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Abstract

Combined heat and mass transfer on mixed convection non-similar flow of
electrically conducting nanofluid along a permeable vertical plate in the
presence of thermal radiation is investigated. The governing partial
differential equations of the problem are transformed into a system of non
linear ordinary differential equations by applying the Sparrow—Quack-—
Boerner local non-similarity method (LNM). Furthermore, the obtained
equations are solved numerically by employing the Fourth or fifth order
Runge Kutta Fehlberg method with conjunction to shooting technique. The
profiles of flow and heat transfer are verified by using five types of nanofluids
of which metallic or nonmetallic nanoparticles, namely Copper (Cu), Alumina
(ALO3), Copper oxide (CuO), silver (Ag) and Titanium (TiO;) with a water-
based fluid. Rosseland approximation model on black body is used to
represent the radiative heat transfer. Effects of thermal radiation, buoyancy
force parameters and volume fraction of nanofluid on the velocity and
temperature profiles in the presence of suction/injection are depicted
graphically. Comparisons with previously published works are performed, and
excellent agreement between the results is obtained. The conclusion is that the
flow fields is affected by these parameters.

Key words: Nanofluids, local nonsimilarity method, mixed convection,
magnetic field, thermal radiation.
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1. INTRODUCTION

The thermal conductivity of heating or cooling fluids is a very important property in
the development of energy-efficient heat transfer systems. In all processes involving
heat transfer, the thermal conductivity of the fluids is one of the basic properties taken
account in designing and controlling the process [1]. However, the traditional pure
liquid heat transfer medium has a low thermal conductivity, which limits the heat
transfer enhancement. Therefore, it is necessary to prepare a higher thermal
conductivity and more efficient heat transfer medium. Scientific breakthrough has
been made by Choi in 1995 when for the first time he introduced the term
“Nanofluids”. Nanofluids are a new class of heat transfer fluids with substantially
higher conductivities. These fluids are developed by suspending nanoscale metallic or
nonmetallic particles in the base fluid [2]. In recent years, studies on nanofluids has
been receiving a lot of attention worldwide due to its unique properties which make
them potentially useful in many applications in heat transfer, including
microelectronics, fuel cells, pharmaceutical processes, and hybrid-powered engines
[3]. Many studies on nanofluids are being conducted by talented researchers such as
Abu-Nada [4], Tiwari and Das [40], Maiga et al. [5], Polidari et al. [6], Oztop and
Abu-Nada [7], Nield and Kuznetsov [8], Kuznetsov and Nield [9], Muthtamilselvan et
al. [10] and Yacob et al. [11].

Magnetohydrodynamic (MHD) is the study of electrically conducting fluids as they
move in a magnetic field. As the magnetic field cutting the moving fluid changes, an
electric current is induced in the fluid [12]. The study of MHD flow and heat transfer
are deemed as of great interest due to the effect of magnetic field on the boundary
layer flow control and on the performance of many systems using electrically
conducting fluids. Some of the engineering applications are in MHD power
generators, plasma studies, cooling of nuclear reactor, gas turbines, geothermal energy
extractions, purifications of metal from non-metal enclosures, polymer technology,
the boundary layer control in aerodynamics, crystal growth and metallurgy [13].
Magnetic nanofluid is a unique material that has both the liquid and magnetic
properties. Many of the physical properties of these fluids can be tuned by varying
magnetic field [3]. As the magnetic nanofluids are easy to manipulate with an external
magnetic field, they have been used for a variety of studies. Magneto-hydrodynamic
flow and heat transfer of electrically conducting and heat generating fluids through
and over different types of modes, geometries and boundary conditions are research
subjects that have interested and attracted many investigators in recent years. In free
convection, Hamad et al. [14] discussed the problems of magnetic field effects on free
convection flow of a nanofluid past a semi-infinite vertical flat plate. Study on
boundary layer flow of a nanofluid over a permeable vertical plate in the presence of
magnetic field, heat generation or absorption, suction or injection, Brownian motion
of particles and thermophoresis effects have been studied by Chamka and Aly [15].
Mohammed [16] has investigated MHD free convection of a nanofluid over a vertical
flat plate taking into account Newtonian heating boundary condition. While in forced
convection, Wubshet Ibrahim and Shanker [17] have analyzed the boundary layer
flow and heat transfer over a permeable stretching sheet due to a nanofluid with the
effects of magnetic field, slip boundary condition and thermal radiation. By extending
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the work of Makinde and Aziz [18] has been investigated numerically the MHD
laminar boundary layer slip flow of an electrically conducting nanofluid over a
convectively heated permeable moving linearly stretching sheet taking in account the
effects of Brownian motion, thermophoresis, magnetic field, and heat
generation/absorption. Abdel-Gaied and Hamad [19] analyzed steady MHD forced
convection flow of alumina-water nanofluid on moving permeable vertical flat plate
with convective surface boundary condition. Meisam Habibi Matin and Pouyan
Jahangiri [20] studied the effects of suction-injection and viscous dissipation on
forced convection boundary layer MHD flow of a nanofluid over a permeable
stretching. On the effect of MHD flow of nanofluids, although there are many studies
regarding the natural and forced convections regime, there are only a few regarding
the mixed convection regime. Chamkha et al [15] studied the flow of mixed
convection MHD flow of a nanofluid past a vertical stretching permeable surface in
the presence of magnetic field, heat generation or absorption, thermophoresis,
Brownian motion and suction or injection effects. Recently, the study on the effect of
heat source/sink on steady MHD mixed convection boundary layer flow over a
vertical permeable surface embedded in a porous medium saturated by a nanofluid
was presented by Mohammad Mehdi Keshtkar et al [21].

