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Abstract

Let G be a simple graph of order n. The path cover number µ(G) is defined to be
the minimum number of vertex disjoint paths required to cover the vertices of G.
I count the minimum number of vertex disjoint paths µ(T ) required to cover the
vertices of a tree T that corresponds to a simple assembly graph �w. A relationship
between µ(T ) and the assembly number of �w, An(�w), is found and an upper
bound for µ(T ) is also proved.
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1. Introduction

A graph G = (V , E) is a structure consisting of a finite set V of vertices and a finite set
E of edges where the two endpoints of an edge in E are vertices in V . The endpoints of
every edge is either a pair of vertices or a single vertex. An edge joining a vertex to itself
is called a loop. If e is an edge and v is an end point of e, then e is said to be incident to
v. The number of edges incident to a vertex v is called the degree of v.

A rigid vertex is a vertex of degree 4 for which a cyclic order of edges is specified.
(v, (e1, e2, e3, e4)

cyc), e1 with e3 and e2 with e4 are not neighbors with respect to vertex v.
A finite connected graph where all vertices are rigid vertices and have degree 1 or 4

is called an assembly graph. A vertex of degree 1 is called an end point. The number
of 4-valent vertices in an assembly graph �w is called the size of �w and is denoted by
|�w| [3, 6].



2 Tilahun A. Muche

Figure 1: rigid vertex (V , (e1, e2, e3, e4)
cyc).

Figure 2: Assembly graph with 6 rigid vertices and 2 end-points.
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2. Trees And Hereditary Graphs

Definition 2.1. A polygonal path is a path γ = v1e1v2e2 · · · vm−1em−1vmemvm+1 in
which every pair of consecutive edges ei and ei+1 are neighbors with respect to their
common incident vertex for each i ∈ {1, 2, . . . , m − 1}.
Note: γ = v1e1v2e2 · · · vm−1em−1vmemvm+1 = (v1, v2, · · · , vm−1, vm, vm+1).

Definition 2.2. A set of pairwise disjoint polygonal paths {γ1, γ2, . . . , γk} in a simple
assembly graph � is called Hamiltonian if their union contains all 4-valent vertices of
�. A polygonal path γ is called Hamiltonian if the set {γ } is Hamiltonian [1, 3].

Example 2.3. In Figure 3, an assembly graph is given with Hamiltonian set of polygonal
path γ = {γ1}.

Figure 3: Hamiltonian set of polygonal path γ = {γ1}.
γ1 = 4e65e116e93e32e11 = (4, 5, 6, 3, 2, 1).

Definition 2.4. Let � be an assembly graph. The assembly number of �, denoted
by An(�), is An(�) = min{ k | there exists a Hamiltonian set of polygonal paths
{γ1, . . . , γk} in �}.

The Hamiltonian set of polygonal paths that achieve the An(�) is called a minimum
Hamiltonian set of polygonal paths.

Example 2.5. Consider assembly graphs depicted at Figure 3. The assembly graph has
a minimum Hamiltonian set of polygonal path {γ1} where γ1 = 4e65e116e93e32e11 =
(4, 5, 6, 3, 2, 1).
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Given a simple assembly graph � with two endpoints, choose one of them to be
initial (i) and the other to be terminal (t). We call � a directed simple assembly graph
with direction from i to t . We consider the transverse path of a directed simple assembly
graph as a path starting at the vertex i and terminating at the vertex t [2, 6].

Definition 2.6. The composition �1 ◦�2 of two directed simple assembly graphs �1 and
�2 is the directed simple assembly graph obtained by identifying the terminal vertex of
�1 with the initial vertex of �2.

Note that the initial vertex of �1 ◦ �2 is the initial vertex of �1 and terminal vertex of
�1 ◦�2 is the terminal vertex of �2. If the double-occurrence words u and v with disjoint
domains correspond to the directed simple assembly graphs �1 and �2, respectively, then
the concatenation uv corresponds to the composition �1 ◦ �2. In general, �1 ◦ �2 is not
isomorphic to �2 ◦ �1; for example, take �1 represented by pp and �2 by rrsggs.

