

The R -automorphism of the ring $R[\{\alpha_i\}_{i=1}^n]$

Basem Alkhamaiseh

Yarmouk University.

E-mail: basem.m@yu.edu.jo

Abstract

Let R be a commutative ring with identity. This article is devoted to the study of the R -automorphisms of the ring $R[\{\alpha_i\}_{i=1}^n]$, where we provide necessary and sufficient conditions for any R -endomorphism φ to be one-to-one and onto.

AMS subject classification: 16W20.

Keywords: R -endomorphism, R -automorphism.

1. Introduction

Throughout this article, all rings are commutative with identity. Given a ring R , the set consisting of all the elements of the form $a_0 + a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n$, where $a_i \in R$ and $\alpha_i \notin R$ with $\alpha_i\alpha_j = 0$ for all $1 \leq i \leq n$, is denoted by $R[\{\alpha_i\}_{i=1}^n]$. Two elements $(a_0 + a_1\alpha_1 + \cdots + a_n\alpha_n)$ and $(b_0 + b_1\alpha_1 + \cdots + b_n\alpha_n)$ of $R[\{\alpha_i\}_{i=1}^n]$ are equal if and only if $a_i = b_i$ for $i = 0, 1, 2, \dots, n$. Addition and multiplication of elements of $R[\{\alpha_i\}_{i=1}^n]$ are defined by $(a_0 + a_1\alpha_1 + \cdots + a_n\alpha_n) + (b_0 + b_1\alpha_1 + \cdots + b_n\alpha_n) = (a_0 + b_0) + (a_1 + b_1)\alpha_1 + \cdots + (a_n + b_n)\alpha_n$ and $(a_0 + a_1\alpha_1 + \cdots + a_n\alpha_n)(b_0 + b_1\alpha_1 + \cdots + b_n\alpha_n) = a_0b_0 + (a_0b_1 + a_1b_0)\alpha_1 + \cdots + (a_0b_n + a_nb_0)\alpha_n$. Then the set $R[\{\alpha_i\}_{i=1}^n]$ forms a commutative ring under operations of addition and multiplication given above. Note that, this ring is a generalization for the ring $R[\alpha]$ which can be described using Nagata's principle of idealization as the ring $R(+R) = R \oplus R$ (direct sum), with product $(r_0, r_1)(t_0, t_1) = (r_0t_0, r_0t_1 + r_1t_0)$, see [7].

The purpose of this article is to describe the R -automorphisms of $R[\{\alpha_i\}_{i=1}^n]$. Gilmer in [5] aroused the idea, where he studied and characterized the R automorphisms of the polynomial ring $R[x]$. In other words, these automorphisms of $R[X]$ that fix elements of R . The area has been under active investigation since the 1960s. The aim of the present article is to investigate the analogous problem in the ring $R[\{\alpha_i\}_{i=1}^n]$. in a similar manner, if φ is an R -endomorphism (the endomorphism of $R[\{\alpha_i\}_{i=1}^n]$ that fixes elements of R), then we try to find necessary and sufficient conditions in order that φ be one-to-one

and/or onto. Further work on this group of R -automorphisms was carried by others, see [2], [6], [4] and [3]. In this article, R -automorphisms of the ring $R[\{\alpha_i\}_{i=1}^n]$ are introduced and fully characterized.

For undefined notions and terminology, the reader is referred to [8] and [1].

2. The R -automorphism of the ring $R[\{\alpha_i\}_{i=1}^n]$

Definition 2.1. An endomorphism φ of $R[\{\alpha_i\}_{i=1}^n]$ is called an R -endomorphism if for any $r \in R$, $\varphi(r) = r$. It is clear that an R -endomorphism φ of $R[\{\alpha_i\}_{i=1}^n]$ is completely determined by $\varphi(\alpha_i)$ for $1 \leq i \leq n$. That is, if $\varphi(\alpha_i) = v_i$ for each $1 \leq i \leq n$, then $\varphi(\sum_{i=1}^n a_i \alpha_i) = \sum_{i=1}^n a_i v_i$ for any $\sum_{i=1}^n a_i \alpha_i \in R[\{\alpha_i\}_{i=1}^n]$; Furthermore, if $v_i = \sum_{k=0}^n v_{ik} \alpha_k \in R[\{\alpha_i\}_{i=1}^n]$, then the mapping $\varphi_V : R[\{\alpha_i\}_{i=1}^n] \rightarrow R[\{\alpha_i\}_{i=1}^n]$ defined by $\varphi_V(\sum_{i=1}^n a_i \alpha_i) = \sum_{i=1}^n a_i v_i$, where φ_V sends α_i onto v_i , is an R -endomorphism.

