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Abstract

We consider an M/G/1 feedback queue with optional server vacations based on
Bernoulli schedule and a single vacation policy. We assume that the server pro-
vides three types of service, type 1 with probability p1, type 2 with probability p2

and type 3 with probability p3 with the service times following general distribution
and each arriving customer may choose any of the three types of service. However
after the completion of each type 1, type 2 service or type 3 service, the customer
can feedback to the tail of the original queue with probability p to repeat the service
until it is successful or may depart the system with probability q if service happens
to be successful. The feedback customer also has the option to choose either type
1, type 2 or type 3 service with probability p1, p2 and p3 respectively. Again at the
completion of each type of service, the server can take a vacation with probability
θ or may continue to stay in the system with probability 1 − θ . Further, we assume
that whenever, the server takes a vacation, it is always a single vacation with ex-
ponentially distributed vacation period. The time dependent probability generating
functions have been obtained in terms of their Laplace transforms and the corre-
sponding steady state results are obtained explicitly. Also the mean queue length
and the mean waiting time are computed.

AMS subject classification: 60K25, 60K30.
Keywords: M/G/1 queue with Bernoulli feedback, Bernoulli schedule server va-
cation, Single vacation Policy, Steady state, Stability condition, Mean number in
the system, Mean waiting time.

1. Introduction

In many examples such as production system, bank services, computer and commu-
nication networks, besides feedback the system have vacation. Vacation queues with
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different vacation policies including Bernoulli schedules, assuming a single vacation
policy or multiple vacation policy have been studied by many researchers.

Levy andYechiali [12], Fuhrman [9], Doshi [7] and [8], Keilson and Servi [11], Baba
[1], Cramer [6], Borthakur and Chaudhury [3], Madan [13], [14] and [15], Choi and Park
[5], Takagi [18] and [19], Rosenberg andYechiali [17], Chaudhury [4], Badamchi Zadeh
and Shankar [2] and many others have studied vacation queues with different vacation
policies. Madan and Chaudhury [16] have studied a single server queue with two phase
of heterogeneous service under Bernoulli schedule and a general vacation time. In this
system, without feedback, the server after completing the service can take vacation with
probability θ or remain in the system with probability 1 − θ .

Madan and Anabosi [15] have studied a single server queue with optional server
vacations based on Bernoulli schedules and a single vacation policy. In this system,
without feedback, the server provides two types of heterogeneous exponential service
and a customer may choose either type of service. Moreover, the server after completing
the service can take vacation with probability θ or remain in system with probability
1 − θ .

In this paper, we consider a single server vacation queueing model with feedback, in
which the server provides three types of service and each arriving customer has the option
of choosing any of the three types of service. Further, we assume Bernoulli schedule
server vacations, which means that on completion of each type of service the server
may take a vacation or may continue staying in the system. When the server is under
vacation, the customers arriving during the vacation period have to wait in the queue
until the server comes back. We further assume that the three types of service follow
general distribution and whenever the server takes a vacation, it is a single vacation with
exponentially distributed vacation period.

The rest of the paper is organized as follows. The mathematical description of our
model is in section 2 and equations governing the model are given in section 3. The time
dependent solution have been obtained in section 4 and the corresponding steady state
results have been derived explicitly in section 5. Mean queue length and mean waiting
time are computed in section 6 and in section 7 respectively.

2. Mathematical description of the model

We assume the following to describe the queueing model of our study.

• Customers arrive at the system one by one according to a Poisson stream with
arrival rate λ(> 0).

• The server provides three types of service, type 1, type 2 and type 3 with the
service times having general distribution. Let B1(v) and b1(v) respectively be the
distribution and the density function of the type 1 service.

• The service time of type 2 are assumed to be general with the distribution function
B2(v) and the density function b2(v).
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• The service time of type 3 are assumed to be general with the distribution function
B3(v) and the density function b3(v).

• Just before the service of a customer starts he may choose type 1 service with prob-
ability p1 or type 2 service with probability p2, or type 3 service with probability
p3 where p1 + p2 + p3 = 1.

• Further, µi(x)dx is the probability of completion of the i-th type service given
that elapsed time is x, so that

µi(x) = bi(x)

1 − Bi(x)
, i = 1, 2, 3, (2.1)

and therefore,

bi(v) = µi(v)e
−

v∫
0

µi(x)dx

, i = 1, 2, 3. (2.2)

• After the completion of each type of service, the server may take a vacation with
probability θ or may continue staying in the system with probability 1 − θ.

• The vacation periods are exponentially distributed with mean vacation time
1

β
.

• On returning from vacation the server instantly starts serving the customer at the
head of the queue, if any.

• Moreover, after the completion of each type 1 or type 2 or type 3 service, if the
customer is dissatisfied with its service, he can immediately join the tail of the
original queue as a feedback customer for receiving another service with probabil-
ity p. Otherwise the customer may depart forever from the system with probability
q = 1−p. After joining the tail of the queue, the feedback customer again has the
option to choose either type 1 service with probability p1 or type 2 service with
probability p2 or type 3 with probability p3. Further, we do not distinguish the
new arrival with feedback.

• The customer both newly arrived and those that are fed back are served in the order
in which they join the tail of the original queue.

• The customers are served according to the first come, first served rule.

• The inter-arrival times, the service times of each type of service and the vacation
times are independent of each other.
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3. Equations governing the system

We define

P (1)
n (x, t) = Probability that at time t , there are n(≥ 0) customers in the queue ex-

cluding one customer in the first type of service and the elapsed service time for this

customer is x. Consequently P (1)
n (t) =

∞∫
0

P (1)
n (x, t)dx denotes the probability that at

time t there are n customers in the queue excluding the one customer in the first type of
service irrespective of the value of x.

P (2)
n (x, t) = Probability that at time t , there are n(≥ 0) customers in the queue excluding

one customer in the second type of service and the elapsed service time for this customer

is x. Consequently P (2)
n (t) =

∞∫
0

P (2)
n (x, t)dx denotes the probability that at time t there

are n customers in the queue excluding the one customer in the second type of service
irrespective of the value of x.

P (3)
n (x, t) = Probability that at time t , there are n(≥ 0) customers in the queue excluding

one customer in the third type of service and the elapsed service time for this customer

is x. Consequently P (3)
n (t) =

∞∫
0

P (3)
n (x, t)dx denotes the probability that at time t there

are n customers in the queue excluding the one customer in the third type of service
irrespective of the value of x.

