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Abstract

Theoretical analysis have been conducted for load bearing capacity of an infinite
plate weakened by three collinear straight quasi-static cracks with coalesced yield
zones. Analytical expressions for remotely applied stress and crack-tip opening
displacement (CTOD) are derived, when developed yield zones are subjected to
linear/non-linear stress distributions. The problem is solved using complex vari-
able method and a qualitative study is carried out to investigate the load bearing
capacity of the plate with respect to yield zone lengths and CTODs etc. Results
are obtained for various fracture parameters numerically and reported graphically.
Analytical results are validated with existing published work of various researchers.

AMS subject classification: 74R05, 74R10.
Keywords: Crack opening displacement, Dugdale model, Mode-I type deforma-
tion, Stress intensity factor, Yield zone.

1. Introduction

The study of residual strength of structures in the presence of multiple cracks is extremely
important for their safety and integrity. So that design of structures may be modified in
future to avoid such defects. Few examples are shown in [1] and [2] to study the residual
strength of the panel reduces due to multiple site damage. As far as modelling of such
a situation is concern, Dugdale[3] gave a model to evaluate the residual strength of an
infinite plate containing a crack under general yielding conditions. The model has been
widely used due to its mathematical simplicity for single slit problem. The model was
modified [4] for various metal configurations and different types of mechanical loading,
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under the conditions that the minimum stresses acting on the crack is yield stress of the
body. Dugdale model was further modified for linearly varying stress distribution [5] and
for the case when rims of the developed plastic zones were subjected to a parabolic stress
distribution to arrest the crack from further opening [6]. Moreover, coalesced case of two
equal collinear cracks with coalesced yield zones under quadratically stress distribution
has been studied in [7]. The analytical results of Dugdale model was compared with
the results obtained by using finite element method [8] when the cracked plate is under
applied strain.

The problem of two unequal and equal collinear straight cracks were considered in
[9] to extend the idea of Dugdale for multiple cracks. Closed form solution was obtained
using complex variable method, to evaluate load-bearing capacity of an infinite plate
containing two cracks under general yielding conditions. Fourier transform method was
used to solve a mixed boundary value problem of two collinear cracks in [10]. Strip
yield model was further studied for two equal collinear straight cracks in [11] to derived
analytical expression for plastic zone length. Recently, two collinear cracks problem
was studied in [12] analytically using Föppl integral equation and then using Gauss
Chebyshev quadrature method. Recently, complex variable method is used to solve
three collinear straight cracks problem under general yielding conditions [13].

When stresses applied at infinite boundary increase to a limit, such that the developed
plastic zones at the adjacent tips of two cracks are coalesced. The situation is more com-
plicated because the coalescence of small micro cracks is responsible for the formation
of a big macro crack. Coalescence conditions of plastic zones were evaluated in [14] for
multiple cracks and a parametric analysis also carried out to study plastic zone length
and crack-tip opening displacement [15]. The coalescing process of microscopic cracks
have been discussed in [16] using Dugdale model for quasi-brittle materials. Recently,
conditions for coalescence of two closely spaced collinear cracks has been investigated
in [17]. Weight function approach has been adopted to study the strip yield model for
multiple crack problem in [18]. Complex variable method is used to solve two asymmet-
rical cracks with coalesced yield zones [19] and for four collinear straight cracks with
coalesced yield zones [20]. Stress intensity factors and crack opening displacements are
given in [22] for various geometry of cracks and different mechanical loading conditions.

The objective of this paper is to study the load bearing capacity of an infinite plate and
CTODs in case of three collinear straight cracks with coalesced yield zones. Developed
yield zones (due to stresses applied at the infinite boundary of the plate) are subjected
to linear/non-linear stress distribution to arrest the cracks from further opening. The
problem is solved using complex variable method. Stress intensity factors (SIFs), yield
zone size, CTODs are expressed in explicit form. A comparative study is carried out to
evaluate the load-bearing capacity of an infinite plate, when yield zones are subjected to
different stress profiles. Theoretical results are obtained in the paper for applied stresses,
yield zone size, CTODs and compared with previously published work as a limiting case.
A qualitative study is presented to measure the load carrying capacity of an infinite plate
with three equal cracks with coalesced yield zones. Results are graphically reported and
analyzed.
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Nomenclature

Ci(i = 0, 1) Constants
E Young’s modulus
Li(i = 1, 2, 3) cracks
Pn(z) polynomial of degree n
±a1, ±b1, ±c1 crack tips
±a tips of the developed yield plastic zones

