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Abstract

Let R be a commutative ring with identity. This article is devoted to the study
of the R-automorphisms of the ring R[{αi}ni=1], where we provide necessary and
sufficient conditions for any R-endomorphism ϕ to be one-to-one and onto.
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1. Introduction

Throughout this article, all rings are commutative with identity. Given a ring R, the set
consisting of all the elements of the form a0 + a1α1 + a2α2 + · · · + anαn, where ai ∈ R

and αi /∈ R with αiαj = 0 for all 1 ≤ i ≤ n, is denoted by R[{αi}ni=1]. Two elements
(a0 + a1α1 + · · · + anαn) and (b0 + b1α1 + · · · + bnαn) of R[{αi}ni=1] are equal if and
only if ai = bi for i = 0, 1, 2, . . . , n. Addition and multiplication of elements of
R[{αi}ni=1] are defined by (a0 + a1α1 + · · · + anαn) + (b0 + b1α1 + · · · + bnαn) =
(a0 + b0)+ (a1 + b1)α1 + · · ·+ (an + bn)αn and (a0 + a1α1 + · · ·+ anαn)(b0 + b1α1 +
· · ·+bnαn) = a0b0 + (a0b1 +a1b0)α1 +· · ·+ (a0bn +anb0)αn. Then the set R[{αi}ni=1]
forms a commutative ring under operations of addition and multiplication given above.
Note that, this ring is a generalization for the ring R[α] which can be described using
Nagata’s principle of idealization as the ring R(+)R = R⊕R (direct sum), with product
(r0, r1)(t0, t1) = (r0t0, r0t1 + r1t0), see [7].

The purpose of this article is to describe the R-automorphisms of R[{αi}ni=1]. Gilmer
in [5] aroused the idea, where he studied and characterized the R automorphisms of the
polynomial ring R[x]. In other words, these automorphisms of R[X] that fix elements of
R . The area has been under active investigation since the 1960s. The aim of the present
article is to investigate the analogous problem in the ring R[{αi}ni=1]. in a similar manner,
if ϕ is an R-endomorphism (the endomorphism of R[{αi}ni=1] that fixes elements of R

), then we try to find necessary and sufficient conditions in order that ϕ be one-to-one
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and/or onto. Further work on this group of R-automorphisms was carried by others,
see [2], [6], [4] and [3]. In this article, R-automorphisms of the ring R[{αi}ni=1] are
introduced and fully characterized.

For undefined notions and terminology, the reader is referred to [8] and [1].

2. The R-automorphism of the ring R[{αi}ni=1]
Definition 2.1. An endomorphism ϕ of R[{αi}ni=1] is called an R-endomorphism if
for any r ∈ R, ϕ(r) = r . It is clear that an R-endomorphism ϕ of R[{αi}ni=1] is
completely determined by ϕ(αi) for 1 ≤ i ≤ n. That is, if ϕ(αi) = vi for each

1 ≤ i ≤ n, then ϕ(

n∑
i=1

aiαi) =
n∑

i=1

aivi for any
n∑

i=1

aiαi ∈ R[{αi}ni=1]; Furthermore, if

vi =
n∑

k=0

vikαk ∈ R[{αi}ni=1], then the mapping ϕV : R[{αi}ni=1] −→ R[{αi}ni=1] defined

by ϕV (

n∑
i=1

aiαi) =
n∑

i=1

aivi , where ϕV sends αi onto vi, is an R-endomorphism.

The question that arises here is what the R-automorphisms of the ring R[{αi}ni=1]
are. Accordingly, it is enough to find sufficient and efficient conditions on v1, v2, . . . , vn

in order that ϕV should be one to one and onto.

Lemma 2.2. Let R be a ring and let ϕV be an R-endomorphism of the ring R[{αi}ni=1].
If ϕV is an R-automorphism, then ϕV (αi) = vi =

n∑
k=0

vikαk, for 1 ≤ i ≤ n, such that

1. 2vi0 = 0, for all 1 ≤ i ≤ n,

2. vi0 is nilpotent with nilpotency 2, and

3. The n × n matrix V = [
vi,j

]
, (with 1 ≤ i, j ≤ n) is invertible in the ring Mn(R).

Proof. Suppose that ϕV is an R-automorphism. Now, since αiαj = 0 for any i, j ∈
{1, 2, . . . , n}, then we have ϕV (αi)ϕV (αj ) = 0. This leads to the following system of
equations

vi0vj0 = 0 (0*)

vi0vj1 + vi1vj0 = 0 (1*)

vi0vj2 + vi2vj0 = 0 (2*)
...