At high operating temperature, thermal radiation effect becomes significantly very
important and cannot be ignored. Many engineering processes occur at high
temperatures and hence the knowledge of thermal radiation plays a major role in
designing pertinent equipment. As has been pointed out by previous scholars,
magnetic nanofluid has many applications such as in magnetofluidic leakage-free
rotating seals, magnetogravimetric separations, acceleration/inclinations sensors,
aerodynamic sensors (differential pressure, volumetric flow), nano/micro-structured
magneto rheological fluids for semi active vibration dampers, biomedical applications
in plant genetics and veterinary medicine [16]. In view of these, several researchers
have made contributions to the study of MHD flow of nanofluid with thermal
radiation effect. Khan et al. [22] presented a similarity analysis for steady boundary
layer flow of a nanofluid past a stretching sheet with the influence of magnetic field
and thermal radiation. Poornima and Bhaskar Reddy [23] studied the simultaneous
effects of thermal radiation and magnetic on heat and mass transfer flow of nanofluids
over a non-linear stretching sheet. The study focuses on the numerical solution of a
steady free convective boundary-layer flow of a radiating nanofluid along a non-linear
stretching sheet in the presence of transverse magnetic field. Aini Mat Nor Azian et
al. [24] theoretically studied the steady magneto-hydrodynamic (MHD) mixed
convection boundary layer flow of a stretching vertical heated sheet in a power law
nanofluid with thermal radiation effect. Stanford Shateyi and Jagdish Prakashet al.
[25] have carried out the analysis of MHD boundary layer flow of a nanofluid over a
moving surface in the presence of thermal radiation. Reddy [26] examined the
influence of MHD and heat radiation on boundary layer flow of nanofluid over a
stretching surface with velocity slip and convective boundary conditions. Very
recently, Eshetu Haile and Shankar [27] investigated simultaneously the effects of
magnetic field, thermal radiation, viscous dissipation, Ohmic effects and permeability
of surfaces on heat transfer of nanofluid over a moving flat plate.
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Many problems in boundary-layer flow and heat transfer are nonsimilarity.
Nonsimilarity of boundary layers may stem from a variety of causes such as variation
in wall temperature, variation in free-stream velocity, surface mass transfer, effect of
suction or injection of fluid at the wall, the buoyancy force effect, inclination angle
effects, etc [28]. The nonsimilarity of boundary layer can also arise from by more than
one factor. There are various numerical methods have been proposed to deal with
such nonsimilar boundary layer problems and among them, the most well-known
method is the local nonsimilarity method which was initiated by Sparrow et al. [28].
Since then it has been applied by several investigators to solve various non similar
boundary layer problems. Muhaimin and R. Kandasamy [29] presented a study
addresses the chemical reaction and magnetic effects on a nonlinear boundary-layer
flow over a porous wedge in the presence of the buoyancy force and non-uniform
pressure gradient. Akgu and Pakdemirli [30] investigated the effect of different types
of nanoparticles on the heat transfer from a continuously moving stretching surface
with power-law velocity and temperature.