Vn(t) = Probability that at time t , there are n(≥ 0) customers in the queue and the server
is on vacation.

Q(t) = Probability that at time t , there is no customer in the queue or in service and the
server is idle but available in the system.

The model is then, governed by the following set of differential-difference equations:

∂

∂x
P (1)

n (x, t) + ∂

∂t
P (1)

n (x, t) + (λ + µ1(x))P (1)
n (x, t) = λP

(1)
n−1(x, t) (3.1)

n = 1, 2, . . . ,

∂

∂x
P

(1)
0 (x, t) + ∂

∂t
P

(1)
0 (x, t) + (λ + µ1(x))P

(1)
0 (x, t) = 0, (3.2)
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∂

∂x
P (2)

n (x, t) + ∂

∂t
P (2)

n (x, t) + (λ + µ2(x))P (2)
n (x, t) = λP

(2)
n−1(x, t) (3.3)

n = 1, 2, . . . ,

∂

∂x
P

(2)
0 (x, t) + ∂

∂t
P

(2)
0 (x, t) + (λ + µ2(x))P

(2)
0 (x, t) = 0, (3.4)

∂

∂x
P (3)

n (x, t) + ∂

∂t
P (3)

n (x, t) + (λ + µ3(x))P (3)
n (x, t) = λP

(3)
n−1(x, t) (3.5)

n = 1, 2, . . . ,

∂

∂x
P

(3)
0 (x, t) + ∂

∂t
P

(3)
0 (x, t) + (λ + µ3(x))P

(3)
0 (x, t) = 0, (3.6)

d

dt
V0(t) = −(λ + β)V0(t) + θq

∞∫
0

P
(1)
0 (x, t)µ1(x)dx

+θq

∞∫
0

P
(2)
0 (x, t)µ2(x)dx + +θq

∞∫
0

P
(3)
0 (x, t)µ3(x)dx, (3.7)

d

dt
Vn(t) = −(λ + β)Vn(t) + λVn−1(t) + θp

∞∫
0

P
(1)
n−1(x, t)µ1(x)dx

+θp

∞∫
0

P
(2)
n−1(x, t)µ2(x)dx + θp

∞∫
0

P
(3)
n−1(x, t)µ3(x)dx

+θq

∞∫
0

P (1)
n (x, t)µ1(x)dx + θq

∞∫
0

P (2)
n (x, t)µ2(x)dx

+θq

∞∫
0

P (3)
n (x, t)µ3(x)dx, n = 1, 2, . . . , (3.8)

d

dt
Q(t) = −λQ(t) + βV0(t) + (1 − θ)q

∞∫
0

P
(1)
0 (x, t)µ1(x)dx

+(1 − θ)q

∞∫
0

P
(2)
0 (x, t)µ2(x)dx + (1 − θ)q

∞∫
0

P
(3)
0 (x, t)µ3(x)dx ,

(3.9)
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Equations (3)–(11) are to be solved subject to the following boundary conditions:

P
(1)
0 (0, t) = Q(t)λp1 + p1βV1(t) + p1(1 − θ)p

∞∫
0

P
(1)
0 (x, t)µ1(x)dx

+p1(1 − θ)p

∞∫
0

P
(2)
0 (x, t)µ2(x)dx + p1(1 − θ)p

∞∫
0

P
(3)
0 (x, t)µ3(x)dx

+p1(1 − θ)q

∞∫
0

P
(1)
1 (x, t)µ1(x)dx + p1(1 − θ)q

∞∫
0

P
(2)
1 (x, t)µ2(x)dx

+p1(1 − θ)q

∞∫
0

P
(3)
1 (x, t)µ3(x)dx, (3.10)

P (1)
n (0, t) = p1βVn+1(t) + p1(1 − θ)p

∞∫
0

P (1)
n (x, t)µ1(x)dx

+p1(1 − θ)p

∞∫
0

P (2)
n (x, t)µ2(x)d + p1(1 − θ)p

∞∫
0

P (3)
n (x, t)µ3(x)dx

+p1(1 − θ)q

∞∫
0

P
(1)
n+1(x, t)µ1(x)dx + p1(1 − θ)q

∞∫
0

P
(2)
n+1(x, t)µ2(x)dx

+p1(1 − θ)q

∞∫
0

P
(3)
n+1(x, t)µ3(x)dx, n = 1, 2, . . . , (3.11)

P
(2)
0 (0, t) = Q(t)λp2 + p2βV1(t) + p2(1 − θ)p

∞∫
0

P
(1)
0 (x, t)µ1(x)dx

+p2(1 − θ)p

∞∫
0

P
(2)
0 (x, t)µ2(x)dx + p2(1 − θ)p

∞∫
0

P
(3)
0 (x, t)µ3(x)dx

+p2(1 − θ)q

∞∫
0

P
(1)
1 (x, t)µ1(x)dx + p2(1 − θ)q

∞∫
0

P
(2)
1 (x, t)µ2(x)dx,

+p2(1 − θ)q

∞∫
0

P
(3)
1 (x, t)µ3(x)dx (3.12)
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P (2)
n (0, t) = p2βVn+1(t) + p2(1 − θ)p

∞∫
0

P (1)
n (x, t)µ1(x)dx

+p2(1 − θ)p

∞∫
0

P (2)
n (x, t)µ2(x)dx + p2(1 − θ)p

∞∫
0

P (3)
n (x, t)µ3(x)dx

+p2(1 − θ)q

∞∫
0

P
(1)
n+1(x, t)µ1(x)dx + p2(1 − θ)q

∞∫
0

P
(2)
n+1(x, t)µ2(x)dx

+p2(1 − θ)p

∞∫
0

P (3)
n (x, t)µ3(x)dx, n = 1, 2, . . . (3.13)

P
(3)
0 (0, t) = Q(t)λp3 + p3βV1(t) + p3(1 − θ)p

∞∫
0

P
(1)
0 (x, t)µ1(x)dx

+p3(1 − θ)p

∞∫
0

P
(2)
0 (x, t)µ2(x)dx + p3(1 − θ)p

∞∫
0

P
(3)
0 (x, t)µ3(x)dx

+p3(1 − θ)q

∞∫
0

P
(1)
1 (x, t)µ1(x)dx + p3(1 − θ)q

∞∫
0

P
(2)
1 (x, t)µ2(x)dx,

+p3(1 − θ)q

∞∫
0

P
(3)
1 (x, t)µ3(x)dx (3.14)

