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1. INTRODUCTION 

A positive sequence  na  is said to be almost increasing if there exists a positive 

sequence  nb  and two positive constants BA  and such that 

 

(1.1) .  allfor , nbBabA nnn   

The sequence  na  is said to be quasi-  -power increasing, if there exists a constant 

K  depending upon   with 1K  such that 

 

(1.2) 
mn amanK   , 

for all .mn  In particular, if 0 , then  na is said to be quasi-increasing 

sequence. It is clear that every almost increasing sequence is a quasi- -power 

increasing sequence for any non-negative  . But the converse is not true as  n is 

quasi- -power increasing but not almost increasing. 

Let  nff   be a positive sequence of numbers. Then the positive sequence  na  is 

said to be quasi- f -power increasing, if there exists a constant K  depending upon 

f  with 1K such that 

 

(1.3) mmnn afafK  , 

for   1 7n m  . Clearly, if  n is a quasi- f -power increasing sequence, then the 

 nn f  is a quasi- increasing sequence. 

Let  n   be a positive sequence of numbers. Then a positive sequence  na  is 

said to be  - quasi monotone [1], if 0,0  nn aa
 
ultimately and nnd  , where

1 nnn ddd . 

Let  na be an infinite series with sequence of partial sums ns . Let  np  be a 

sequence of positive numbers such that 

 


npP
n

n as,
0

 . 

Then the sequence-to-sequence transformation 
 

(1.4) 



n

n

n

n Psp
P

T
0

,0,
1



  

defines the  npN , - mean of the sequence  ns  generated by the sequence of 

coefficients np . The series  na is said to be summable 1,, kpN
k

n  [2], if 
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(1.5) .1

1

1



















k

nn

k

n n

n TT
p

P
 

The series  na is said to be summable ,0,1,;,   kpN
k

n
 if 

(1.6) .1

1

1



















k

nn

kk

n n

n TT
p

P


 

For any real number  , the series  na is said to be summable by the summabilty 

method , ; , , 1, 0n
k

N p k    , if 

 

(1.6) 

 1

1

1

k k

kn
n n

n n

P
t t

p

   






 
  

 
 . 

For 1  , the summability method , ; , , 1, 0, any real n
k

N p k     , reduces to 

the method 0;,    1, k  ,pN
kn

 

 
 
2. KNOWN THEOREMS 

Dealing with quasi-  -power increasing sequence Bor and Debnath [3] have 

established the following theorem: 
 
2.1. THEOREM 

Let  nX be a quasi- -power increasing sequence for 10   and  n be a real 

sequence. 
If the conditions 

(2.1.1)  m

m

n

n PO
n

P


1

, 

(2.1.2) )1(OX nn  , 

(2.1.3) )(
1

m

m

n

k

n
XO

n

t




, 

(2.1.4) )(
1

m

m

n n

k

nn
XO

P

tp




 

and 

(2.1.5) 


m

n

nnnX
1

2  

are satisfied, where nt is the )1,(C mean of the sequence )( nna .Then the series 

 nna  is summable 1,, kpN
k

n . 
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Subsequently Leindler [4] established a similar result reducing certain condition of 
Bor. He established: 
 
2.2. THEOREM 

Let the sequence  nX be a quasi- -power increasing sequence for 10   , and 

the real sequence  n  satisfies the conditions 

(2.2.1) )(
1

mO
m

n

n 


  

and 

(2.2.2) )(
1

mO
m

n

m 


 . 

Furthere, suppose the conditions (2.1.3), (2.1.4) and 

(2.2.3) 


m

n

nnnX
1

)(  , 

hold, where  nXnX nn log,max)(   .Then the series  nna  is summable 

1,, kpN
k

n . 