...
... = ... (

...)

vi0vjn + vinvj0 = 0 (n*)
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Since ϕV is an R-automorphism ϕ−1
V is defined and also an R-automorphism with

ϕ−1
V (αi) = v

′
i =

n∑
k=0

v
′
ikαk, for 1 ≤ i ≤ n. Now, since ϕV (αi) =

n∑
k=0

vikαk then we

have

αi = vi0 +
n∑

k=1

vikϕ
−1
V (αk)

= vi0 +
n∑

k=1

vik

(
n∑

t=0

v
′
ktαt

)

Consequently, we have the following system of equations

vi0 + vi1v
′
10 + vi2v

′
20 + · · · + vinv

′
n0 = 0 (0∗∗)

vi1v
′
11 + vi2v

′
21 + · · · + vinv

′
n1 = 0 (1∗∗)

...
...

...
...

...
... = ... (

...)

vi1v
′
1i + vi2v

′
2i + · · · + vinv

′
ni = 1 (i∗∗)

...
...

...
...

...
... = ... (

...)

vi1v
′
1n + vi2v

′
2n + · · · + vinv

′
nn = 0 (n∗∗)

Multiply the equation (i∗∗) by vi0 to get

vi0 = vi0vi1v
′
1i + vi0vi2v

′
2i + · · · + vi0vinv

′
ni

By the (*) equations we get

vi0 = −vi1vi0v
′
1i − vi2vi0v

′
2i − · · · − vinvi0v

′
ni

= −vi0(vi1v
′
1i + vi2v

′
2i + · · · + vinv

′
ni)

= −vi0

Hence 2vi0 = 0, for all 1 ≤ i ≤ n.

On the other hand, the equations (∗∗) produce the following


v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
. . .

...

vn1 vn2 · · · vnn







v
′
11 v

′
12 · · · v

′
1n

v
′
21 v

′
22 · · · v

′
2n

...
...

. . .
...

v
′
n1 v

′
n2 · · · v

′
nn


 =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1




Therefore, the matrix


v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
. . .

...

vn1 vn2 · · · vnn


 is invertible in the ring Mn(R)
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Furthermore, since αiαj = 0 for i, j ∈ {1, 2, ..., n}, then we have

0 = α2
i =

(
vi0 +

n∑
k=1

vikϕ
−1
V (αk)

)2

= v2
i0

�

Lemma 2.3. Let R be a ring and let ϕV be an R-endomorphism of the ring R[{αi}ni=1]
with ϕV (αi) =

n∑
k=0

vikαk. Then ϕV is one to one if

1. 2vi0 = 0, for all 1 ≤ i ≤ n,

2. vi0 is nilpotent with nilpotency 2, and

3. The n × n matrix V = [
vi,j

]
, (with 1 ≤ i, j ≤ n) is invertible in the ring Mn(R).

Proof. Suppose that ϕV : R[{αi}ni=1] −→ R[{αi}ni=1] is an R-endomorphism with

ϕV (αi) =
n∑

k=0

vikαk. Let a = a0 +
n∑

i=1

aiαi ∈ R[{αi}ni=1] such that ϕV (a) = 0. Then

0 = ϕV

(
a0 +

n∑
i=1

aiαi

)

= a0 +
n∑

i=1

aiϕV (αi)

= a0 +
n∑

i=1

ai

(
n∑

k=0

vikαk

)

As a result, we have the following system of equations

a0 + a1v10 + a2v20 + · · · + anvn0 = 0 (1)

a1v11 + a2v21 + · · · + anvn1 = 0 (2)
... (

...)

a1v1n + a2v2n + · · · + anvnn = 0 (n)

Hence, 


v11 v12 · · · v1n

v21 v22 · · · v2n
...

... · · · ...

vn1 vn2 · · · vnn




T 


a1

a2
...

an


 =




0
0
...

0



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Since the matrix V is invertible, we deduce that a1 = a2 = · · · = an = 0. Substituting
this in equation (1) produces a0 = a1 = a2 = · · · = an = 0. Therefore, ϕV is one to
one. �

Lemma 2.4. Let R be a ring and let ϕV be an R-endomorphism of the ring R[{αi}ni=1]
with ϕV (αi) =

n∑
k=0

vikαk. Then ϕV is onto if

1. 2vi0 = 0, for all 1 ≤ i ≤ n,

2. vi0 is nilpotent with nilpotency 2, and

3. The n × n matrix V = [
vi,j

]
, (with 1 ≤ i, j ≤ n) is invertible in the ring Mn(R).

Proof. Suppose that ϕV : R[{αi}ni=1] −→ R[{αi}ni=1] is an R-endomorphism that satis-

fies the assumptions. Let a = a0 +
n∑

i=1

aiαi ∈ R[{αi}ni=1]. So, I need b = b0 +
n∑

i=1

biαi ∈
R[{αi}ni=1] such that ϕV (b) = a. Hence,

b0 + b1v10 + b2v20 + · · · + bnvn0 = a0 (1)

b1v11 + b2v21 + · · · + bnvn1 = a1 (2)
... (

...)

b1v1n + b2v2n + · · · + bnvnn = an (n)

Thus, we have 


v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
. . .