P (3)
n (0, t) = p3βVn+1(t) + p3(1 − θ)p

∞∫
0

P (1)
n (x, t)µ1(x)dx

+p3(1 − θ)p

∞∫
0

P (2)
n (x, t)µ2(x)dx + p3(1 − θ)p

∞∫
0

P (3)
n (x, t)µ3(x)dx

+p3(1 − θ)q

∞∫
0

P
(1)
n+1(x, t)µ1(x)dx + p3(1 − θ)q

∞∫
0

P
(2)
n+1(x, t)µ2(x)dx

+p3(1 − θ)p

∞∫
0

P (3)
n (x, t)µ3(x)dx, n = 1, 2, . . . (3.15)

We assume that initially there is no customer in the system, the server is not under
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vacation and the server is idle. So the initial conditions are

V0(0) = Vn(0) = 0, Q(0) = 1 and P j
n (0) = 0 for n = 0, 1, 2, . . . , j = 1, 2, 3.

(3.16)

4. Generating functions of the queue length:
The time-dependent solution

In this section we obtain the transient solution for the above set of differential-difference
equations.

We define the probability generating functions,

P (1)
q (x, z, t) =

∞∑
n=0

znP (1)
n (x, t), P (1)

q (z, t) =
∞∑

n=0

znP (1)
n (t), (4.1)

P (2)
q (x, z, t) =

∞∑
n=0

znP (2)
n (x, t), P (2)

q (z, t) =
∞∑

n=0

znP (2)
n (t), (4.2)

P (3)
q (x, z, t) =

∞∑
n=0

znP (3)
n (x, t), P (3)

q (z, t) =
∞∑

n=0

znP (3)
n (t), (4.3)

V (z, t) =
∞∑

n=0

znVn(t), (4.4)

which are convergent inside the ’circle’given by |z| ≤ 1 and define the Laplace transform
of a function f (t) as

f (s) =
∞∫

0

e−stf (t)dt, �(s) > 0. (4.5)

Taking the Laplace transforms of equations (3) − (13) and using (18), we obtain

∂

∂x
P

(1)

n (x, s) + (s + λ + µ1(x))P
(1)

n (x, s) = λP
(1)

n−1(x, s)

n = 1, 2, . . . , (4.6)
∂

∂x
P

(1)

0 (x, s) + (s + λ + µ1(x))P
(1)

0 (x, s) = 0, (4.7)

∂

∂x
P

(2)

n (x, s) + (s + λ + µ2(x))P
(2)

n (x, s) = λP
(2)

n−1(x, s)

n = 1, 2, . . . (4.8)
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∂

∂x
P

(2)

0 (x, s) + (s + λ + µ2(x))P
(2)

0 (x, s) = 0, (4.9)

∂

∂x
P

(3)

n (x, s) + (s + λ + µ3(x))P
(3)

n (x, s) = λP
(3)

n−1(x, s)

n = 1, 2, . . . (4.10)
∂

∂x
P

(3)

0 (x, s) + (s + λ + µ3(x))P
(3)

0 (x, s) = 0, (4.11)

(s + λ)Q(s) = 1 + βV 0(s) + (1 − θ)q

∞∫
0

P
(1)

0 (x, s)µ1(x)dx

+(1 − θ)q

∞∫
0

P
(2)

0 (x, s)µ2(x)dx

+(1 − θ)q

∞∫
0

P
(3)

0 (x, s)µ3(x)dx,

(4.12)

(s + λ + β)V 0(s) = θq

∞∫
0

P
(1)

0 (x, s)µ1(x)dx + θq

∞∫
0

P
(2)

0 (x, s)µ2(x)dx

+θq

∞∫
0

P
(3)

0 (x, s)µ3(x)dx, (4.13)

(s + λ + β)V n(s) = λV n−1(s) + θp

∞∫
0

P
(1)

n−1(x, s)µ1(x)dx

+θp

∞∫
0

P
(2)

n−1(x, s)µ2(x)dx + θp

∞∫
0

P
(3)

n−1(x, s)µ2(x)dx

+θq

∞∫
0

P
(1)

n (x, s)µ1(x)dx + θq

∞∫
0

P
(2)

n (x, s)µ2(x)dx

+θq

∞∫
0

P
(3)

n (x, s)µ3(x)dx, n = 1, 2, . . . , (4.14)
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P
(1)

0 (0, s) = Q(s)λp1 + p1βV 1(s)

+p1(1 − θ)p

∞∫
0

P
(1)

0 (x, s)µ1(x)dx

+p1(1 − θ)p

∞∫
0

P
(2)

0 (x, s)µ2(x)dx

+p1(1 − θ)p

∞∫
0

P
(3)

0 (x, s)µ3(x)dx

+p1(1 − θ)q

∞∫
0

P
(1)

1 (x, s)µ1(x)dx

+p1(1 − θ)q

∞∫
0

P
(2)

1 (x, s)µ2(x)dx

+p1(1 − θ)q

∞∫
0

P
(3)

1 (x, s)µ3(x)dx, (4.15)

P
(1)

n (0, s) = p1βV n+1(s)

+p1(1 − θ)p

∞∫
0

P
(1)

n (x, s)µ1(x)dx

+p1(1 − θ)p

∞∫
0

P
(2)

n (x, s)µ2(x)dx

+p1(1 − θ)p

∞∫
0

P
(3)

n (x, s)µ3(x)dx

+p1(1 − θ)q

∞∫
0

P
(1)

n+1(x, s)µ1(x)dx

+p1(1 − θ)q

∞∫
0

P
(2)

n+1(x, s)µ2(x)dx,

+p1(1 − θ)q

∞∫
0

P
(3)

n+1(x, s)µ3(x)dx n = 1, 2, . . . , (4.16)
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P
(2)

0 (0, s) = Q(s)λp2 + p2βV 1(s) + p2(1 − θ)p

∞∫
0

P
(1)

0 (x, s)µ1(x)dx

+ p2(1 − θ)p

∞∫
0

P
(2)

0 (x, s)µ2(x)dx + p2(1 − θ)p

∞∫
0

P
(3)

0 (x, s)µ3(x)dx

+ p2(1 − θ)q

∞∫
0

P
(1)