However, to the best of authors’ knowledge, no attempt has been made to solve the
problem of non-similar MHD mixed convective heat transfer flow of nanofluids over
a permeable vertical plate in the presence of thermal radiation effect using the local
nonsimilarity method (LNM). Hence, the current research presents a local
nonsimilarity method to obtain the general solution of a nonsimilarity partial
differential equation of the problem with Runge-Kutta-Gill with shooting methods.
This study extended the work by Watanabe [31] to the case of nanofluids taking into
consideration of magnetic and thermal radiation effects. It is, thus, expected that the
local nonsimilarity approach should yield more accurate results for the velocity and
temperature fields than those of the local similarity model.

2. MATHEMATICAL ANALYSIS

A two-dimensional steady magnetohydrodynamic mixed convective boundary-layer
flow of a viscous incompressible nanofluid over an isothermal vertical plate is
considered in Fig.1. The fluid is assumed to be Newtonian, electrically conducting,
constant fluid properties and moves on the top of the surface with a constant velocity
Up. We also assumed that there are thermal equilibrium between the base fluid (i.e.
water) and the nanoparticles and no slip occurs. A uniform magnetic field of strength
By is applied normal to the plate. In this current work, the magnetic Reynolds number
is assumed small, as is the case in most practical applications, and therefore the
induced magnetic field is considered insignificant. Applying the nanofluid model
proposed by Tiwari and Das [32] and employing the Boussinesq approximation, the
governing equations describing the problem may be written as

du dv 0 1

ey * dy B (oB) W
fu  fu 1 [ g*u PR e oB}

u—4v—=—|puyr— gT-T)—-— -1 @
x 8y purl 0¥l pus Puf
aT aT 8T 1 dq

u—+v (3)

ooy oy GG, oy
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subject to the boundary conditions:

u=0,v=-v (constant), T=Tyaty=0: 4)
U=Uy,, T=Teaty— = (5)
A constant suction is imposed at the plate surface, as shown in Fig.1.

A permechle wall

A A

¥n

L. ]

L

Fig.1: Physical model and flow analysis

In Equs. (1) — (5), u and v are the corresponding velocity components in the x and y
directions, vy is the suction velocity (constant). U, and T. are the velocity and
temperature of free stream at outer edge of boundary layer and wy is a thermal

diffusivity of nanofluid which are defined as
I'{I:If
Upf= ———— (6)

(pCp)
The dynamic viscosity of the nanofluid, w,s and the density of the nanofluid, p.¢ are
given by Brinkman [33] as .
f

I:'uf={1_¢":]l:'f+ eps . Hufzﬂ_—q}:.s (7

with ¢ is the nano-particle volume fraction of the nanofluid, pf is the density of the
base fluid, p,, is the density of the solid particle and w is the viscosity of the base fluid
[34]. Following the Maxwell-Garnetts model, the effective thermal conductivity of the

nanofluid is given as [35]
kpr (kg + 2ke) — 2 (ke — k)

ke (ks + 2kg) + o(ky— ky) ®)
and the heat capacitance of the nanofluid (pc,) is defined as
(pCp) = (1 — @)pCy ), + @(pCy), @)

The subscripts f, s and nf in Equs. (6) — (9) denote properties of base fluid, nano-
particles and nanofluid respectively. Under the concept of boundary layer theory, the
thickness of boundary layer, &(x) is defined as
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5(x) = ‘\JIE (10}

u .
with dimensionless varable o= f (n).

=

Following Watanabe [31] , we took the set of dimensionless transformations as
Up ! (T-T.)