The question that arises here is what the R -automorphisms of the ring $R[\{\alpha_i\}_{i=1}^n]$ are. Accordingly, it is enough to find sufficient and efficient conditions on v_1, v_2, \dots, v_n in order that φ_V should be one to one and onto.

Lemma 2.2. Let R be a ring and let φ_V be an R -endomorphism of the ring $R[\{\alpha_i\}_{i=1}^n]$.

If φ_V is an R -automorphism, then $\varphi_V(\alpha_i) = v_i = \sum_{k=0}^n v_{ik} \alpha_k$, for $1 \leq i \leq n$, such that

1. $2v_{i0} = 0$, for all $1 \leq i \leq n$,
2. v_{i0} is nilpotent with nilpotency 2, and
3. The $n \times n$ matrix $V = [v_{i,j}]$, (with $1 \leq i, j \leq n$) is invertible in the ring $M_n(R)$.

Proof. Suppose that φ_V is an R -automorphism. Now, since $\alpha_i \alpha_j = 0$ for any $i, j \in \{1, 2, \dots, n\}$, then we have $\varphi_V(\alpha_i) \varphi_V(\alpha_j) = 0$. This leads to the following system of equations

$$v_{i0} v_{j0} = 0 \quad (0^*)$$

$$v_{i0} v_{j1} + v_{i1} v_{j0} = 0 \quad (1^*)$$

$$v_{i0} v_{j2} + v_{i2} v_{j0} = 0 \quad (2^*)$$

$$\vdots \quad \vdots \quad \vdots = \vdots \quad (3)$$

$$v_{i0} v_{jn} + v_{in} v_{j0} = 0 \quad (n^*)$$

Since φ_V is an R -automorphism φ_V^{-1} is defined and also an R -automorphism with $\varphi_V^{-1}(\alpha_i) = v'_i = \sum_{k=0}^n v'_{ik} \alpha_k$, for $1 \leq i \leq n$. Now, since $\varphi_V(\alpha_i) = \sum_{k=0}^n v_{ik} \alpha_k$ then we have

$$\begin{aligned}\alpha_i &= v_{i0} + \sum_{k=1}^n v_{ik} \varphi_V^{-1}(\alpha_k) \\ &= v_{i0} + \sum_{k=1}^n v_{ik} \left(\sum_{t=0}^n v'_{kt} \alpha_t \right)\end{aligned}$$

Consequently, we have the following system of equations

$$v_{i0} + v_{i1}v'_{10} + v_{i2}v'_{20} + \cdots + v_{in}v'_{n0} = 0 \quad (0^*)$$

$$v_{i1}v'_{11} + v_{i2}v'_{21} + \cdots + v_{in}v'_{n1} = 0 \quad (1^*)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots = \vdots \quad (\vdots)$$

$$v_{i1}v'_{1i} + v_{i2}v'_{2i} + \cdots + v_{in}v'_{ni} = 1 \quad (i^*)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots = \vdots \quad (\vdots)$$

$$v_{i1}v'_{1n} + v_{i2}v'_{2n} + \cdots + v_{in}v'_{nn} = 0 \quad (n^*)$$

Multiply the equation (i^*) by v_{i0} to get

$$v_{i0} = v_{i0}v_{i1}v'_{1i} + v_{i0}v_{i2}v'_{2i} + \cdots + v_{i0}v_{in}v'_{ni}$$

By the $(*)$ equations we get

$$\begin{aligned}v_{i0} &= -v_{i1}v_{i0}v'_{1i} - v_{i2}v_{i0}v'_{2i} - \cdots - v_{in}v_{i0}v'_{ni} \\ &= -v_{i0}(v_{i1}v'_{1i} + v_{i2}v'_{2i} + \cdots + v_{in}v'_{ni}) \\ &= -v_{i0}\end{aligned}$$

Hence $2v_{i0} = 0$, for all $1 \leq i \leq n$.