1 (x, s)µ1(x)dx + p2(1 − θ)q

∞∫
0

P
(2)

1 (x, s)µ2(x)dx

+ p2(1 − θ)q

∞∫
0

P
(3)

1 (x, s)µ3(x)dx, (4.17)

P (2)
n (0, s) = p2βV n+1(s) + p2(1 − θ)p

∞∫
0

P
(1)

n (x, s)µ1(x)dx

+ p2(1 − θ)p

∞∫
0

P
(2)

n (x, s)µ2(x)dx + p2(1 − θ)p

∞∫
0

P
(3)

n (x, s)µ3(x)dx

+ p2(1 − θ)q

∞∫
0

P
(1)

n+1(x, s)µ1(x)dx + p2(1 − θ)q

∞∫
0

P
(2)

n+1(x, s)µ2(x)dx

+ p2(1 − θ)q

∞∫
0

P
(3)

n+1(x, s)µ3(x)dx, n = 1, 2, . . . , (4.18)

P
(3)

0 (0, s) = Q(s)λp3 + p3βV 1(s) + p3(1 − θ)p

∞∫
0

P
(1)

0 (x, s)µ1(x)dx

+ p3(1 − θ)p

∞∫
0

P
(2)

0 (x, s)µ2(x)dx + p3(1 − θ)p

∞∫
0

P
(3)

0 (x, s)µ3(x)dx

+ p3(1 − θ)q

∞∫
0

P
(1)

1 (x, s)µ1(x)dx + p3(1 − θ)q

∞∫
0

P
(2)

1 (x, s)µ2(x)dx

+ p3(1 − θ)q

∞∫
0

P
(3)

1 (x, s)µ3(x)dx, (4.19)
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P (3)
n (0, s) = p3βV n+1(s) + p3(1 − θ)p

∞∫
0

P
(1)

n (x, s)µ1(x)dx

+ p3(1 − θ)p

∞∫
0

P
(2)

n (x, s)µ2(x)dx + p3(1 − θ)p

∞∫
0

P
(3)

n (x, s)µ3(x)dx

+ p3(1 − θ)q

∞∫
0

P
(1)

n+1(x, s)µ1(x)dx + p3(1 − θ)q

∞∫
0

P
(2)

n+1(x, s)µ2(x)dx

+ p3(1 − θ)q

∞∫
0

P
(3)

n+1(x, s)µ3(x)dx, n = 1, 2, . . . . (4.20)

We multiply equations (24) and (25) by suitable powers of z, sum over n and use (19)

and simplify. We thus have after algebraic simplifications

∂

∂x
P

(1)

q (x, z, s) + (s + λ − λz + µ1(x))P
(1)

q (x, z, s) = 0. (4.21)

Performing similar operations on equations (26)–(29) and using (20) and (21), we have

∂

∂x
P

(2)

q (x, z, s) + (s + λ − λz + µ2(x))P
(2)

q (x, z, s) = 0, (4.22)

∂

∂x
P

(3)

q (x, z, s) + (s + λ − λz + µ3(x))P
(3)

q (x, z, s) = 0, (4.23)

Multiplying equations (31) and (32) by suitable powers of z, summing over n and using
(22), leads to the following after simplification:

(s + λ + β − λz)V (z, s) = θ(q + pz)

∞∫
0

P
(1)

q (x, z, s)µ1(x)dx

+θ(q + pz)

∞∫
0

P
(2)

q (x, z, s)µ2(x)dx

+θ(q + pz)

∞∫
0

P
(3)

q (x, z, s)µ3(x)dx. (4.24)

Next, we multiply both sides of equation (33) by z, multiply both sides of equation (34)

by zn+1, sum over n from 1 to ∞, add the two results and use (19)–(22). Thus we obtain
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after mathematical adjustments

zP
(1)

q (0, z, s) = p1λQ(s)[z − 1] + p1
[
1 − sQ(s)

] + βp1V (z, s)

+p1(1 − θ)(q + pz)

∞∫
0

P
(1)

q (x, z, s)µ1(x)dx

+p1(1 − θ)(q + pz)

∞∫
0

P
(2)

q (x, z, s)µ2(x)dx

+p1(1 − θ)(q + pz)

∞∫
0

P
(3)

q (x, z, s)µ3(x)dx. (4.25)

Similarly multiplying equations (35)–(38) by suitable powers of z and then adding, we
obtain,

zP
(2)

q (0, z, s) = p2λQ(s)[z − 1] + p2
[
1 − sQ(s)

] + βp2V (z, s)

+p2(1 − θ)(q + pz)

∞∫
0

P
(1)

q (x, z, s)µ1(x)dx

+p2(1 − θ)(q + pz)

∞∫
0

P
(2)

q (x, z, s)µ2(x)dx

+p2(1 − θ)(q + pz)

∞∫
0

P
(3)

q (x, z, s)µ3(x)dx, (4.26)

zP
(3)

q (0, z, s) = p3λQ(s)[z − 1] + p3
[
1 − sQ(s)

] + βp3V (z, s)

+p3(1 − θ)(q + pz)

∞∫
0

P
(1)

q (x, z, s)µ1(x)dx

+p3(1 − θ)(q + pz)

∞∫
0

P
(2)

q (x, z, s)µ2(x)dx

+p3(1 − θ)(q + pz)

∞∫
0

P
(3)

q (x, z, s)µ3(x)dx. (4.27)



14 S. Vanitha

Integrating equations (39), (40) and (41) between 0 and x, we obtain

P
(1)

q (x, z, s) = P
(1)

q (0, z, s) e
−(s+λ−λz)x−

x∫
0

µ1(t)dt

(4.28)

P
(2)

q (x, z, s) = P
(2)

q (0, z, s) e
−(s+λ−λz)x−

x∫
0

µ2(t)dt

(4.29)

P
(3)

q (x, z, s) = P
(3)

q (0, z, s) e
−(s+λ−λz)x−

x∫
0

µ3(t)dt

(4.30)

where P
(1)

q (0, z, s), P
(2)

q (0, z, s) and P
(3)

q (0, z, s) are given by equations (43), (44) and
(45). After integrating equation (46) with respect to x, we have,

P
(1)

q (z, s) = P
(1)

q (0, z, s)

[
1 − B1(s + λ − λz)

s + λ − λz

]
, (4.31)

where

B1(s + λ − λz) =
∞∫

0

e−(s+λ−λz)xdB1(x). (4.32)

