0

∫
Zp

· · ·
∫

Zp

(
sx1 + · · · + sxk + x

n

)
dµ−1(x1) · · · dµ−1(xk)λ

−n

× n!
∞∑

m=n

S1(m, n)
λmtm

m!

=
∞∑

m=0

(
m∑

n=0

λm−nn!S1(m, n)

∫
Zp

· · ·
∫

Zp

(
sx1 + · · · + sxk + x

n

)
dµ−1(x1) · · · dµ−1(xk)

)
tm

m! .

(2.10)

By comparing the coefficients of (2.9) and (2.10), we have the result. �
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The higher-order Boole polynomials are given by the generating function to be∫
Zp

· · ·
∫

Zp

(1 + t)sx1+···+sxk+xdµ−1(x1) · · · dµ−1(xk) =
(

2

1 + (1 + t)s

)k

(1 + t)x

=
∞∑

n=0

2kBl(k)
n (x|s) t

n

n! .

Thus we have∫
Zp

· · ·
∫

Zp

(sx1 + · · · + sxk + x)ndµ−1(x1) · · · dµ−1(xk) = 2kBl(k)
n (x|s), (n ≥ 0).

(2.11)
Now we can see degenerate Boole polynomials via Boole polynomials.

Theorem 2.8. For m ≥ 0, we have

Bl
(k)
m,λ(x|s) =

m∑
n=0

λm−nS1(m, n)Bl(k)
n (x|s).

Proof. Apply (2.11) to Lemma 2.7. �

It is easy to show that∫
Zp

· · ·
∫

Zp

(sx1 + · · · + sxk + x)ndµ−1(x1) · · · dµ−1(xk) =
n∑

l=0

S1(n, l)E
(k)
l

(
x

s

)
sl,

(2.12)

where E
(k)
l (x) are the higher-order Euler polynomials which are given by the generating

function to be (
2

et + 1

)k

ext =
∞∑

n=0

E(k)
n (x)

tn

n! .

Therefore, by (2.11), (2.12) and Theorem 2.8, we obtain the following corollary.

Corollary 2.9. For m ≥ 0, we have

2k
Bl

(k)
m,λ(x|s) =

m∑
n=0

n∑
l=0

λm−nS1(m, n)S1(n, l)E
(k)
l

(
x

s

)
sl.

Now we study some properties of higher order degenerate Boole numbers.

Theorem 2.10.
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For m ≥ 0, we have

(i) Bl
(k)
n,λ(s) =

∑
l1+···+lk=n

(
n

l1, · · · , lk

)
Bll1,λ(s) · · · Bllk,λ(s).

(ii) Bl
(k)
m,λ(s) =

m∑
n=0

(−1)nλm−n(k + n − 1)nS1(m, n).

Proof.

(i) From (2.8), we easily note that

∞∑
n=0

Bl
(k)
n,λ(s)

tn

n! =
(

1

1 + (1 + log(1 + λt)
1
λ )s

)k

=
∞∑

n=0

∑
l1+···+lk=n

(
n

l1, · · · , lk

)
Bll1,λ(s) · · · Bllk,λ(s)

tn

n! .

(ii)

∞∑
n=0

Bl
(k)
n,λ(s)

tn

n! =
(

1

1 + (1 + log(1 + λt)
1
λ )s

)k

=
∞∑

n=0

(−1)nλ−n

(
k + n − 1

n

)
(log(1 + λt))n

=
∞∑

n=0

(−1)nλ−n(k + n − 1)n

∞∑
m=n

S1(m, n)λm tm

m!

=
∞∑

m=0

(
m∑

n=0

(−1)nλm−n(k + n − 1)nS1(m, n)

)
tm

m! .

�

The following theorem shows the inversion of Theorem 2.4.

Theorem 2.11. For m ≥ 0, we have

Bl(k)
m (x|s) =

m∑
n=0

Bl
(k)
n,λ(x|s)λm−nS2(m, n).
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Proof. By replacing t by
1

λ
(eλt − 1) in (2.9), we get

∞∑
m=0

2k
Bl

(k)
m,λ(s)

tm

m! =
∫

Zp

· · ·
∫

Zp

(1 + t)sx1+···+sxk+xdµ−1(x1) · · · dµ−1(xk)

=
∞∑

n=0

2k
Bl

(k)
n,λ(x|s) 1

n!
(

1

λ
(eλt − 1)

)n

=
∞∑

n=0

2k
Bl

(k)
n,λ(x|s)

∞∑
m=n

λm−nS2(m, n)
tm

m!