Lemma 2.7. [1] For each pair of directed simple assembly graphs �1 and �2, one of
the following equalities hold:

1. An(�1 ◦ �2) = An(�1) + An(�2) or

2. An(�1 ◦ �2) = An(�1) + An(�2) − 1.

That is An(�1) + An(�2) − 1 ≤ An(�1 ◦ �2) ≤ An(�1) + An(�2).

Figure 4: Composition of two simple assembly graphs.
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3. Edge-unique simple assembly graphs and hereditary graphs

In this section, we define an edge-unique simple assembly graph �w and a hereditary
graphD�w that corresponds to an edge-unique simple assembly graph. We also introduce
a tree representation of a hereditary graph D�w and count the minimum number of
Hamiltonian set of paths for a hereditary graph D�w to find an assembly number of an
edge-unique simple assembly graph �w.

Definition 3.1. Let �w be a simple assembly graph with two end points that corresponds
to an assembly word w = a1a2a3 · · · a2n with |�w| = n. We denote by D�w the graph
with vertices V (�w) and a sequence of arcs ei = (ai, ai+1) in the order of symbols in
w such that ai �= ai+1. The arc set is defined by E(D�w) = {(a, b) | distinct adjacent
letters a, b ∈ w }.

For instance, for the simple assembly graph �w that corresponds to the double-
occurrence word [4] w = 122134435665 depicted in Figure 5(a), the graph D�w is
depicted in Figure 5(b).

Figure 5: (a) Simple assembly graph �w that corresponds to a double-occurrence word
w = 122134435665 and (b), the hereditary graph D�w that corresponds to �w.

Definition 3.2. We call two edges of a simple assembly graph parallel if their end
vertices are the same.

Definition 3.3. A simple assembly graph �w is called edge-unique if every pair of
adjacent vertices are either a part of a unique cycle of size 2 or an edge.

Definition 3.4. We call a graph D�w hereditary if it corresponds to an edge-unique
simple assembly graph �w.
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Remark 3.5. If a pair C1 and C2 of cycles in D�w intersect at two vertices x and y then
the induced subgraph (V (C1) ∪ V (C2)) contains two disjoint paths between x and y,
and if D�w is hereditary graph, or �w is edge-unique, then each pair C1, C2 of cycles in
D�w, or �w are such that (V (C1) ∩ V (C2)) is at most two vertices.

Figure 6: A simple assembly graph �w with w = 1123324456657887 which corresponds
to D�w depicted in Figure 7 (a).

Remark 3.6. The set of cycles S = {S1, S2, . . . , St} of a hereditary graph D�w that
corresponds to an edge-unique assembly graph �w is the set of cycles of size 2. A
hereditary graph D�w is acyclic if it does not contain a cycle. We denote by D�w \ S

a subgraph of D�w obtained by removing only a single arc of each cycle Si ∈ S. The
subgraph D�w \ S is a tree, see Figure 7(b).

Example 3.7. Consider a double-occurrence word w = 1123324456657887. An edge-
unique simple assembly graph �w and the corresponding hereditary graph D�w are
depicted in Figure 6 and Figure 7(a), respectively. Consider the Hamiltonian set of
polygonal paths γ = {γ1, γ2, γ3} for �w with γ1 = 1e22e53, γ2 = 4e85e116, γ3 = 7e158,
and the Hamiltonian set of paths β = {β1, β2, β3} for hereditary graph D�w from a
tree D�w \ S with β1 = 1e22e33, β2 = 4e85e96, and β3 = 7e138. Since there is no
Hamiltonian set of polygonal paths with cardinality 1 or 2 , γ is the minimum Hamiltonian
set of polygonal paths for �w, and β is the minimum Hamiltonian set of paths for D�w

for there is no Hamiltonian set of paths with cardinality less than the cardinality of β.
The cardinality of γ equals the cardinality of β.