�′ −1

2
(N1 − N2)e

−2iα, N1 and N2 are the values of

principal stresses at infinity,
α be the angle between N1 and the ox-axis

pi(i = 1, 2, 3, 4) developed plastic/yield zones
p(t), q(t) applied stresses on the yield zones
u, v components of displacement in x and y directions,

repectively
z = x + iy complex variable
δ(t) crack-tip-opening displacement at the crack tip t
γ Poisson’s ratio
µ shear modulus

κ = 3 − γ

1 + γ
for the plane-stress, = 3 − 4γ for the

plane-strain
σxx, σyy, σxy components of stress
σ∞ remotely applied stress at infinite boundary
σ0 yield stress of the plate
�(z) = ω′(z), 	(z) = φ′(z) complex potential functions

2. Mathematical formulation

Mushkelishvili [21] expressed the components of stresses σxx, σyy, σxy and displace-
ments (u, v) in terms of two complex potential functions 	(z) and �(z) of a complex
variable z for two-dimensional in-plane problems, as

σxx + σyy = 2[	(z) + 	(z)], (2.1)

σyy − iσxy = 	(z) + �(z̄) + (z − z̄)	′(z), (2.2)

2µ(u + iv) = κφ(z) − ω(z̄) − (z − z̄)φ′(z). (2.3)

Consider an infinite elastic-perfectly plastic plate containing n quasi-static collinear
straight cracks Li(i = 1, 2, . . . , n). Rims of these n cracks are subjected to the stress
distribution σ±

yy , σ±
xy , where superscripts (+) and (−) refer to upper and lower faces of

the crack reached from y > 0 or y < 0 planes. Eqs. (2.1) and (2.2) be expressed in
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terms of dual Hilbert problems

	+(t) + �−(t) = σ+
yy − iσ+

xy, (2.4)

	−(t) + �+(t) = σ−
yy − iσ−

xy, on

n⋃
i=1

Li (2.5)

under the assumption lim
y→0

y	′(t + iy) = 0.

Solution of the problems expressed in Eqs. (2.4) and (2.5) may be directly written
using [21], as

	(z) = 	0(z) + Pn(z)

X(z)
− 1

2
�

′
, (2.6)

�(z) = �0(z) + Pn(z)

X(z)
+ 1

2
�

′
, (2.7)

where

	0(z) = 1

2πiX(z)

∫
n⋃

i=1
Li

X+(t)p(t)

t − z
dt + 1

2πi

∫
n⋃

i=1
Li

q(t)

t − z
dt, (2.8)

�0(z) = 1

2πiX(z)

∫
n⋃

i=1
Li

X+(t)p(t)

t − z
dt − 1

2πi

∫
n⋃

i=1
Li

q(t)

t − z
dt, (2.9)

p(t) = 1

2
(σ+

yy + σ−
yy) − i

2
(σ+

xy + σ−
xy), q(t) = 1

2
(σ−

yy − σ−
yy) − i

2
(σ−

xy − σ−
xy),

(2.10)

X(z) =
n∏

k=1

√
z − ak

√
z − bk, Pn(z) = C0z

n + C1z
n−1 + · · · + Cn. (2.11)

C0 is determined using loading condition at infinite boundary of the plate and other
constants Ci(i = 1, 2, .., n) are calculated using the condition of single-valuedness of
displacements around the rims of cracks

2(κ + 1)

∫
Li

Pn(z)

X(z)
dz + κ

∫
Li

[	+
0 (z) − 	+

0 (z)]dz +
∫
Li

[�+
0 (z) − �−

0 (z)]dz = 0.

(2.12)

Stress intensity factor for mode-I type deformation at each crack tip z = z1 is
calculated using the formula given in [11],

KI = 2
√

2π lim
z→z1

√
z − z1	(z). (2.13)
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Crack-tip opening displacement at crack tip z = z1 is written in terms of displacement
components using [16], as

δi(z1) = [v+
A(z1) + (v+)iB(z1)] − [v−

A(z1) + (v−)iB(z1)]. i = I, II, III. (2.14)