=
∞∑

m=0

(
m∑

n=0

2k
Bl

(k)
n,λ(x|s)λm−nS2(m, n)

)
tm

m! .

�

Now, we consider the degenerate Boole polynomials of the second kind with order
k as follows:∫

Zp

· · ·
∫

Zp

(1 + log(1 + λt)
1
λ )−sx1−x2−···−sxk+xdµ−1(x1) · · · dµ−1(xk)

=
(

2

1 + (1 + log(1 + λt)
1
λ )s

)k (
1 + log(1 + λt)

1
λ

)sk+x =
∞∑

n=0

2k
B̂l

(k)

n,λ(x|s).
(2.13)

In the following, we can see the relation higher order degenerate Boole polynomials
of the second kind to higher order degenerate Boole numbers or polynomials.

Theorem 2.12. For n ≥ 0, we have

B̂l
(k)

n,λ(x|s) =
n∑

m=0

m∑
l=0

(
n

m

)(
sk + x

l

)
l!λm−lS1(m, l)Bl

(k)
n−m,λ(s)

=
n∑

m=0

m∑
l=0

(
n

m

)(
x

l

)
l!λm−lS1(m, l)Bl

(k)
n−m,λ(k|s).

Proof. From (2.13) the definition of higher order degenerate Boole polynomials of the
second kind, we can interpretate following two ways:

∞∑
n=0

2k
B̂l

(k)

n,λ(x|s) t
n

n! =
( ∞∑

m=0

2k
Bl

(k)
m,λ(s)

tm

m!

) (
1 + log(1 + λt)

1
λ

)sk+x

=
∞∑

n=0

(
n∑

k=0

k∑
l=0

(
n

k

)(
sk + x

l

)
l!λk−lS1(k, l)2k

Bl
(k)
n−k,λ(s)

)
tn

n! .

�
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Now we give the relation higher order degenerate Boole polynomials of the second
kind to higher order Euler polynomials as follows:

Theorem 2.13. For m ≥ 0, we have

2k
B̂l

(k)

m,λ(x|s) =
m∑

n=0

n∑
l=0

λm−nS1(m, n)S1(n, l)E
(k)
l (x + sk).

Proof. We observe that

∞∑
m=0

2k
Bl

(k)
m,λ(x|s)

=
∫

Zp

· · ·
∫

Zp

(1 + log(1 + λt)
1
λ )−sx1−sx2−···−sxk+xdµ−1(x1) · · · dµ−1(xk)

=
∞∑

n=0

∫
Zp

· · ·
∫

Zp

(−sx1 − sx2 − · · · − sxk + x

n

)
dµ−1(x1) · · · dµ−1(xk)

× λ−n(log(1 + λt))n

=
∞∑

n=0

∫
Zp

· · ·
∫

Zp

(−sx1 − sx2 − · · · − sxk + x)ndµ−1(x1) · · · dµ−1(xk)

× λ−n

∞∑
m=n

S1(m, n)
λmtm

m!

=
∞∑

m=0

( m∑
n=0

λm−nS1(m, n)

×
∫

Zp

· · ·
∫

Zp

(−sx1 − sx2 − · · · − sxk + x)ndµ−1(x1) · · · dµ−1(xk)

)
tm

m! .

We observe that∫
Zp

· · ·
∫

Zp

(−sx1 − sx2 − · · · − sxk + x)ndµ−1(x1) · · · dµ−1(xk)

=
n∑

l=0

S1(n, l)

∫
Zp

· · ·
∫

Zp

(−sx1 − sx2 − · · · − sxk + x)ldµ−1(x1) · · · dµ−1(xk)

=
n∑

l=0

(−s)lS1(n, l)

∫
Zp

· · ·
∫

Zp

(
x1 + x2 + · · · + xk − x

s

)l

dµ−1(x1) · · · dµ−1(xk)

=
n∑

l=0

(−s)lS1(n, l)E
(k)
l

(
−x

s

)
=

n∑
l=0

S1(n, l)E
(k)
l (x + sk).

�
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