On the other hand, the equations $(**)$ produce the following

$$\begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} \end{bmatrix} \begin{bmatrix} v'_{11} & v'_{12} & \cdots & v'_{1n} \\ v'_{21} & v'_{22} & \cdots & v'_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v'_{n1} & v'_{n2} & \cdots & v'_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Therefore, the matrix

$$\begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} \end{bmatrix} \text{ is invertible in the ring } M_n(R)$$

Furthermore, since $\alpha_i \alpha_j = 0$ for $i, j \in \{1, 2, \dots, n\}$, then we have

$$0 = \alpha_i^2 = \left(v_{i0} + \sum_{k=1}^n v_{ik} \varphi_V^{-1}(\alpha_k) \right)^2 = v_{i0}^2$$

■

Lemma 2.3. Let R be a ring and let φ_V be an R -endomorphism of the ring $R[\{\alpha_i\}_{i=1}^n]$ with $\varphi_V(\alpha_i) = \sum_{k=0}^n v_{ik} \alpha_k$. Then φ_V is one to one if

1. $2v_{i0} = 0$, for all $1 \leq i \leq n$,
2. v_{i0} is nilpotent with nilpotency 2, and
3. The $n \times n$ matrix $V = [v_{i,j}]$, (with $1 \leq i, j \leq n$) is invertible in the ring $M_n(R)$.

Proof. Suppose that $\varphi_V : R[\{\alpha_i\}_{i=1}^n] \longrightarrow R[\{\alpha_i\}_{i=1}^n]$ is an R -endomorphism with $\varphi_V(\alpha_i) = \sum_{k=0}^n v_{ik} \alpha_k$. Let $a = a_0 + \sum_{i=1}^n a_i \alpha_i \in R[\{\alpha_i\}_{i=1}^n]$ such that $\varphi_V(a) = 0$. Then

$$\begin{aligned} 0 &= \varphi_V \left(a_0 + \sum_{i=1}^n a_i \alpha_i \right) \\ &= a_0 + \sum_{i=1}^n a_i \varphi_V(\alpha_i) \\ &= a_0 + \sum_{i=1}^n a_i \left(\sum_{k=0}^n v_{ik} \alpha_k \right) \end{aligned}$$

As a result, we have the following system of equations

$$a_0 + a_1 v_{10} + a_2 v_{20} + \dots + a_n v_{n0} = 0 \quad (1)$$

$$a_1 v_{11} + a_2 v_{21} + \dots + a_n v_{n1} = 0 \quad (2)$$

$$\vdots \quad (\vdots)$$

$$a_1 v_{1n} + a_2 v_{2n} + \dots + a_n v_{nn} = 0 \quad (n)$$

Hence,

$$\begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \dots & \vdots \\ v_{n1} & v_{n2} & \dots & v_{nn} \end{bmatrix}^T \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Since the matrix V is invertible, we deduce that $a_1 = a_2 = \dots = a_n = 0$. Substituting this in equation (1) produces $a_0 = a_1 = a_2 = \dots = a_n = 0$. Therefore, φ_V is one to one. \blacksquare

Lemma 2.4. Let R be a ring and let φ_V be an R -endomorphism of the ring $R[\{\alpha_i\}_{i=1}^n]$ with $\varphi_V(\alpha_i) = \sum_{k=0}^n v_{ik} \alpha_k$. Then φ_V is onto if

1. $2v_{i0} = 0$, for all $1 \leq i \leq n$,
2. v_{i0} is nilpotent with nilpotency 2, and
3. The $n \times n$ matrix $V = [v_{i,j}]$, (with $1 \leq i, j \leq n$) is invertible in the ring $M_n(R)$.