Now from equation (46), after some simplifications and using equation (2), we obtain,

∞∫
0

P
(1)

q (x, z, s)µ1(x)dx = P
(1)

q (0, z, s)B1(s + λ − λz). (4.33)

We now integrate equation (47) with respect to x, to get

P
(2)

q (z, s) = P
(2)

q (0, z, s)

[
1 − B2(s + λ − λz)

s + λ − λz

]
, (4.34)

where

B2(s + λ − λz) =
∞∫

0

e−(s+λ−λz)xdB2(x). (4.35)

We see that by virtue of equation (47), we have,

∞∫
0

P
(2)

q (x, z, s)µ2(x)dx = P
(2)

q (0, z, s)B2(s + λ − λz). (4.36)

We now integrate equation (48) with respect to x, to get

P
(3)

q (z, s) = P
(3)

q (0, z, s)

[
1 − B3(s + λ − λz)

s + λ − λz

]
, (4.37)
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where

B3(s + λ − λz) =
∞∫

0

e−(s+λ−λz)xdB3(x). (4.38)

We see that by virtue of equation (48), we have,

∞∫
0

P
(3)

q (x, z, s)µ3(x)dx = P
(3)

q (0, z, s)B3(s + λ − λz). (4.39)

We now substitute the value of V (z, s) from equation (42) into equation (43), (44) and
(45) and also making use of equations (51), (54) and (57),we obtain after simplifications

zP
(1)

q (0, z, s) = p1λQ(s)[z − 1] + p1
[
1 − sQ(s)

] + βp1V (z, s)

+p1(1 − θ)(q + pz)P
(1)

q (0, z, s)B1(s + λ − λz)

+p1(1 − θ)(q + pz)P
(2)

q (0, z, s)B2(s + λ − λz)

+p1(1 − θ)(q + pz)P
(3)

q (0, z, s)B3(s + λ − λz), (4.40)

zP
(2)

q (0, z, s) = p2λQ(s)[z − 1] + p2
[
1 − sQ(s)

] + βp2V (z, s)

+p2(1 − θ)(q + pz)P
(1)

q (0, z, s)B1(s + λ − λz)

+p2(1 − θ)(q + pz)P
(2)

q (0, z, s)B2(s + λ − λz)

+p2(1 − θ)(q + pz)P
(3)

q (0, z, s)B3(s + λ − λz), (4.41)

zP
(3)

q (0, z, s) = p3λQ(s)[z − 1] + p3
[
1 − sQ(s)

] + βp3V (z, s)

+p3(1 − θ)(q + pz)P
(1)

q (0, z, s)B1(s + λ − λz)

+p3(1 − θ)(q + pz)P
(2)

q (0, z, s)B2(s + λ − λz)

+p3(1 − θ)(q + pz)P
(3)

q (0, z, s)B3(s + λ − λz). (4.42)

Further, from equation (42), the above equations (58), (59) and (60) can now be written
as (

g1 − βp1θ(q + pz)B1(s + λ − λz)

s + λ − λz + β

)
P

(1)

q (0, z, s)

=
[
p1(1 − θ)(q + pz)B2(s + λ − λz)

+ βp1θ(q + pz)B2(s + λ − λz)

s + λ − λz + β

]
P

(2)

q (0, z, s)
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+
[
p1(1 − θ)(q + pz)B3(s + λ − λz)

+ βp1θ(q + pz)B3(s + λ − λz)

s + λ − λz + β

]
P

(3)

q (0, z, s)

+p1λQ(s)[z − 1] + p1(1 − sQ(s)) , (4.43)

(
g2 − βp2θ(q + pz)B2(s + λ − λz)

s + λ − λz + β

)
P

(2)

q (0, z, s)

=
[
p2(1 − θ)(q + pz)B1(s + λ − λz)

+ βp2θ(q + pz)B1(s + λ − λz)

s + λ − λz + β

]
P

(1)

q (0, z, s)

+
[
p2(1 − θ)(q + pz)B3(s + λ − λz)

+ βp2θ(q + pz)B3(s + λ − λz)

s + λ − λz + β

]
P

(3)

q (0, z, s)

+p2λQ(s)[z − 1] + p2(1 − sQ(s)) . (4.44)

(
g3 − βp3θ(q + pz)B3(s + λ − λz)

s + λ − λz + β

)
P

(3)

q (0, z, s)

=
[
p3(1 − θ)(q + pz)B1(s + λ − λz)

+ βp3θ(q + pz)B1(s + λ − λz)

s + λ − λz + β

]
P

(1)

q (0, z, s)

+
[
p3(1 − θ)(q + pz)B2(s + λ − λz)

+ βp3θ(q + pz)B2(s + λ − λz)

s + λ − λz + β

]
P

(2)

q (0, z, s)

+p3λQ(s)[z − 1] + p3(1 − sQ(s)) . (4.45)

where

g1 = z − p1(1 − θ)(q + pz)B1(s + λ − λz) , (4.46)

g2 = z − p2(1 − θ)(q + pz)B2(s + λ − λz), (4.47)

g3 = z − p3(1 − θ)(q + pz)B3(s + λ − λz). (4.48)
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Next, we write equations (61), (62) and (63) in matrix form as


 h1(z) −u2(z) −k3(z)

−k1(z) h2(z) −u3(z)

−u1(z) −k2(z) h3(z)







P
(1)

q (0, z, s)

P
(2)

q (0, z, s)

P
(3)

q (0, z, s)




=

p1λQ(s)(z − 1) + p1(1 − sQ(s))

p2λQ(s)(z − 1) + p2(1 − sQ(s))

p3λQ(s)(z − 1) + p3(1 − sQ(s))


 . (4.49)

where

h1(z) = g1 − βp1θ(q + pz)B1(s + λ − λz)

s + λ − λz + β
, (4.50)

h2(z) = g2 − βp2θ(q + pz)B2(s + λ − λz)

s + λ − λz + β
, (4.51)

h3(z) = g3 − βp3θ(q + pz)B3(s + λ − λz)

s + λ − λz + β
, (4.52)

k1(z) = p2(1 − θ)(q + pz)B1(s + λ − λz)

+βp2θ(q + pz)B1(s + λ − λz)

s + λ − λz + β
, (4.53)

k2(z) = p3(1 − θ)(q + pz)B2(s + λ − λz)