3. Statement of the problem

Consider a thin infinite plate made of isotropic elastic-perfectly plastic material, weak-
ened by three collinear straight cracks. As shown in Fig.1 cracks are located on real
axis of a Cartesian coordinate system oxy occupy the intervals (−a1, −b1), (−c1, c1)

and (b1, a1) and denoted by L1, L2 and L3, respectively. Normal stress distribution
σyy = σ∞ is applied at the infinite boundary of the plate, such that the cracks are open
in mode-I type deformation and yield zones develop at each tip of the cracks. Remotely
applied stress at infinite boundary is increased to an extent such that the developed yield
zones at the adjacent tip of three cracks are coalesced. In order to detain the cracks from
further opening the rims of the yield zones are subjected to a stress distribution, which
is assumed linear/non-linear in nature to study the behaviour of load bearing capacity of
the plate. The entire configuration is schematically depicted in Fig. 1.

Figure 1: Configuration of the main problem

4. Solution of the problem

The problem stated in Section-3 is solved using methodology given in Section-2 after
converting it into two component problems. First problem is the opening case (termed
as auxiliary problem-A), when stresses applied at the infinite boundary open faces of the
cracks in mode-I type deformation. In second component problem (termed as auxiliary
problem-B) yield zones are subjected to normal stress distribution to arrest the cracks
from further opening. Three different cases of auxiliary problem-B for three different
types of stress profiles are considered, because some structure fails at a stress level which
is well below the yield stress of the plate as mentioned in [23]. Therefore, it an attempt
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to create such stress profiles which is below the yield stress of the plate (see Case-II and
Case-III).

Case-I: Constant yield stress distribution, σyy = σ0;

Case-II: Linearly varying stress distribution, σyy = |t |
a

σ0;

Case-III: Quadratically varying stress distribution, σyy = t2

a2
σ0.

4.1. Statement and solution of auxiliary problem-A

Consider an infinite homogeneous isotropic elastic perfectly-plastic plate containing
a single crack of length 2a1, occupies the interval C(−a1, a1) on ox-axis as shown
in Fig. 2. Uniform stress distribution, σ∞, applied at infinite boundary of the plate,
causes the opening of cracks in mode-I type deformation. Consequently, yield zones
p1 : (−a, −a1) and p4 : (a1, a) develop ahead each tip of the crack. The boundary
conditions of the problem are

σyy = σ∞, σxy = 0, when y → ∞, (4.1)

σyy = 0, σxy = 0, when y → 0. (4.2)

Figure 2: Configuration of the auxiliary problem-A

Under the boundary conditions given in Eqs. (4.1) to (4.2), the desired complex
potential function for the auxiliary problem-A be written as (or may be taken directly
from [21]),

	A(z) = σ∞
2

( z√
z2 − a2

− 1

2

)
. (4.3)

Opening mode stress intensity factor is obtained by substituting 	A(z) from Eq. (4.3)
into Eq. (2.13)

(KI )A = σ∞
√

πa. (4.4)
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Components of displacement due to applied stress, σ∞, are obtained by substituting
	A(z) from Eq. (4.3) into Eq. (2.3)

v±
A(a1) = ±2σ∞

E

√
a2 − a2

1 . (4.5)

4.2. Statement and solution of auxiliary problem-B

Consider, an infinite homogeneous isotropic elastic perfectly-plastic plate occupying xoy-
plane is weakened by three collinear cracks L1, L2, L3 occupy the intervals (−a1, −b1),
(−c1, c1), (b1, a1), respectively. Developed yield zones are denoted by p1, p2, p3, p4
and occupy the intervals (−a, −a1), (−b1, −c1), (c1, b1), (a1, a), respectively. Consider
three different cases of auxiliary problem-B according to three different stress profiles
acting on the rims of yield zones in order to arrest further opening of cracks.

4.2.1 Case-I of auxiliary problem-B, when σyy = σ0

Consider the case when developed yield zones p1, p2, p3, p4 are subjected to constant
yield stress distribution σ0 as shown in Fig. 3. The boundary conditions of the problem
are

σyy = 0, σxy = 0, when y → ∞, (4.6)

σyy = σ0, σxy = 0, when x ∈
4⋃

i=1

pi, y → 0. (4.7)

Figure 3: Configuration of the auxiliary problem-B (Case-I: σyy = σ0))

Solution of the problem discussed in this section may be written using boundary
conditions given in Eqs. (4.6) and (4.7). Hence, complex potential function 	I

B(z) is
written as

	I
B(z) = σ0

π


 −z√

z2 − a2
H1 + cot−1 a1

√
z2 − a2

z

√
a2 − a2

1

+ tan−1 b1
√

z2 − a2

z

√
a2 − b2

1

− tan−1 c1
√

z2 − a2

z

√
a2 − c2

1


 , (4.8)
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where

H1 = cos−1 a1

a
+ sin−1 b1

a
− sin−1 c1

a
.