If S1 is a cycle for a hereditary graph D�w with arcs e = (u, v) and e′ = (v, u),
then we say e is parallel to e′. We denote by Hn(D�w \ S) the minimum cardinality of
a Hamiltonian set of paths for D�w.

Theorem 3.8. For an edge-unique simple assembly graph �w, An(�w) = Hn(D�w \ S).
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Figure 7: (a) Set of cycles S = {S1, S2, S3} for hereditary graph D�w corresponding to
a simple assembly graph �w depicted in Figure 6 and (b), a tree D�w \ S.

Proof. Let �w be an edge-unique simple assembly graph. Suppose An(�w) = k obtained
by a minimum Hamiltonian set of polygonal paths γ = {γ1, γ2, . . . , γk}, and β =
{β1, β2, . . . , βs} is a minimum Hamiltonian set of paths for D�w. We show that k = s.

Let S be the set of cycles in D�w. From the definition of hereditary graph D�w, if
two vertices are adjacent then they are either on a cycle of size 2 or it is an edge that
does not belong to a cycle. For every pair of vertices u, v ∈ V (�w) either e = (u, v)

is a unique edge between u and v or x = (u, v) and e′ = (v, u) are parallel edges. In
the former case e ∈ D�w \ S and in the later case edge e or edge e′ is in D�w \ S.
Let γ1 = a1e1a2e2 . . . at−1et−1at . Then ai and ai+1 are vertices of two loops, or ai is a
vertex of a loop and ai+1 is a vertex of a 2 cycle, or ai and ai+1 are parallel edges. In
the first two cases edge ei = aiai+1 is a unique edge in �w and it is also in D�w \ S.
In the latter case edges ei = aiai+1 and e′

i = ai+1ai are edges of a 2 cycle in D�w.
This implies for each edge in a polygonal path γ there is a corresponding edge in D�w.
Hence every Hamiltonian set of polygonal paths in �w is also Hamiltonian set of paths
in D�w \ S. This implies k ≤ s. (*)

For each 1 ≤ i ≤ s, set βi = ai
1e

i
1a

i
2e

i
2 . . . ai

ti
ei
ti
ai

ti+1 with l(βi) = ti + 1. Without
loss of generality let β = A ∪ B, A ∩ B = ∅ where A = {β1, β2, . . . , βm} and B =
{βm+1, βm+2, . . . , βs} such that βi ∈ A has two end-points and βj ∈ B for all j is just
a vertex. Clearly the β ′

j s are polygonal paths, see Figure 8 and Figure 9.
Consider βl ∈ A. There is a set S = {S1, S2, . . . , Sr} of cycles for hereditary

graph D�w with Sp = (ap, ep, ap+1, e
′
p) for each 1 ≤ p ≤ r such that either edge

x = apepap+1, or edge y = ape′
pap+1 is in a Hamiltonian path βl , see Figure 7. The

edges x and y are parallel. This implies there is a corresponding polygonal path in
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Figure 8: Subgraphs of edge-unique simple assembly graphs.

�w such that if z and x are consecutive edges in βl but not neighbors in �w then the
corresponding edges will be z and y which are neighboring edges in �w. So for each
pair of adjacent edges but non-neighboring in the Hamiltonian path βl , we can choose a
corresponding neighboring edge in Sp so that βl is a polygonal path. Consequently A is
a set of polygonal paths.This implies s ≤ k. (**)

From (*) and (**) we have k = s. �

Definition 3.9. Two 3-valent vertices v and u are called 2-nhbd if there is no a 3-valent
vertex between v and u but at least one 2-valent vertex t exists so that β = (v, t, u) is a
path. If neither a 3-valent nor a 2-valent vertex exists between v and u but χ = (v, u) is
a path then v and u are called 0-nhbd or adjacent .

Example 3.10. From Figure 6, vertices labeled 2 and 5 are 2-nhbd vertices because a
vertex labelled 4 is a 2-valent vertex and β = (2, 4, 5) is a path. Three-valent vertices
labeled 2 and 7 are not 2-nhbd and vertices labelled 5 and 7 are adjacent but not 2-nhbd.

