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Abstract

Let G be a simple graph of order n. The path cover number ©(G) is defined to be
the minimum number of vertex disjoint paths required to cover the vertices of G.
I count the minimum number of vertex disjoint paths @ (7") required to cover the
vertices of a tree T that corresponds to a simple assembly graph I',. A relationship
between ©«(7T) and the assembly number of I'y,, An(I",), is found and an upper
bound for u(T) is also proved.
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1. Introduction

A graph G = (V, E) is a structure consisting of a finite set V of vertices and a finite set
E of edges where the two endpoints of an edge in E are vertices in V. The endpoints of
every edge is either a pair of vertices or a single vertex. An edge joining a vertex to itself
is called a loop. If e is an edge and v is an end point of e, then e is said to be incident to
v. The number of edges incident to a vertex v is called the degree of v.

A rigid vertex is a vertex of degree 4 for which a cyclic order of edges is specified.
(v, (e1, 2, €3, e4)), e] with ez and e, with e4 are not neighbors with respect to vertex v.

A finite connected graph where all vertices are rigid vertices and have degree 1 or 4
is called an assembly graph. A vertex of degree 1 is called an end point. The number
of 4-valent vertices in an assembly graph I'y, is called the size of I'}, and is denoted by
ITw| [3, 6].
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Figure 1: rigid vertex (V, (ey, ez, €3, €4)°).

Figure 2: Assembly graph with 6 rigid vertices and 2 end-points.
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2. Trees And Hereditary Graphs

Definition 2.1. A polygonal path is a path y = viejves -« Vpy—1€m—1Vm€m U1 1IN
which every pair of consecutive edges e; and e;4; are neighbors with respect to their

common incident vertex for eachi € {1,2,...,m — 1}.
Note: y = viejvaes - Up—1€m—1Vm€mVm+1 = (V1, V2, Um—15 Um> Um+1)-
Definition 2.2. A set of pairwise disjoint polygonal paths {y1, 2, ..., ¥k} in a simple

assembly graph I' is called Hamiltonian if their union contains all 4-valent vertices of
I". A polygonal path y is called Hamiltonian if the set {y } is Hamiltonian [1, 3].

Example 2.3. In Figure 3, an assembly graph is given with Hamiltonian set of polygonal
path y = {y1}.
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Figure 3: Hamiltonian set of polygonal path y = {y}.
y1 = 4egSeq16e93e32e11 = (4,5,6,3,2,1).
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Definition 2.4. Let I be an assembly graph. The assembly number of ', denoted
by An(I"), is An(I') = min{ k | there exists a Hamiltonian set of polygonal paths

{yvi,....,}inT}.

The Hamiltonian set of polygonal paths that achieve the An(I") is called a minimum
Hamiltonian set of polygonal paths.

Example 2.5. Consider assembly graphs depicted at Figure 3. The assembly graph has
a minimum Hamiltonian set of polygonal path {y;} where y; = 4egSe;16e93e32¢11 =
(4,5,6,3,2,1).
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Given a simple assembly graph I' with two endpoints, choose one of them to be
initial (i) and the other to be terminal (¢#). We call I' a directed simple assembly graph
with direction from i to . We consider the transverse path of a directed simple assembly
graph as a path starting at the vertex i and terminating at the vertex ¢ [2, 6].

Definition 2.6. The composition I'1 o I'; of two directed simple assembly graphs I'; and
I, is the directed simple assembly graph obtained by identifying the terminal vertex of
I'; with the initial vertex of I'5.

Note that the initial vertex of I'; o I'; is the initial vertex of I'y and terminal vertex of
I'1 o'y is the terminal vertex of I',. If the double-occurrence words u and v with disjoint
domains correspond to the directed simple assembly graphs I"1 and I',, respectively, then
the concatenation uv corresponds to the composition I'; o I'>. In general, I'1 o I'; is not
isomorphic to I'; o I'1; for example, take 'y represented by pp and I'; by rrsggs.

Lemma 2.7. [1] For each pair of directed simple assembly graphs I'y and I';, one of
the following equalities hold:

1. An(I"'y oI'3) = An(I"y) + An(I"2) or

2. An(I'y oI'y) = An(T"}) + An(I") — 1.
That is An(I"'y) + An(I'5) — 1 < An(I";j o I') < An(I";) + An(I").
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Figure 4: Composition of two simple assembly graphs.
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3. Edge-unique simple assembly graphs and hereditary graphs

In this section, we define an edge-unique simple assembly graph I', and a hereditary
graph DI', that corresponds to an edge-unique simple assembly graph. We also introduce
a tree representation of a hereditary graph DIy, and count the minimum number of
Hamiltonian set of paths for a hereditary graph DI',, to find an assembly number of an
edge-unique simple assembly graph I',,.