...

vn1 vn2 · · · vnn




T 


b1

b2
...

bn


 =




a1

a2
...

an




Since the matrix V is invertible, we deduce that




b1

b2
...

bn


 =







v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
. . .

...

vn1 vn2 · · · vnn




T



−1 


a1

a2
...

an







b1

b2
...

bn


 =




c1

c2
...

cn



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Therefore, b can be choosen as b =
(

a0 −
n∑

i=1

civi0

)
+

n∑
i=1

ciαi. In conclusion, ϕV

is onto. �

We must point out that the conditions v2
i0 = 2vi0 = 0 are needed for ϕV to be an

R-endomorphism.
We now state the main result in this article which is obtained in Lemma 2.3 and

Lemma 2.4.

Theorem 2.5. Let R be a ring and let ϕV be an R-endomorphism of the ring R[{αi}ni=1]
with ϕV (αi) =

n∑
k=0

vikαk. Then ϕV is an R-automorphism if and only if

1. 2vi0 = 0, for all 1 ≤ i ≤ n,

2. vi0 is nilpotent with nilpotency 2, and

3. The n × n matrix V = [
vi,j

]
, (with 1 ≤ i, j ≤ n) is invertible in the ring Mn(R).

The following corollary is immediatly obtained by Theorem 2.5.

Corollary 2.6. Let R be a reduced (or of characteristic 2) ring and let ϕV be an R-

endomorphism of the ring R[{αi}ni=1] with ϕV (αi) =
n∑

k=0

vikαk. Then ϕV is an R-

automorphism if and only if

1. vi0 = 0, for all 1 ≤ i ≤ n, and

2. The n × n matrix V = [
vi,j

]
, (with 1 ≤ i, j ≤ n) is invertible in the ring Mn(R).

The set of allR-automorphisms of the ringR[{αi}ni=1]will be denoted byAutRR[{αi}ni=1].
Then, AutRR[{αi}ni=1] is a group under the binary operation (composition of maps).

For the next corollary GL(n, R) is the group of all n × n invertible matrices with
entries in the ring R, and I = {

a ∈ R : a2 = 2a = 0
}

is an ideal of R.

Corollary 2.7. LetR be a finite ring. ThenAutRR[{αi}ni=1] is finite, and
∣∣AutRR[{αi}ni=1]

∣∣ =
|I |n |GL(n, R)| .
Corollary 2.8. For any positive integer m we have

∣∣AutZm
Zm[{αi}ni=1]

∣∣ =
{

2n |GL(n, Zm)| if m = 2kt and k ≥ 2

|GL(n, Zm)| otherwise

Proof. By Corollary 2.7, it is enough to prove that for I = {
a ∈ Zm : a2 = 2a = 0

}
,

then

|I | =
{

2 if m = 2kt and k ≥ 2

1 otherwise
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If 0 �= a ∈ I, then since 2a = 0, we conclude 2|m. Thus, m = 2k1p
k2
2 p

k3
3 · · · pkr

r is
the prime factorization of m. Also, since a2 = 0 , we get a = 2d1p

d2
2 p

d3
3 · · · pdr

r , where⌈
ki

2

⌉
≤ di ≤ ki for i = 1, 2, . . . r. If k1 = 1, then d1 = 1. Which contradicts that

2a = 0. Hence k1 ≥ 2. Now, again because 2a = 0, we have 2d1+1p
d2
2 p

d3
3 · · · pdr

r =
2k1p

k2
2 p

k3
3 · · · pkr

r . For this purpose and since Z is a unique factorization domain, we
deduce that d1 = k1−1, and di = ki for i = 2, . . . r. Therefore, a = 2k1−1p

k2
2 p

k3
3 · · · pkr

r .

So, if m = 2kt and k ≥ 2, then I =
{

0, 2k1−1p
k2
2 p

k3
3 · · · pkr

r

}
. otherwise, I = {

0
}
. �

3. Open Problems

We end this article by presenting open problems, some of which could possibly be tackled
in the near future.

Problem 3.1. Let R be a ring. Then

1. For which rings R, AutRR[{αi}ni=1] is cyclic group?

2. For which rings R, AutRR[{αi}ni=1] is Abelian group?

Problem 3.2. Let H be a subgroup of the group AutRR[{αi}ni=1]. Then R[{αi}ni=1]H =
{a = a0 + a1α1 + · · · + anαn ∈ R[{αi}ni=1] : ϕ(a) = a for all ϕ ∈ H } is a subring of
R[{αi}ni=1]. Then

1. What is the structure of the subring R[{αi}ni=1]H ?

2. When is R[{αi}ni=1]H = R?

3. For which subgroups H, have we R[{αi}ni=1]AutRR[{αi}ni=1] = R[{αi}ni=1]H ?
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