+βp1θ(q + pz)B2(s + λ − λz)

s + λ − λz + β
, (4.54)

k3(z) = p1(1 − θ)(q + pz)B3(s + λ − λz)

+βp1θ(q + pz)B3(s + λ − λz)

s + λ − λz + β
, (4.55)

u1(z) = p3(1 − θ)(q + pz)B1(s + λ − λz)

+βp3θ(q + pz)B1(s + λ − λz)

s + λ − λz + β
, (4.56)

u2(z) = p1(1 − θ)(q + pz)B2(s + λ − λz)

+βp1θ(q + pz)B2(s + λ − λz)

s + λ − λz + β
, (4.57)

u3(z) = p2(1 − θ)(q + pz)B3(s + λ − λz)

+βp2θ(q + pz)B1(s + λ − λz)

s + λ − λz + β
. (4.58)

We solve the system (67) simultaneously for P
(1)

q (0, z, s), P
(2)

q (0, z, s) and P
(3)

q (0, z, s)
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and obtain

P
(1)

q (0, z, s) =

∣∣∣∣∣∣
p1λQ(s)(z − 1) + p1(1 − sQ(s)) −u2(z) −k3(z)

p2λQ(s)(z − 1) + p2(1 − sQ(s)) h2(z) −u3(z)

p3λQ(s)(z − 1) + p3(1 − sQ(s)) −k2(z) h3(z)

∣∣∣∣∣∣∣∣∣∣∣∣
h1(z) −u2(z) −k3(z)

−k1(z) h2(z) −u3(z)

−u1(z) −k2(z) h3(z)

∣∣∣∣∣∣
,(4.59)

P
(2)

q (0, z, s) =

∣∣∣∣∣∣
h1(z) p1λQ(s)(z − 1) + p1(1 − sQ(s)) −k3(z)

−k1(z) p2λQ(s)(z − 1) + p2(1 − sQ(s)) −u3(z)

−u1(z) p3λQ(s)(z − 1) + p3(1 − sQ(s)) h3(z)

∣∣∣∣∣∣∣∣∣∣∣∣
h1(z) −u2(z) −k3(z)

−k1(z) h2(z) −u3(z)

−u1(z) −k2(z) h3(z)

∣∣∣∣∣∣
,(4.60)

P
(3)

q (0, z, s) =

∣∣∣∣∣∣
h1(z) −u2(z) p1λQ(s)(z − 1) + p1(1 − sQ(s))

−k1(z) h2(z) p2λQ(s)(z − 1) + p2(1 − sQ(s))

−u1(z) −k2z p3λQ(s)(z − 1) + p3(1 − sQ(s))

∣∣∣∣∣∣∣∣∣∣∣∣
h1(z) −u2(z) −k3(z)

−k1(z) h2(z) −u3(z)

−u1(z) −k2(z) h3(z)

∣∣∣∣∣∣
,(4.61)

Now from equation (42) and using equations (51), (54) and (57), we obtain,

V q(z, s) =
[

θ(q + pz)

s + λ − λz + β

] [
P

(1)

q (0, z, s)B1(s + λ − λz)

+ P
(2)

q (0, z, s)B2(s + λ − λz) + P
(3)

q (0, z, s)B3(s + λ − λz)
]
.

(4.62)

where P
(1)

q (0, z, s), P
(2)

q (0, z, s) and P
(3)

q (0, z, s) are given by equations (77), (78) and
(79).

Thus P
(1)

q (z, s), P
(2)

q (z, s), P
(3)

q (z, s) and V (z, s) can be completely determined
from equations (49), (52), (55) and (80) respectively.

5. The Steady State Results

In this section, we shall derive the steady state probability distribution for our queueing
model. To define the steady state probabilities, we supress the argument t wherever it
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appears in the time-dependent analysis. This can be obtained by applying the well-known
Tauberian property,

lim
s→0

sf (s) = lim
t→∞f (t). (5.1)

In order to determine P
(1)

q (z, s), P
(2)

q (z, s), P
(3)

q (z, s) and V (z, s) completely, we
have yet to determine the unknown Q which appears in the numerators of the right hand
sides of equations (49), (52), (55) and (80) by using initial conditions (77), (78) and
(79) . For that purpose, we shall use the normalizing condition

P (1)
q (1) + P (2)

q (1) + P (3)
q (1) + V (1) + Q = 1. (5.2)

Thus multiplying both sides of equations (49), (52), (55) and (80) by s, taking limit
as s → 0, applying property (81), simplifying and using equations (77), (78) and (79),
we obtain,

P (1)
q (z) = P1(z)

D(z)
, (5.3)

P (2)
q (z) = P2(z)

D(z)
, (5.4)

P (3)
q (z) = P3(z)

D(z)
, (5.5)

V (z) =
[
θλQ(q + pz)(z − 1)

(λ − λz + β)

]
[

B1(λ − λz)P11(z) + B2(λ − λz)P22(z) + B3(λ − λz)P33(z)

D(z)

]

(5.6)

where

P1(z) = Q

[
p1h2(z)h3(z) − p1k2(z)u3(z) + p2u2(z)h3(z) + p3u3(z)u2(z)

+ p2k2(z)k3(z) + p3k3(z)h2(z)] [B1(λ − λz) − 1], (5.7)

P2(z) = Q

[
p2h1(z)h3(z) + p3h1(z)u3(z) + p1k1(z)h3(z) + p1u1(z)u3(z)

+ p3k1(z)k3(z) − p2u1(z)k3(z)] [B2(λ − λz) − 1], (5.8)

P3(z) = Q

[
p3h1(z)h2(z) + p2k2(z)h1(z) − p3u2(z)k1(z) + p2u1(z)u2(z)

+ p1k1(z)k2(z) + p1u1(z)h2(z)] [B3(λ − λz) − 1], (5.9)

D(z) =
∣∣∣∣∣∣

h1(z) −u2(z) −k3(z)

−k1(z) h2(z) −u3(z)

−u1(z) −k2(z) h3(z)

∣∣∣∣∣∣ , (5.10)

P11(z) = p1h2(z)h3(z) − p1k2(z)u3(z) + p2u2(z)h3(z) + p3u3(z)u2(z)

+p2k2(z)k3(z) + p3k3(z)h2(z), (5.11)
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P22(z) = p2h1(z)h3(z) + p3h1(z)u3(z) + p1k1(z)h3(z) + p1u1(z)u3(z)