Definition 3.1. Let ', be a simple assembly graph with two end points that corresponds
to an assembly word w = ajazaz - - - ap, with |I'y| = n. We denote by DI',, the graph
with vertices V (I'y,) and a sequence of arcs e; = (a;, a;j+1) in the order of symbols in
w such that a; # a;+1. The arc set is defined by E(DI'y,) = {(a, b) | distinct adjacent
letters a, b € w }.

For instance, for the simple assembly graph I',, that corresponds to the double-
occurrence word [4] w = 122134435665 depicted in Figure 5(a), the graph DIy, is
depicted in Figure 5(b).

(b)

Figure 5: (a) Simple assembly graph I'y, that corresponds to a double-occurrence word
w = 122134435665 and (b), the hereditary graph DI, that corresponds to I'y,.

Definition 3.2. We call two edges of a simple assembly graph parallel if their end
vertices are the same.

Definition 3.3. A simple assembly graph I'y, is called edge-unique if every pair of
adjacent vertices are either a part of a unique cycle of size 2 or an edge.

Definition 3.4. We call a graph DI'y, hereditary if it corresponds to an edge-unique
simple assembly graph I'y,.
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Remark 3.5. If a pair C| and C; of cycles in DI'y, intersect at two vertices x and y then
the induced subgraph (V(C1) U V(C3)) contains two disjoint paths between x and y,
and if DTI',, is hereditary graph, or I';, is edge-unique, then each pair C;, C; of cycles in
DTr,, or I'y, are such that (V(C;) N V(Cy)) is at most two vertices.

€0
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Figure 6: A simple assembly graph I', with w = 1123324456657887 which corresponds
to DT",, depicted in Figure 7 (a).

Remark 3.6. The set of cycles S = {S1, $2, ..., S;} of a hereditary graph DI",, that
corresponds to an edge-unique assembly graph I'y, is the set of cycles of size 2. A
hereditary graph DIy, is acyclic if it does not contain a cycle. We denote by DI'y, \ S
a subgraph of DI",, obtained by removing only a single arc of each cycle S; € S. The
subgraph DI'y, \ S is a tree, see Figure 7(b).

Example 3.7. Consider a double-occurrence word w = 1123324456657887. An edge-
unique simple assembly graph Iy, and the corresponding hereditary graph DI, are
depicted in Figure 6 and Figure 7(a), respectively. Consider the Hamiltonian set of
polygonal paths y = {y1, y», y3} for 'y, with y; = lesx2e53, y» = 4egSeq16, y3 = Teqs58,
and the Hamiltonian set of paths 8 = {1, B2, B3} for hereditary graph DI"}, from a
tree DI"y, \ S with 81 = 1e32e33, B2 = 4egSe96, and B3 = 7e138. Since there is no
Hamiltonian set of polygonal paths with cardinality 1 or 2, y is the minimum Hamiltonian
set of polygonal paths for I',, and B is the minimum Hamiltonian set of paths for DI",,
for there is no Hamiltonian set of paths with cardinality less than the cardinality of B.
The cardinality of y equals the cardinality of S.

If S; is a cycle for a hereditary graph DI',, with arcs e = (1, v) and €' = (v, u),
then we say e is parallel to ¢’. We denote by Hn(DI'y, \ S) the minimum cardinality of
a Hamiltonian set of paths for DI",.

Theorem 3.8. For an edge-unique simple assembly graph I",, An(I"y,) = Hn(DI'y, \ S).
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Figure 7: (a) Set of cycles S = {S1, S2, S3} for hereditary graph DI', corresponding to
a simple assembly graph I',, depicted in Figure 6 and (b), a tree DI'y, \ S.

Proof. LetI',, be an edge-unique simple assembly graph. Suppose An(I",,) = k obtained
by a minimum Hamiltonian set of polygonal paths vy = {y1,y2,..., %}, and B =
{B1, B2, ..., Bs} i1s a minimum Hamiltonian set of paths for DI",,. We show that k = s.