The superscript I indicates that the function refers to auxiliary problem-B (Case-I).
Mode-I type stress intensity factor is obtained by substituting 	I

B(z) from Eq. (4.8)
into Eq. (2.13) and after some mathematical calculation one may find,

(KI )
I
B = −2σ0H1

√
a

π
. (4.9)

Yield zone length may be obtained by superimposing the solutions for two component
problems auxiliary problem-A and auxiliary problem-B (Case-I). Hence, stress intensity
factors for both the component problems given in Eqs. (4.4) and (4.9) must vanishes.
Which yields,

(σ∞
σ0

)I

B
= 2

π
H1. (4.10)

The displacement component v due to yield stress distribution σ0 acting on the rims
of yield zones is obtained by substituting Eq. (4.8) into Eq. (2.3). Hence,

(v±
B (a1))

I = ∓4σ0

Eπ

(
H1

√
a2 − a2

1 + H2 + a1 ln
a1

a

)
, (4.11)

where

H2 = −a1 tanh−1
b1

√
a2 − a2

1

a1

√
a2 − b2

1

+ b1 tanh−1

√
a2 − a2

1√
a2 − b2

1

− c1 tanh−1

√
a2 − a2

1√
a2 − c2

1

+ a1 tanh−1
c1

√
a2 − a2

1

a1

√
a2 − c2

1

.

Substituting results from Eqs. (4.5) and (4.11) into Eq. (2.14) to derive analytical
expressions for crack-tip opening displacement at crack tip x = a1. Hence,

δI (a1) = −8σ0

Eπ

(
H2 + a1 ln

a1

a

)
. (4.12)

4.2.2 Case-II of Auxiliary problem-B, when σyy = |t |
a

σ0

In place of constant yield stress distribution consider a linearly varying yield stress

distribution
t

a
σ0 acting over the rims of the developed yield zones, where t is any point on
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the rims of the yield zones and σ0 is the yield stress of the plate. The entire configuration
is depicted in Fig. 4. Accordingly, the boundary conditions of the problem are

σyy = 0, σxy = 0, when y → ∞, (4.13)

σyy = |t |
a

σ0, σxy = 0, when x ∈
4⋃

i=1

pi, y → 0, (4.14)

σyy = 0, σxy = 0, when x ∈
3⋃

i=1

Li, y → 0. (4.15)

Figure 4: Configuration of the auxiliary problem-B

(
Case-II: σyy = |t |

a
σ0

)

The desired complex potential function and stress intensity factor for this case anal-
ogously obtained as in Case-I, using methodology explained in Section-2, under the
boundary conditions given in Eqs. (4.13), (4.14), (4.15)

	II
B (z) = −σ0

π

[
z√

z2 − a2

(√
a2 − a2

1

a
−

√
a2 − b2

1

a
+

√
a2 − c2

1

a

)

− z

a

(
cot−1

√
z2 − a2√
a2 − a2

1

− cot−1

√
z2 − a2√
a2 − b2

1

+ cot−1

√
z2 − a2√
a2 − c2

1

)]
.

(4.16)

Opening mode stress intensity factor, KII
1

(KI )
II
B = 2σ0√

aπ

(
−

√
a2 − a2

1 +
√

a2 − b2
1 −

√
a2 − c2

1

)
. (4.17)

According to Dugdale’s cohesive zone hypothesis, (KI )A+(KI )
II
B = 0, which yields

the nonlinear equation to determine the size of yield zone

(σ∞
σ0

)II

B
= 2

aπ

(√
a2 − a2

1 −
√

a2 − b2
1 +

√
a2 − c2

1

)
. (4.18)
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Components of displacement for the case may be obtained by substituting Eq. (4.16)
into Eq. (2.3), hence

(v±(a1))
II
B = ∓ 2σ0

Eπa

(
H3 + (√

a2 − a2
1 −

√
a2 − b2

1 +
√

a2 − c2
1

)√
a2 − a2

1

)
,

(4.19)

where

H3 = −a2
1 tanh−1

√
a2 − b2

1√
a2 − a2

1

+ b2
1 tanh−1

√
a2 − a2

1√
a2 − b2

1

+ a2
1 tanh−1

√
a2 − c2

1√
a2 − a2

1

− c2
1 tanh−1

√
a2 − a2

1√
a2 − c2

1

.