+p3k1(z)k3(z) − p2u1(z)k3(z), (5.12)

P33(z) = p3h1(z)h2(z) + p2k2(z)h1(z) − p3u2(z)k1(z) + p2u1(z)u2(z)

+p1k1(z)k2(z) + p1u1(z)h2(z). (5.13)

It is easy to verify that for z = 1, the right hand sides of equations (83), (84), (85) and

(86) are indeterminate of the form
0

0
. Hence, we apply L’Hopital’s rule and obtain on

simplifying

P (1)
q (1) = p1λE(v1)Q

p1[q − λE(v1)] + p2[q − λE(v2)] + p3[q − λE(v3)] − θλ

β

, (5.14)

P (2)
q (1) = p2λE(v2)Q

p1[q − λE(v1)] + p2[q − λE(v2)] + p3[q − λE(v3)] − θλ

β

, (5.15)

P (3)
q (1) = p3λE(v3)Q

p1[q − λE(v1)] + p2[q − λE(v2)] + p3[q − λE(v3)] − θλ

β

, (5.16)

V (1) = θλQ

β

[
p1[q − λE(v1)] + p2[q − λE(v2)] + p3[q − λE(v3)] − θλ

β

] .

(5.17)

Then using equations (94) to (97) into (82) and simplifying, we obtain

Q =
p1[q − λE(v1)] + p2[q − λE(v2)] + p3[q − λE(v3)] − θλ

β

p1λE(v1) + p2λE(v2) + p3λE(v3) + p1[q − λE(v1)] + p2[q − λE(v2) + p3[q − λE(v3)] − θλ

β

.

(5.18)

We then substitute for Q from equation (98) into equations (49), (52), (55) and (80)

to completely determine P
(1)

q (z, s) , P
(2)

q (z, s), P
(3)

q (z, s) and V (z, s) in closed form.
Equation (98) also yields the steady state condition under which the steady state shall

exist. This condition is given by

λ

(
p1E(v1) + p2E(v2) + p3E(v3) + θ

β

)
< q. (5.19)

And hence the utilization factor, ρ of the system is given by

ρ =




p1λE(v1) + p2λE(v2) + p3λE(v3) + θλ

β

q


 . (5.20)
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where ρ < 1 is the stability condition under which the steady state results. Equation
(100) also give the probability that the server is idle.

6. The Mean Number in the System

LetLq denote the mean number of customers in the queue. Then, we have, Lq = d

dz
Pq(z)

at z = 1, where Pq(z) = P (1)
q (z) + P (2)

q (z) + +P (3)
q (z) + V (z) is obtained by adding

equations (83), (84), (85) and (86). Since Pq(z) is indeterminate of the form
0

0
at the

z = 1, we let

Pq(z) =
[
NR(z)

DR(z)

]
, (6.1)

where N(z) and D(z) respectively denote the numerator and the denominator of the right
of equation (101), where

NR(z) = Q
{
(λ − λz + β)

{
P11(z)

[
B1(λ − λz) − 1

]
+P22(z)

[
B2(λ − λz) − 1

] + P33(z)
[
B3(λ − λz) − 1

]}
+λθ(q + pz)(z − 1)

{[
B1(λ − λz)

]
P11(z)

+ [
B2(λ − λz)

]
P22(z) + [

B3(λ − λz)
]
P33(z)

}}
, (6.2)

DR(z) = (λ − λz + β)D(z), (6.3)

h1(z), h2(z), h3(z), k1(z), k2(z), k3(z), u1(z), u2(z), u3(z) are given by equations (68)−
(76) and D(z) is given by equation (90). Then we use the following well-known re-
sult in queueing theory (Kashyap and Chaudhry [10]). This is applied when Pq(z) is

indeterminate of the form
0

0
.

Lq = lim
z→1

d

dz
Pq(z) = P

′
q(1) = lim

z→1

D
′
(z)N

′′
(z) − N

′
(z)D

′′
(z)

2(D
′
(z))2

,

= lim
z→1

D
′
(1)N

′′
(1) − N

′
(1)D

′′
(1)

2(D
′
(1))2

. (6.4)

We carry out the required derivatives at z = 1, using the fact Bi(0) = 1, −B
′
i(0) = E(vi)

and B
′′
i (0) = E(v2

i ), i = 1, 2, 3, the second moment of the service time for the ith type
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of service. After a lot of algebraic simplifications, we obtain

N
′
(1) = λβ

[
p1E(v1) + p2E(v2) + p3E(v3) + θ

β

]
Q, (6.5)

N
′′
(1) = Q

{
λ2β

[
p1E(v2

1) + p2E(v2
2) + p3E(v2

3)
]

+2βλ [p1E(v1) + p2E(v2) + p3E(v3)]

−2λ2 [p1E(v1) + p2E(v2) + p3E(v3)]

+2θλ [(2 − q) + p1λE(v1) + p2λE(v2) + p3λE(v3)]} ,

(6.6)

D
′
(1) = β

[
q − p1λE(v1) − p2λE(v2) − p3λE(v3) − θλ

β

]
, (6.7)

D
′′
(1) = β

{
2

[
q − p1λE(v1) − p2λE(v2) − p3λE(v3) − θλ

β

]
−λ2 [

p1E(v2
1) + p2E(v2

2) + p3E(v2
3)

]
−2λp [p1E(v1) + p2E(v2) + p3E(v3)] − 2λpθ

β

−2λ2θ

β
[p1E(v1) + p2E(v2) + p3E(v3)] − 2λ2θ

β2

−2λ

β

[
q − p1λE(v1) − p2λE(v2) − p3λE(v3) − θλ

β

]}
. (6.8)

Using equations (105) to (108) into (104), we have obtained Lq in closed form, where
Q has been found in equation (98).