Notation: T = D�w \ S for the rest of the sections represents a tree defined above.

Definition 3.11. A zero vertex p between two vertices u, v ∈ V (T ) is a point on the
edge e = uv ∈ E(T ) and p �∈ V (T ).
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Figure 9: Hereditary graphs D�w correspond to Figures depicted in 8.

Figure 10: Subgraphs D�w \ S for hereditary graphs D�w depicted in Figure 9.

Definition 3.12. Composition of Trees Let T be a tree and v1 and v2 ∈ V (T ). Let p

be a zero vertex on e = v1v2 ∈ E(T ) and T1, T2 are subgraphs of T such that v1 ∈ T1,
v2 ∈ T2. We define the composition of T1 and T2 by T3 = T1 ◦p T2.

Note: |T3| = |T1| + |T2|.
Definition 3.13. LetSn = {w : w = a1a2 · · · a2n, n ≥ 1, u = aiai is not a subword of w}.
We call Sn the set of loop free assembly words.

Theorem 3.14. The number of loop free assembly words |Sn| is

|Sn| = (2n − 1)!! −
n∑

k=1

(−1)k
(

n

k

)
2k−n(2n − k)!.
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Proof. The set of assembly words on n letters is (2n − 1)!!. Let Ai = { wi | wi is a
double-occurrence word formed with the two letters xi are adjacent}.

Thus, the desired number

|Sn| = (2n − 1)!! − |A1 ∪ A2 ∪ · · · ∪ An| ((*))

We apply the Principle of Inclusion and Exclusion to find the cardinality of |A1 ∪ A2 ∪
· · · ∪ An|.

Suppose a word w ∈ (Ai1 ∩Ai2 ∩· · ·∩Aik). Then w ∈ Aij for each j ∈ {1, 2, . . . , k}
and thus the lettersxi1xi1; xi2xi2; · · · ; xikxik appearing as a subword. The words for which
these k pairs of letters are adjacent are obtained in the following manner:

Form all the words having (2n − k) letters taken from an alphabet obtained from
alphabet � by suppressing one copy of each letter from xi1, xi2, . . . , xik . Then in each
word thus formed, repeat the letters xi1, xi2, . . . , xik by adding the letters xij immediately
after itself for j ∈ {1, 2, . . . , k}. It follows that

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik | = (2n − k)!
(2!)(n−k)

= 2k(2n − k)!
2n

((**))

Since the indices i1, i2, . . . , ik satisfy 1 ≤ i1 < · · · < ik ≤ n, they can be selected in(
n

k

)
ways and hence the total number of loop free words can be written using (∗) and

(∗∗),

|Sn| = (2n − 1)!! −
(

n

1

)
2(2n − 1)!

2n
+

(
n

2

)
22(2n − 2)!

2n
− · · · + (−1)n2nn!

2n

= (2n − 1)!! −
n∑

k=1

(
n

k

)
(−1)k2k(2n − k)!

2n
.

�

4. Composition of paths and path cover of a graph

Let D�w be a hereditary graph that corresponds to a simple assembly graph �w. If
v is any vertex of the tree T = D�w \ S then 1 ≤ deg(v) ≤ 3. Call a pair of
vertices {a, r} ⊆ V (T ) or {r, s} ⊆ V (T ) with deg(a) = deg(r) = deg(s) = 1
adjacent if there are at most two 2-nhbd vertices p, v ∈ V (T ) between a and r or
between r and s such that either β = (a, di, . . . , di+t , p, di+t+2, . . . , di+t+m, r) or
χ = (r, di+t+m, . . . , di+t+2, p, dj , . . . dj+m, v, dj+m+2,

. . . , dj+m+f , s) is a path inT for somedi, . . . , di+t+m, . . . , di+m+f ∈ V (T ), {f, i, j,m, t} ⊆
N and deg(di) = · · · = deg(di+t+m) = · · · = deg(j + m + f ) = 2.
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Figure 11: Loop saturated graph(top) and its tree representation (bottom).