Let S be the set of cycles in DI',. From the definition of hereditary graph DT, if
two vertices are adjacent then they are either on a cycle of size 2 or it is an edge that
does not belong to a cycle. For every pair of vertices u, v € V(I'y) either e = (u, v)
is a unique edge between u and v or x = (u, v) and ¢’ = (v, u) are parallel edges. In
the former case e € DTy, \ S and in the later case edge e or edge ¢’ is in DIy, \ S.
Let y1 = ajejazes ... a;—1e,—1a;. Then a; and a;1 are vertices of two loops, or g; is a
vertex of a loop and a; is a vertex of a 2 cycle, or a; and a;4 are parallel edges. In
the first two cases edge e; = a;a;4+ s a unique edge in 'y, and it is also in DI"y, \ S.
In the latter case edges e¢; = a;a;+1 and e§ = aj4+1a; are edges of a 2 cycle in DI"y,.
This implies for each edge in a polygonal path y there is a corresponding edge in DT',.
Hence every Hamiltonian set of polygonal paths in I'y, is also Hamiltonian set of paths
in DIy, \ S. This implies k < s. *)

Foreach 1 <i <, set f; = alelalel .. .afie;aiﬁl with [(B;) = t; + 1. Without
loss of generality let 8 = AU B, AN B = ) where A = {f1,f2,...,Bm}and B =
{Bm+1, Bn+2, ..., Bs} such that B; € A has two end-points and B; € B for all j is just
a vertex. Clearly the ,B}s are polygonal paths, see Figure 8 and Figure 9.

Consider 8; € A. There is a set S = {S1, S2,..., S} of cycles for hereditary
graph DI",, with §), = (ap, ep, ap41, e;) for each 1 < p < r such that either edge
X = apepapi, oredge y = ape),apy1 is in a Hamiltonian path §, see Figure 7. The
edges x and y are parallel. This implies there is a corresponding polygonal path in
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(d

Figure 8: Subgraphs of edge-unique simple assembly graphs.

', such that if z and x are consecutive edges in 8; but not neighbors in 'y, then the
corresponding edges will be z and y which are neighboring edges in I';,. So for each
pair of adjacent edges but non-neighboring in the Hamiltonian path f;, we can choose a
corresponding neighboring edge in S, so that §; is a polygonal path. Consequently A is
a set of polygonal paths.This implies s < k. (*%*)

From (*) and (**) we have k = s. [

Definition 3.9. Two 3-valent vertices v and u are called 2-nhbd if there is no a 3-valent
vertex between v and u but at least one 2-valent vertex ¢ exists so that 8 = (v, f,u) isa
path. If neither a 3-valent nor a 2-valent vertex exists between v and u but x = (v, u) is
a path then v and u are called 0-nhbd or adjacent.

Example 3.10. From Figure 6, vertices labeled 2 and 5 are 2-nhbd vertices because a
vertex labelled 4 is a 2-valent vertex and 8 = (2, 4, 5) is a path. Three-valent vertices
labeled 2 and 7 are not 2-nhbd and vertices labelled 5 and 7 are adjacent but not 2-nhbd.

Notation: 7 = DIy, \ S for the rest of the sections represents a tree defined above.

Definition 3.11. A zero vertex p between two vertices u, v € V(T') is a point on the
edgee =uv € E(T)and p € V(T).
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Figure 10: Subgraphs DI'y, \ S for hereditary graphs DI',, depicted in Figure 9.

Definition 3.12. Composition of Trees Let 7 be a tree and v and v, € V(T). Let p
be a zero vertex on e = vivy € E(T) and Ty, T, are subgraphs of 7" such that vy € T,
vy € T;. We define the composition of 77 and 7> by 73 = T} o), T>.

Note: T3] = |T1| + |T2|.

Definition3.13. LetS,, = {w : w = ajay---az,, n > 1, u = a;a; is not a subword of w}.
We call §,, the set of loop free assembly words.