Further, we find the average system size L using Little’s formula. Thus we have

L = Lq + ρ (6.9)

where Lq has been found in equation (104) and ρ is obtained from equation (100) as

ρ = 1 − Q. (6.10)

7. The Mean Waiting Time

Let Wq and W denote the mean waiting time in the queue and the system respectively.
Then using Little’s formulas, we obtain,

Wq = Lq

λ
, (7.1)

W = L

λ
. (7.2)

where Lq and L have been found in equations (104) and (109).
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8. Numerical Example

In order to see the effect of the parameters θ, p1, p2 and p3 on some queue charac-
teristics such as server’s idle time Q, the system’s utilization factor ρ, the average
queue size Lq , the average system size L, the average waiting time in the queue Wq

and the average waiting time in the system Ws , we choose the arbitrary values of
the parameters λ, µ1, µ2, µ3, p1, p2, p3, θ and β such that the steady state condition
(70) is satisfied. The following table has been computed by using the fixed values of
µ1 = 7, µ2 = 9, µ3 = 11, λ = 2, β = 9 and varying value as of p1, p2, p3 and θ .

The table shows that for a fixed pair of values p1, p2 and p3 as θ increases then the
server’s idle timeQdecreases, the system’s utilization factorρ increases andLq, Ls, Wq, Ws

all increase as it should be.

θ p1 p2 p3 Q ρ Lq Ls Wq Ws

0.0 0.0 0.1 0.9 .962963 .309764 .119983 .449135 .069686 .224568
0.1 0.2 0.7 .878307 .333814 .164679 .503747 .084966 .251874
0.2 0.3 0.5 .793651 .357864 .207427 .561368 .101752 .280684
0.3 0.4 0.3 .708995 .381914 .247785 .622351 .120218 .311176
0.4 0.5 0.1 .624339 .405964 .285384 .687103 .140570 .343552

0.2 0.0 0.1 0.9 .555556 .383838 .268168 .652006 .134084 .326003
0.1 0.2 0.7 .531506 .407888 .310793 .718682 .155397 .359341
0.2 0.3 0.5 .507456 .431938 .357842 .789780 .178921 .394890
0.3 0.4 0.3 .483406 .455989 .409901 .865890 .204951 .432945
0.4 0.5 0.1 .459356 .480039 .467666 .947705 .233833 .473852

0.4 0.0 0.1 0.9 .481482 .457913 .432164 .890077 .216082 .445038
0.1 0.2 0.7 .457432 .481963 .491937 .973899 .245968 .486950
0.2 0.3 0.5 .433381 .506013 .558466 1.064479 .279233 .532239
0.3 0.4 0.3 .409331 .530063 .632790 1.162852 .316395 .581426
0.4 0.5 0.1 .385281 .554113 .716168 1.270280 .358084 .635140

0.6 0.0 0.1 0.9 .407407 .531987 .648073 1.180060 .324037 .590030
0.1 0.2 0.7 .383357 .556037 .733527 1.289564 .366764 .644782
0.2 0.3 0.5 .359307 .580087 .829872 1.409958 .414936 .704979
0.3 0.4 0.3 .335257 .604137 .939092 1.543228 .469546 .771614
0.4 0.5 0.1 .311207 .628187 1.063685 1.691871 .531843 .845936

0.8 0.0 0.1 0.9 .333333 .606061 .945178 1.551239 .472589 .775619
0.1 0.2 0.7 .309283 .630111 1.071879 1.701990 .535940 .850995
0.2 0.3 0.5 .285233 .654161 1.217540 1.871701 .608770 .935850
0.3 0.4 0.3 .261183 .678211 1.386412 2.064622 .693206 1.032311
0.4 0.5 0.1 .237133 .702261 1.584119 2.286380 .792059 1.143190

Acknowledgement

The author thanks the Management of SSN College of Engineering for providing the
necessary requirements during the preparation of this paper.



24 S. Vanitha

References

[1] Y. Baba, On the MX/G/1 queue with vacation time, Operation Research Letters,
5 (1986), 93–98.

[2] A. Badamchi Zadeh and G.H. Shankar, A two phase queue system with Bernoulli
feedback and Bernoulli schedule server vacation, Information and Management
Sciences, 19 (2008), 329–338.

[3] A. Borthakur and G. Chaudhury, On a batch arrival Possion queue with generalised
vacation, Sankhya Ser.B, 59 (1997), 369–383.

[4] G. Chaudhury, An MX/G/1 queueing system with a set up period and a vaction
period, Questa, 36 (2000), 23–28.

[5] B.D. Choi and K.K. Park, The M/G/1 retrial queue with Bernoulli schedule,
Queueing Systems, 7 (1990), 219–228.

[6] M. Cramer, Stationary distributions in a queueing system with vaction times and
limited service, Queueing Systems, 4 (1989), 57–68.

[7] B.T. Doshi, Queueing systems with vacations-a survey, Queueing Systems, 1
(1986), 29–66.

[8] B.T. Doshi, Conditional and unconditional distributions for M/G/1 type queues
with server vacation, Questa, 7 (1990), 229–252.

[9] S. Fuhrmann, A note on the M/G/1 queue with server vactions, Questa, 31 (1981),
13–68.

[10] B.R.K. Kashyap and M.L. Chaudhry, An introduction to Queueing theory, Kingston,
Ontario, 1988.

[11] J. Keilson and L.D. Servi, Oscillating random walk models for G/G/1 vacation
systems with Bernoulli schedules, Journal of Applied Probability, 23 (1986), 790–
802.

[12] Y. Levi and U. Yechilai, An M/M/s queue with server vactions, Infor., 14 (1976),
153–163.

[13] K.C. Madan, On a MX/Mb/1 queueing system with general vacation times, Inter-
national Journal of Information and Management Sciences, 2 (1991), 51–61.

[14] K.C. Madan, An M/G/1 queue with optional deterministic server vacations,
Metron, 7 (1999), 83–95.

[15] K.C. Madan and R.F. Anabosi, A single server queue with two types of service,
Bernoulli schedule server vacations and a single vacation policy, Pakistan Journal
of Statistics, 19 (2003), 331–342.

[16] K.C. Madan and G. Choudhury, A two stage arrival queueing system with a mod-
ified Bernoulli schedule vacation under N-policy, Mathematical and Computer
Modelling, 42 (2005), 71–85.



M/G/1 Feedback queue with three types of service 25

[17] E. Rosenberg and U. Yechiali, The MX/G/1 queue with single and multiple vaca-
tions under LIFO service regime, Operation Research Letters, 14 (1993), 171–179.

[18] H. Takagi, Queueing Analysis: A foundation of performance evalution, Vol 1, North
Holland, Amsterdam, 1993.

[19] H. Takagi, Time dependent process of M/G/1 vacation models with exhaustive
service, Journal of Applied Probability, 29 (1992), 418–429.




	a4 blank.pdf
	Page 1