Example 4.1. See Figure 12.

Let G be a graph. A path φ in G is an ordered sequence φ = (a1, a2 . . . , an)

of distinct points, where if n ≥ 2, ai is adjacent to ai+1 for 1 ≤ i ≤ n − 1. A path
φ = (a1, a2, . . . , an) is the same path as β = (an, an−1, . . . , a1). If φ and β are paths, by
φ◦β we shall mean that one end-point, a of φ, is adjacent to one end-point, b of β, and that
φ◦β is formed by joining a to b. More specifically we may write φa◦bβ to specify which
end-point of φ is joined to which end-point of β. Also (a1, a2, . . . , an)◦ (b1, b2, . . . , bn)

= (a1, a2, . . . , an, b1, b2, . . . , bn) where an must be adjacent to b1 [5, 8, 9].
A path-cover of G is a collection � of vertex-disjoint induced paths such that every
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Figure 12: Simple assembly graph (Top) and its tree representation (bottom).

vertex of G lies on some path in �. The path-covering number, denoted by µ(G), of G,
is defined by:

µ(G) = min{|�| : � is a path − cover of G}
Example 4.2. Consider the tree T , Figure 13 (top), and set A = {φ1, φ2, φ3, φ4} where
φ1 = (a1, c1, a2), φ2 = (b2), φ3 = (a3, c2, b2, c3, a4), φ4 = (a5). Set A is a collection
of vertex disjoint paths that contains every vertex of T ; moreover, it is a minimum path-
cover of T as there is no a set of at most three paths that cover all vertices of T . Hence
µ(T ) = 4.

A minimum path-cover need not be unique as B = {φ1, φ2, φ3, φ4} where φ1 =
(a1, c1, b1, c2, a3), φ2 = (a2), φ3 = (b2), φ4 = (a4, c3, a5) is also a minimum path-
cover of T , Figure 13 (bottom).
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Figure 13: D�w \ S corresponds to a loop saturated assembly graph �w depicted at
Figure 12 and set of path covers.

Example 4.3. Consider β1 = (a2, c1, b1, c2) and β2 = (b2, c3, a4). Then β1 ◦ β2 =
β1c2 ◦ b2β2 = β3 = (a2, c1, b1, c2, b2, c3, a4).

Theorem 4.4. Let T be a tree such that T = T1 ◦p T2. Then

1. µ(T ) = µ(T1) + µ(T2) or

2. µ(T ) = µ(T1) + µ(T2) − 1, i.e., µ(T1) + µ(T2) − 1 ≤ µ(T ) ≤ µ(T1) + µ(T2).

Proof. The proof follows from Theorem 2.7 and Theorem 3.8. �

Lemma 4.5. Let T be a tree that corresponds to an edge-unique simple assembly graph
�w where |A2| = 0. Then |A1| = |A3| − 2.

Proof. See the partition T = A1∪A2∪A3 below. Let |T | = n. Then n = |A1|+|A3|.(*)
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Because
n∑

i=1

di = 2n − 2 where (d1, d2, . . . , dn) is a degree sequence of a tree T ,

∑
v∈A1

deg(v) +
∑
u∈A3

deg(u) = 2n − 2. (**)

This implies 3|A1| + |A3| = 2n − 2. From (*) and (**), |A1| = n − 2

2
and |A3| =

n + 2

2
. Hence, |A1| = |A3| − 2. �

Theorem 4.6. Let T be a tree of order n ≥ 2. Then⌊
m + 1

2

⌋
≤ µ(T ) ≤ (m − 1)

where m is the number of pedant vertices in T .