Crack-tip opening displacement for linearly varying stress distribution is obtained
using Eqs. (2.14), (4.5) and (4.19). Finally, CTOD at the crack tip a1 is

δII (a1) = 4σ0

πEa

[(√
a2 − a2

1 −
√

a2 − b2
1 +

√
a2 − c2

1

)√
a2 − a2

1 − H3

]
. (4.20)

4.2.3 Case-III: σyy = t2

a2
σ0 for auxiliary problem-B

Consider a significantly different stress profile (quadratically varying)
t2

a2
σ0 which is

applied on the rims of yield zones to arrest further opening the cracks as shown in Fig. 5.
The said stress distribution is well below the yield stress distribution of the plate[23].
Hence, boundary conditions of the problem are

σyy = 0, σxy = 0, when y → ∞, (4.21)

σyy = t2

a2
σ0, σxy = 0, when x ∈

4⋃
i=1

pi, y → 0, (4.22)

σyy = 0, σxy = 0, when x ∈
3⋃

i=1

Li, y → 0. (4.23)

The appropriate complex potential function 	III
B (z) can be written in the following

form using methodology given in Section-2 and Eqs. (4.21)-(4.23),

	III
B (z) = zσ0

2πa2
√

z2 − a2

[
a2H4 + (a2 − 2z2)H1 − 2z

√
a2 − z2G(z)

]
, (4.24)
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Figure 5: Configuration of the auxiliary problem-B

(
Case-III: σyy = t2

a2
σ0

)

where

H4 = 1

a2

(
− a1

√
a2 − a2

1 + b1

√
a2 − b2

1 − c1

√
a2 − c2

1

)
,

G(z) = −iπ

2
− tanh−1 a1

√
a2 − z2

z

√
a2 − a2

1

+ tanh−1 b1
√

a2 − z2

z

√
a2 − b2

1

− tanh−1 c1
√

a2 − z2

z

√
a2 − c2

1

.

Opening mode stress intensity factor for this case is evaluated by substituting 	III
B (z)

from Eq. (4.24) to Eq. (2.13)

(KI )
III
B = σ0

√
a

π

(
H4 − H1

)
. (4.25)

A non-linear equation is obtained to evaluate yield zone length using (KI )A +
(KI )

III
B = 0,

(
σ∞
σ0

)III

B

= 1

π

(
H1 − H4

)
. (4.26)

Due to nonlinear stress distribution acting on the rims of yield zones, the crack-tip
opening displacement is expressed in the following form

δIII (a1) = 8σ0

3a2Eπ

[
(a2 − a2

1)
3
2 H1 − a2H4

√
a2 − a2

1 − a3
1 ln

a1

a

+H5(b1) − H5(c1)
]
. (4.27)

where

H5(x) = a3
1 tanh−1

x

√
a2 − a2

1

a1
√

a2 − x2
− x3 tanh−1

√
a2 − a2

1√
a2 − x2

.
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5. Validation of solution

To verify the accuracy, theoretical results obtained above for various quantities of inter-
est complex potential functions, stress intensity factors, applied stresses, displacement
components and CTODs reduce to the analytical results obtained by various researchers
previously in [6],[11], [16] etc.

Analytical expressions derived for various quantities in Eqs. (4.8), (4.10), (4.11) and
(4.12) agree with the analytical expressions investigated in [6], [11] and [16] for single
Dugdale crack of length 2a1 taking b1 = c1. Eqs. (4.16), (4.18), (4.19), (4.20), (4.24),
(4.26) and (4.27) reduce to the solution given in [6] by substituting b1 = c1 for respective
cases of linearly and quadratically varying stress distributions.

6. Illustrative examples

For the safety and security of structures, it is necessary to know the load bearing capacity
of that structure. To accomplish this task, a qualitative study is carried out to determine
load carrying capacity of an infinite plate weakened by three cracks with coalesced yield
zones.

In the following sections, numerical results are presented for yield zone length, load
required ratio and crack-tip opening displacement for different lengths of coalesced yield
zones. Numerical results so obtained are compared with the results of an equivalent single
crack under same mechanical loading conditions.