Theorem 3.14. The number of loop free assembly words |S,,| is

n

1S,] = 2n — DI — Z(—l)k(Z)zk—"(zn — k).

k=1
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Proof. The set of assembly words on n letters is (2n — 1)!!. Let A; = { w; | w; is a
double-occurrence word formed with the two letters x; are adjacent}.
Thus, the desired number

[Snl = (@2n — DI =[A1UAU---UA,| ()

We apply the Principle of Inclusion and Exclusion to find the cardinality of |[A; U Ay U
U A,

Supposeawordw € (A;;NA;,N---NA;). Thenw € A;; foreach j € {1,2, ..., k}
and thus the letters x;, x;, ; Xi,X;,; - - - ; X;, x;, appearing as a subword. The words for which
these k pairs of letters are adjacent are obtained in the following manner:

Form all the words having (2n — k) letters taken from an alphabet obtained from
alphabet X by suppressing one copy of each letter from x;,, x;,, ..., x;,. Then in each
word thus formed, repeat the letters x;,, x;,, . .., x;, by adding the letters x;; immediately
after itself for j € {1, 2, ..., k}. It follows that

A AL Ay | = 2R
| 11 12 e lk| - W
2k@2n — k)! .
= (%))
Since the indices iy, i, ..., i satisfy 1 < i; < --- < iy < n, they can be selected in

(Z) ways and hence the total number of loop free words can be written using (x) and

(),

5,1 = (an— D — (M)FE D 22(2n - 2)! G
SRR N VAT 2 2 o

B =L /n\ (=D*2k2n — k)!
= (2n — 1)!!_;(1{) o .

4. Composition of paths and path cover of a graph

Let DI'y, be a hereditary graph that corresponds to a simple assembly graph I'y,. If
v is any vertex of the tree T = DI'y, \ S then 1 < deg(v) < 3. Call a pair of
vertices {a,r} € V(T) or {r,s} € V(T) with deg(a) = deg(r) = deg(s) = 1
adjacent if there are at most two 2-nhbd vertices p,v € V(T) between a and r or

between r and s such that either 8 = (a,d;,...,dits, P, diti+2, .-, ditt4m,T) OF
X — (r7 dl+l+m’ ceey dl+t+27 p’ dj .. -dj-i—m’ v, d]+m+29
oosdjimyy,s)isapathinT forsomed;, ..., diti4m, ..., digmyr € V(T),{f 0, j,m, 1} C

Nand deg(d;) = --- =deg(diy14m) =--- =deg(j +m+ f) =2.
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Figure 11: Loop saturated graph(top) and its tree representation (bottom).

Example 4.1. See Figure 12.

Let G be a graph. A path ¢ in G is an ordered sequence ¢ = (aj,az...,ay)
of distinct points, where if n > 2, g; is adjacent to g;+1 for | <i < n — 1. A path
¢ = (a1, ay,...,a,)isthesame pathas 8 = (a,, an—1, ..., ar). If ¢ and B are paths, by
¢ o we shall mean that one end-point, a of ¢, is adjacent to one end-point, b of 8, and that
¢ o B is formed by joining a to b. More specifically we may write ¢pa obp to specify which
end-point of ¢ is joined to which end-point of 8. Also (ay, az, ..., ay) o (b1, ba, ..., by)
=(ay,a,...,ay, b1, by, ...,b,) where a, must be adjacent to by [5, 8, 9].

A path-cover of G is a collection ® of vertex-disjoint induced paths such that every
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Figure 12: Simple assembly graph (Top) and its tree representation (bottom).

vertex of G lies on some path in ®. The path-covering number, denoted by u(G), of G,
is defined by:
w(G) = min{|®| : ® is a path — cover of G}

Example 4.2. Consider the tree T, Figure 13 (top), and set A = {¢1, ¢2, ¢3, ¢4} where
¢1 = (ay, c1,az), 2 = (b2), ¢3 = (as, ¢z, by, c3,a4), 4 = (as). Set A is a collection
of vertex disjoint paths that contains every vertex of 7'; moreover, it is a minimum path-
cover of T as there is no a set of at most three paths that cover all vertices of 7. Hence
w(T) = 4.

A minimum path-cover need not be unique as B = {¢1, ¢2, ¢3, pa} where ¢; =
(ay, c1, b1, 2, a3), ¢ = (a2), ¢3 = (b2), ¢4 = (a4, c3, as) is also a minimum path-
cover of T, Figure 13 (bottom).
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Figure 13: DI'y, \ S corresponds to a loop saturated assembly graph I',, depicted at
Figure 12 and set of path covers.

Example 4.3. Consider ,31 = (az, C1, bl, Cz) and ,32 = (bz, c3, a4). Then ,31 (@) ,32 =
Bica o byfr = B3 = (az, c1, by, 2, ba, c3, a4).

Theorem 4.4. Let T be a tree such that T = T o, T;. Then

L w(T) = u(Th) + n(1z) or

2. w(T) = u(T) + u(T2) — 1,ie., u(T) +u(l) — 1 < w(T) < u(T) + u(T).
Proof. The proof follows from Theorem 2.7 and Theorem 3.8. |

Lemma 4.5. Let T be a tree that corresponds to an edge-unique simple assembly graph
I'y where |A3| = 0. Then |A{| = |A3| — 2.