Proof. Suppose that $\varphi_V : R[\{\alpha_i\}_{i=1}^n] \rightarrow R[\{\alpha_i\}_{i=1}^n]$ is an R -endomorphism that satisfies the assumptions. Let $a = a_0 + \sum_{i=1}^n a_i \alpha_i \in R[\{\alpha_i\}_{i=1}^n]$. So, I need $b = b_0 + \sum_{i=1}^n b_i \alpha_i \in R[\{\alpha_i\}_{i=1}^n]$ such that $\varphi_V(b) = a$. Hence,

$$b_0 + b_1 v_{10} + b_2 v_{20} + \dots + b_n v_{n0} = a_0 \quad (1)$$

$$b_1 v_{11} + b_2 v_{21} + \dots + b_n v_{n1} = a_1 \quad (2)$$

$$\vdots \quad (\vdots)$$

$$b_1 v_{1n} + b_2 v_{2n} + \dots + b_n v_{nn} = a_n \quad (n)$$

Thus, we have

$$\begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n1} & v_{n2} & \dots & v_{nn} \end{bmatrix}^T \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Since the matrix V is invertible, we deduce that

$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \left(\begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n1} & v_{n2} & \dots & v_{nn} \end{bmatrix}^T \right)^{-1} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Therefore, b can be chosen as $b = \left(a_0 - \sum_{i=1}^n c_i v_{i0} \right) + \sum_{i=1}^n c_i \alpha_i$. In conclusion, φ_V is onto. \blacksquare

We must point out that the conditions $v_{i0}^2 = 2v_{i0} = 0$ are needed for φ_V to be an R -endomorphism.

We now state the main result in this article which is obtained in Lemma 2.3 and Lemma 2.4.

Theorem 2.5. Let R be a ring and let φ_V be an R -endomorphism of the ring $R[\{\alpha_i\}_{i=1}^n]$ with $\varphi_V(\alpha_i) = \sum_{k=0}^n v_{ik} \alpha_k$. Then φ_V is an R -automorphism if and only if

1. $2v_{i0} = 0$, for all $1 \leq i \leq n$,
2. v_{i0} is nilpotent with nilpotency 2, and
3. The $n \times n$ matrix $V = [v_{i,j}]$, (with $1 \leq i, j \leq n$) is invertible in the ring $M_n(R)$.

The following corollary is immediately obtained by Theorem 2.5.

Corollary 2.6. Let R be a reduced (or of characteristic 2) ring and let φ_V be an R -endomorphism of the ring $R[\{\alpha_i\}_{i=1}^n]$ with $\varphi_V(\alpha_i) = \sum_{k=0}^n v_{ik} \alpha_k$. Then φ_V is an R -automorphism if and only if

1. $v_{i0} = 0$, for all $1 \leq i \leq n$, and
2. The $n \times n$ matrix $V = [v_{i,j}]$, (with $1 \leq i, j \leq n$) is invertible in the ring $M_n(R)$.

The set of all R -automorphisms of the ring $R[\{\alpha_i\}_{i=1}^n]$ will be denoted by $\text{Aut}_R R[\{\alpha_i\}_{i=1}^n]$. Then, $\text{Aut}_R R[\{\alpha_i\}_{i=1}^n]$ is a group under the binary operation (composition of maps).

For the next corollary $GL(n, R)$ is the group of all $n \times n$ invertible matrices with entries in the ring R , and $I = \{a \in R : a^2 = 2a = 0\}$ is an ideal of R .

Corollary 2.7. Let R be a finite ring. Then $\text{Aut}_R R[\{\alpha_i\}_{i=1}^n]$ is finite, and $|\text{Aut}_R R[\{\alpha_i\}_{i=1}^n]| = |I|^n |GL(n, R)|$.