6.1. Yield zone length

Figure 6 shows the variation between normalized yield zone length,
p4

L3
to applied load

ratio,
σ∞
σ0

, when uniform stress distribution σ0 is applied on the rims of the yield zones.

It has been seen from the figure that as load applied at the infinite boundary of the plate
increases yield zone length increases, as expected. Also, when p3 is three times the
length of p4 infinite plate bear more load at it boundary in comparison to the case of
equal values of p3 and p4. Moreover, when p3 = 0 the results are similar to the results
of a single crack of length 2a1. Hence, it clear that bigger coalesced yield zone length
means higher load bearing capacity of the plate in the presence of three straight cracks
with coalesced yield zones.

Same variation has been plotted for linearly varying stress distribution
|t |
a

σ0 in Fig. 6.

The plate bear less load due to a stress distribution, which is below the yield stress of
the material acting on the rims of yield zones. In other words, length of each yield zone
is bigger in case of linearly varying yield stress distribution in comparison to constant
yield stress distribution. As a result, strength of the plate decreases rapidly in case of
linearly varying yield stress distribution. The results are compared with the results of
an equivalent single crack under same loading conditions. It has been observed that the
plate bear more load if yield zone p3 is bigger than p4.
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Figure 6: Variation between
σ∞
σ0

and normalized yield zone length
p4

L3
for different

values of
p3

p4
and stress profiles.

Quadratically varying stress distribution is assumed on the rims of the yield zones
to study bearing capacity of the plate. It has been observed from Fig. 6 that as load
applied at the infinite boundary of the plate increases yield zone length at each crack tip
increases. Comparatively less load (due to quadratic in nature) is applied on the rims
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Figure 7: Variation between
σ∞
σ0

and normalized crack-tip opening displacement for

various stress profiles.

of coalesced yield zones, therefore, entire configuration is approximately behave like an
equivalent single crack.

6.2. Crack-tip opening displacement

Crack-tip opening displacement at each original crack tip is evaluated numerically and
normalized with the crack-tip opening displacement of an equivalent single crack under
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similar mechanical loading conditions. Depending upon the stress profiles applied on
the rims of yield zones three different cases have been discussed in this section.

Figure 8: Normalized yield zone length
p4

L3
to applied stress

σ∞
σ0

.

Figure 7 shows the variation of normalized CTOD
δI

δ0
with increasing values of

applied load ratio
σ∞
σ0

, where δ0 is the CTOD of a single crack under same mechanical

loading conditions. When p3 = 0 the outer cracks shown in Fig. 1 shows same opening
as an equivalent single crack. Its again validates the analytical expressions for CTODs.
Furthermore, when p3 = p4 opening of three cracks with coalesced yield zones at the
outer tips is less as compared to the opening of a single crack, as expected. Moreover,
less opening of cracks (on comparing the results with single crack) is seen at outer crack
tips of three cracks with coalesced yield zones (shown in Fig. 1) on increasing length of
coalesced yield zones.

Same variation has been plotted at the outer tip for linearly varying stress distribution
in Fig. 7. Bigger value of p3 in comparison to p4 effect the opening of cracks, means δII

is less than δ0. For quadratically varying stress distribution same variation is plotted in
Fig. 7. Insignificant difference is seen between δIII and δ0 due a very small load applied
on the rims of coalesced yield zones.

7. Comparative study

Presence of cracks beset strength of the structures due to different yield zone lengths under
different mechanical loading conditions. A comparison is shown in Fig. 8 for applied
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Figure 9:
σ∞
σ0

to
δi

δ0
, i = I, II, III .

load ratio and for CTODs in Fig. 9 between three different types of stress distributions
applied on the rims of yield zones.

As expected, yield zone length at each crack tip is bigger in case of quadratic stress
distribution in comparison to constant and linearly varying stress distribution. Hence, it
may be concluded that the structures fail at a stress, which is below the yield stress of
the martial when linear and parabolic stress distributions are acting on the rims of yield
zones.

8. Conclusion

A crack arrest model of three equal cracks with coalesced yield zones was formulated
and the solution is obtained by complex variable method. Three different cases were
discussed depending on three different types of stress distributions applied on the rims
of the yield zones. Analytical expressions are derived for complex potential function,
displacement components and crack-tip opening displacements. Numerical results were
obtained for three equal cracks for different length of coalesced yield zones. In addition,
a comparative study is carried out to find the difference in load bearing capacity of an
infinite plate under constant, linear and quadratic stress distribution.
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