Recently, extending the above results to quasi- f -power increasing sequence, 

Sulaiman [8] have established the following theorem: 
 
2.3. THEOREM 

Let   0,10,log)(   nnff n
be a sequence. Let  nX be a quasi- f -

power sequence and  n  a sequence of constants satisfying the conditions 

(2.3.1)  nasn 0 , 

(2.3.2) 


1n

nnnX  , 

(2.3.3)  1OX nn  , 

(2.3.4)  m

k

n

nk

n

XOt
nX







1
1

1
 

and 

(2.3.5)  m

k

n

nk

nn

n XOt
XP

p







1
1

1
, 

where nt is the  1,C mean of the sequence  nna .Then the series  nna  is 

summable 1,, kpN
k

n . 

Very recently, Misra et al [5] established the following theorem: 
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2.4. THEOREM 

Let    nnff n log)(   be a sequence and  nX be a quasi- f -power sequence. 

Let  n  a sequence of constants such that 

(2.4.1)  nasn ,0 , 

(2.4.2) 


1n

nnnX  , 

(2.4.3) )1(OX nn  , 

(2.4.4) 
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(2.4.5)  m

m

n
k

kk

n

n XO
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t
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1
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1
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


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(2.4.6)  m

m

n
k

n

k

n

k

n

n XO
nX

t

p

P
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



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







1

1



. 

Then the series  nna  is summable .0,1,;,   kpN
k

n  

Using  - quasi monotone sequence, Misra et al [6] extended theorem-2.4, 
establishing the following result: 
 
2.5. THEOREM 

Let    nnff n log)(   be a sequence and  nX be a quasi- f -power sequence. 

Suppose also that there exists a sequence of numbers  nA  such that it is  quasi – 

monotone with 

(2.5.1)  nn Xn  

(2.5.2) nnA   for all n . 

Let  n  a sequence of constants such that 

(2.5.3)  nasn ,0 , 

(2.5.4) )1(OX nn  , 

and 

(2.5.5) nn A  for all n . 

Then the series  nna  is summable .0,1,;,   kpN
k

n
,
 if 

(2.5.6) 

1

1 1

1

1

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











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



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
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
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, 

(2.5.7)  m
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1
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1

, 
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(2.5.8)  m

m

n
k

n

k

n

k

n

n XO
nX

t

p

P
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



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
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




1

1



, 

where  nt  is the n th  1,C mean of the sequence  nan . 

In what follows in this paper, using  - quasi monotone sequence, we prove the 
following theorem. 
 
 
3. THEOREM 

Let    nnff n log)(   be a sequence and  nX be a quasi- f -power sequence. 

Suppose also that there exists a sequence of numbers  nA  such that it is  quasi – 

monotone with 

(3.5.1)  nn Xn  

(3.5.2) nnA   for all n . 

Let  n  a sequence of constants such that 

(3.5.3)  nasn ,0 , 

(3.5.4) )1(OX nn  , 

and 

(3.5.5) nn A  for all n . 

Then the series  nna  is summable , ; , , 1, 0.n
k

N p k   
,
 if 

(3.5.6) 

1

1 1
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
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
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(3.5.7) 
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1

1
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k k k k
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mk

n n n

tP
O X

p X

    




 
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 
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(3.5.8) 

 
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1 1

1
1

k k k k
m

nn
mk

n n n

tP
O X

p nX

     




 
 

 
 , 

where  nt  is the n th  1,C mean of the sequence  nan . 

In order to prove the theorem we require the following lemma. 
 
 
4. LEMMA 

Let      0,10,log  
 nnff n  be a sequence and  nX  be a quasi - f - 

power increasing sequence. Let  nA  be a sequence of numbers such that it is 

quasi – monotone satisfying (3.1) and (3.2). then 

(4.1)  1OAXn nn   

and 
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(4.2) ,
1




m

n

nn AX as .m  

 
4.1. PROOF OF THE LEMMA 

As 0nA and   nXnn
 log  is non-decreasing, we have 

    




 
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nnn AXnnnnAXn




 loglog1  

    
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This establishes (4.1). 
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This establishes (4.2). 
 
 
5. PROOF OF THE THEOREM 

Let  nT  be the sequence of  npN ,  mean of the series ,
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In order to prove the theorem, using Minkowski’s inequality it is enough to show 
that 
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Applying H o lder’s inequality, we have 
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This completes the proof of the theorem. 
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