Proof. Let T = (V , E) and partition V = A1 ∪ A2 ∪ A3 where

A1 = {v ∈ V : deg(v) = 3}
A2 = {u ∈ V : deg(u) = 2}
A3 = {w ∈ V : deg(w) = 1}

Set A1 = B1∪B2 with B1 = {(v1, v2) : v1 and v2 are 2-nhbd vertices} and B2 = A1−B1.
If A1 = ∅ then T is a path with two pedants,i.e., m = 2 and µ(T ) = m − 1 = 1.
Suppose A1 �= ∅. (∃v) ∈ A1. Pick this v ∈ A1. This implies adjacent vertices r, s ∈ A3
exist such that either β = β1◦β2 = β1k◦vβ2 where β1 = (r, . . . , k) and β2 = (v, . . . , s)

or χ = χ1 ◦ χ2 = χ1u ◦ pχ2 where χ1 = (r, . . . , v, . . . , u) and χ2 = (p, . . . , s) are
paths in T for some k, u ∈ A2 and p ∈ A1. See Figure 12. Consequently, for each
v ∈ A1 we can choose a unique t ∈ A3 such that η = (t, . . . , v) is a path in T where
t ∈ {r, s} ⊆ A3 and |η| ≥ 2. (	)

Let � = {Fi : Fi = {φi1, φi2, . . . , φiti }, i, ti ∈ N} where Fi is a path cover of T .

1. Suppose A2 = ∅. Then |T | = |A1| + |A3| because |A2| = 0, and (|A1|, |A3|) =
(m − 2, m), Lemma 4.5 and (	). This implies each φij ∈ Fi ∈ � for each i and
1 ≤ j ≤ ti has size 1 ≤ |φij | ≤ m and

min{|Fi | : Fi ∈ �} = µ(T ) ≥



m

2
, if m is even

m + 1

2
, if m is odd

⇒ µ(T ) ≥
⌊

m + 1

2

⌋
for any m.

Because there is no a path φ of T that includes at least three pedant vertices,
|Fi | is minimum if each φij ∈ Fi ∈ � but at most one contains two adjacent
vertices a, b ∈ A3, and if any two pair of vertices v1, v2 ∈ A1 are 2-nhbd that is
|A1| = |B1| + 1 then µ(T ) is maximum .
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2. Suppose A2 �= ∅. First count the number of all possible disjoint paths φij each
contains two adjacent pedants and set Fi , second because |A2| �= 0, count the
number of disjoint paths that contains the set of vertices u ∈ A2 which are not
covered by the former set of paths Fi for some i.

⇒ min{|Fi | : Fi ∈ �} = µ(T ) ≤




First︷︸︸︷
m

2
+

Second︷ ︸︸ ︷
m

2
− 1 , if m is even

First︷ ︸︸ ︷
m − 1

2
+

Second︷ ︸︸ ︷
m − 1

2
, if m is odd

⇒ µ(T ) ≤ (m − 1) f or any m.

From 1 and 2, ⌊
m + 1

2

⌋
≤ µ(T ) ≤ (m − 1).

�

Lemma 4.7. If T = D�w \ S correspondence to a loop saturated graph �w then µ(T )

attains an upper bound.

Proof. Suppose T correspondence to a loop saturated graph �w. Then each pair of
vertices vi, vi+1 ∈ A1 labelled in the order are 2-nhbd vertices. Extending Lemma 4.5
to �w results the same relation |A3| = |A1|+2 and |A2| = |A1|−1. See also Figure 11.{

3An(�w) − 2 = |�w|, f rom [6, 7] (	)

µ(T ) = An(�w), T heorem 3.8 (		)

From |T | = |�w|, (	) and (		), |A3| = |A1| + 2, |A2| = |A1| − 1 and |A3| = m, we
have 3µ(T ) − 2 = |T | = |A1| + |A2| + |A3| = (m − 2) + (m − 3) + m = 3m − 5.
Hence, µ(T ) = m − 1. �

5. Conclusion

Regarding future work, the goal is of course to extend my work to find digraph repre-
sentation of any simple assembly graph and find relationship between minimum path
cover of a digraph and minimum Hamiltonian set of polygonal paths. It would also be
of interest to consider a corresponding relationship with permutation graphs.
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