Proof. SeethepartitionT = AjUA,UAsz below. Let |T| = n. Thenn = |A{|+|A3].(¥)
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n
Because Z di = 2n — 2 where (dy, d>, ..., d,) is a degree sequence of a tree 7T,

i=1

Z deg(v) + Z deg(u) =2n — 2. (**)
VEA] u€As
-2
This implies 3|A1| + |A3| = 2n — 2. From (*) and (**), |A| = " and |A3| =
2
"2 Hence, |A] = |As| — 2. m

Theorem 4.6. Let T be a tree of order n > 2. Then

LmTHJ < u(T) < (m—1)

where m is the number of pedant vertices in 7.

Proof. LetT = (V, E) and partition V = A1 U Ay U A3 where
Ay ={veV:deg(v) =3}
Ay ={u eV :deg(u) =2}
A3 ={w eV :deg(w) =1}

Set Ay = B{UB, with B; = {(vy, v2) : v and v, are 2-nhbd vertices} and By = A|— Bj.
If Ay = @ then T is a path with two pedants,i.e., m =2 and u(T) =m — 1 = 1.
Suppose A} # . (Jv) € A;. Pick this v € A;. This implies adjacent vertices r, s € A3
exist such that either 8 = B1ofy = BikovBywhere 81 = (r, ..., k)and B = (v, ..., s)
or x = X10x2 = xiuo pyx where xy = (r,...,v,...,u)and xp = (p,...,s) are
paths in 7 for some k,u € A and p € A;. See Figure 12. Consequently, for each
v € A; we can choose a unique t € Az such that n = (¢, ..., v) is a path in T where
t €{r,s} C Azand |n| > 2. (%)
Let ® = {F, : F; = {¢i1. iz, ..., ®is;}, i, t; € N} where F; is a path cover of 7.

1. Suppose A, = . Then |T| = |A1| + |A3z| because |A3| = 0, and (|Ay], |A3]) =
(m — 2, m), Lemma 4.5 and (). This implies each ¢;; € F; € ® for each i and
1 < j <t hassize 1 <|¢;j| < m and

%, if miseven
min{|Fi| : F; € @} = u(T) > { 2 44
_ if misodd

+ 1
= u(T) > mTJ for any m.

Because there is no a path ¢ of T that includes at least three pedant vertices,
| F;| is minimum if each ¢;; € F; € ® but at most one contains two adjacent
vertices a, b € Az, and if any two pair of vertices vy, vo € A are 2-nhbd that is
|A1] = |B1| 4+ 1 then w(7T) is maximum .
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2. Suppose A, # @. First count the number of all possible disjoint paths ¢;; each
contains two adjacent pedants and set F;, second because |Az| # 0, count the
number of disjoint paths that contains the set of vertices u € A, which are not
covered by the former set of paths F; for some i.

First Second

m m
E—'—E_l’ if miseven
= min{|F;| : F; € ®} = u(T) < 1

if misodd
= u(T) < (m—1) for any m.

From 1 and 2,
m+1
— <u(T) < (m—1).

[ |

Lemma 4.7. If T = DT, \ S correspondence to a loop saturated graph I'y, then u(T)
attains an upper bound.

Proof. Suppose T correspondence to a loop saturated graph I',,. Then each pair of
vertices v;, v;+1 € A labelled in the order are 2-nhbd vertices. Extending Lemma 4.5
to I', results the same relation |A3| = |A1|+2and |Az| = |A;| — 1. See also Figure 11.

3An(Ty) — 2 = [Ty, from [6, 7] (%)
w(T) = An(T"y), Theorem 3.8 (3x)

From |T| = Ty, (x) and (x*), [A3] = |A1| + 2, |A2| = |A1| — 1 and |A3] = m, we
have 3u(T) — 2 = |T| = |A1| + |Az2| + |A3| =(m —2) + (m — 3) +m = 3m — 5.
Hence, u(T) = m — 1. |

5. Conclusion

Regarding future work, the goal is of course to extend my work to find digraph repre-
sentation of any simple assembly graph and find relationship between minimum path
cover of a digraph and minimum Hamiltonian set of polygonal paths. It would also be
of interest to consider a corresponding relationship with permutation graphs.
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