Corollary 2.8. For any positive integer m we have

$$|\text{Aut}_{\mathbb{Z}_m} \mathbb{Z}_m[\{\alpha_i\}_{i=1}^n]| = \begin{cases} 2^n |GL(n, \mathbb{Z}_m)| & \text{if } m = 2^k t \text{ and } k \geq 2 \\ |GL(n, \mathbb{Z}_m)| & \text{otherwise} \end{cases}$$

Proof. By Corollary 2.7, it is enough to prove that for $I = \{\bar{a} \in \mathbb{Z}_m : \bar{a}^2 = 2\bar{a} = \bar{0}\}$, then

$$|I| = \begin{cases} 2 & \text{if } m = 2^k t \text{ and } k \geq 2 \\ 1 & \text{otherwise} \end{cases}$$

If $\bar{0} \neq \bar{a} \in I$, then since $2\bar{a} = \bar{0}$, we conclude $2|m$. Thus, $m = 2^{k_1} p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$ is the prime factorization of m . Also, since $\bar{a}^2 = \bar{0}$, we get $a = 2^{d_1} p_2^{d_2} p_3^{d_3} \cdots p_r^{d_r}$, where $\left\lceil \frac{k_i}{2} \right\rceil \leq d_i \leq k_i$ for $i = 1, 2, \dots, r$. If $k_1 = 1$, then $d_1 = 1$. Which contradicts that $2\bar{a} = \bar{0}$. Hence $k_1 \geq 2$. Now, again because $2\bar{a} = \bar{0}$, we have $2^{d_1+1} p_2^{d_2} p_3^{d_3} \cdots p_r^{d_r} = 2^{k_1} p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$. For this purpose and since \mathbb{Z} is a unique factorization domain, we deduce that $d_1 = k_1 - 1$, and $d_i = k_i$ for $i = 2, \dots, r$. Therefore, $a = 2^{k_1-1} p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}$. So, if $m = 2^k t$ and $k \geq 2$, then $I = \left\{ \bar{0}, \overline{2^{k_1-1} p_2^{k_2} p_3^{k_3} \cdots p_r^{k_r}} \right\}$. otherwise, $I = \{\bar{0}\}$. ■

3. Open Problems

We end this article by presenting open problems, some of which could possibly be tackled in the near future.

Problem 3.1. Let R be a ring. Then

1. For which rings R , $\text{Aut}_R R[\{\alpha_i\}_{i=1}^n]$ is cyclic group?
2. For which rings R , $\text{Aut}_R R[\{\alpha_i\}_{i=1}^n]$ is Abelian group?

Problem 3.2. Let H be a subgroup of the group $\text{Aut}_R R[\{\alpha_i\}_{i=1}^n]$. Then $R[\{\alpha_i\}_{i=1}^n]^H = \{a = a_0 + a_1\alpha_1 + \cdots + a_n\alpha_n \in R[\{\alpha_i\}_{i=1}^n] : \varphi(a) = a \text{ for all } \varphi \in H\}$ is a subring of $R[\{\alpha_i\}_{i=1}^n]$. Then

1. What is the structure of the subring $R[\{\alpha_i\}_{i=1}^n]^H$?
2. When is $R[\{\alpha_i\}_{i=1}^n]^H = R$?
3. For which subgroups H , have we $R[\{\alpha_i\}_{i=1}^n]^{\text{Aut}_R R[\{\alpha_i\}_{i=1}^n]} = R[\{\alpha_i\}_{i=1}^n]^H$?

Acknowledgment

The publication of this paper was supported by Yarmouk University Research council.

References

- [1] Atiyah M., MacDonald I.. Introduction to Commutative Algebra. Boston, MA, USA: Addison-Wesley Publishing Company, 1969.
- [2] Bettina R., Bryan S.. Subrings of $R[x]$ Fixed by R -Automorphisms, Communications in Algebra, 40:11 (2012), 4276–4282.
- [3] Dowlen, M.. On the R -automorphisms of $R[x]$. J. Algebra. 89 (1984), 323–334.

- [4] Ferrero, M., Paques, A.. On R -automorphisms of $R[x]$. Math. J. Okayama Univ. 36 (1994), 63–75.
- [5] Gilmer R., R -automorphisms of $R[X]$, Proc. London Math. Soc, (3) 18 (1968), 328–36.
- [6] Habeb, J. M, Hajja, M. and Heinzer W.J. Conjugacy classes and invariant subrings of R -automorphisms of $R[x]$, Commun. Algebra. 40 :4 (2012), 1496–1524.
- [7] Nagata M., Local rings, Interscience, Newyork (1962).
- [8] Sharp R., Steps in Commutative Algebra, Cambridge University Press, Cambridge (1990).