$Gem) = (vpxl) 2Gem), =V(»f_xJ » 86 =7 (11)
The continuity equations, Eq.(1) is identically satisfied by defining a stream function
W= y) such that

u= E andv = .
The velocity components can be expressed as

IR A R LALLE: 3)

e e

with g and p are defined as

qlx) = (vxUy) "z ,px) = {%) ”

The radiative heat flux, g, is described by Rosseland approximation such as
_ 40, 9T*

T =3 3y (12)
where o; and k; are the Stefan Boltzmann constant and the mean absorption
coefficient, respectively. Assuming that the temperature differences within the flow
are sufficiently small, the term T# can be expressed in a simpler way by using a

Taylor’s series as following approximation

T8 = (1 — n)TE + nT2IT (13)
Using eq. (13), we have [36]

dg, _ 40, 8°T* 16130, 8°T i

gy 3k, 8y? 3k, dy? (14)

In order to transform Equs. (2) and ( 3) into ordinary differential equations, we
substitute variables Equs. (6)-(9) and (11)-(14) into the system thus obtaining the
following syster? of equations

W 1, .
£ S+ 58 — M(E — 1)

-9 [1-0+o(2)]

[ e ar e
E[ﬂn agdn ﬂ_E#I ()
1 Gf) - 1 E[ﬂfﬂa a8 (16)
Pr (oC, 7{‘q+1] TN+ 1 e amat
[1 et (pCp) J
where it has been recognized from the literature [37] that a buoyancy parameter
0 = 53

which in this problem it is also the nonsimilarity variable. = 0 is for buoyancy that
assisting the flow and & = 0 for buoyancy opposing the force flow. The parameters are
defined as

_ oBix

B Upgs

(Magnetic parameter)
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_ EE{TW' — T Jw

Iy 2 { Grashof mmnber)
£
U.x
Re, = {Beynolds mumber)
VE
v,
Pr = - (Prandt] mumber)
o
160, T2
N=—= { Thermal radiation parameter)
3k ke

Noted that when & = 0, there is no buoyancy force and the system reduce to pure force
convection problem. The transformed boundary conditions are

. af
n=0: fE0l=0, E{E,U]=25—2EB—E, a0 =1

n—ow: flg=) =1, 8E=)=0 (17)
where prime denote differentiation with respect to n and s (suction parameter) is
defined as

VpX

(veUx) ,

such that (s = 0) and ( s = 0) for an impermeable surface. We may observed that after
transformation, Equs. (15)-(17) still containing &/8%. It is obvious that this problem is
a nonsimilarity boundary layer problem and need to be solved using local
nonsimilarity solution method.

5

3. LOCAL NONSIMILARITY METHOD

One frequently-used concept in the solution of nonsimilarity boundary layers is the
principle of local similarity. According to this concept, the right-hand sides of
equations (15) and (16) are assumed to be sufficiently small so that it may be
approximated by zero, resulting a system of ordinary differential equations and the
computational task is simplified [28]. Therefore, the local similarity solution or the
first level of truncation is computationally attractive but leads to numerical results of
uncertain accuracy. This is due to the uncertainty on whether to neglect the right-hand
side of the equations or not when & is not small [38]. In order to overcome such a
drawback, Sparrow and Quack [28] and Sparrow and Yu [39] presented the local non-
similarity method in obtaining the solutions for the non-similar boundary layer
equations. In obtaining the local non-similarity solution of equations (15)-(17), first,
let eliminate the presence of term /8% by defining the new dependent variables as

af a8 dg G

E:ﬂ—g:gpza—g_,z=a_§ and xzﬂ_ﬁ {18:]
After substitution variables (18), Equations (15) and (16) become
1 w1, .
- ~f +5ff + 50 — M({f — 1) = &lfg’ — gl (19)
{1—¢-J*-EE[:£)—¢-+ o)) 2
1 ke . 1 . 1
— S Bf= tlfp — 8l (20)
Pr [1 o+ frzzpﬂ 2(N + 1) (N + 1)
Fepd

and its boundary conditions
f50)=0, fl5,0) = 2s — 25.g(:.0), 8(5,0) =1,



3960 Radiah Mohamad et al

file) =1, 8(5=) =0 (21)
Since gand ¢ represent two additional unknown functions, it is necessary to deduce
two more equations for determining the g and ¢. Subsidiary equations for g and ¢ and
their boundary conditions are derived by taking the derivatives of equations (19 & 20)
and its boundary conditions Equ (17) vlwth respect to . This leads to

{1_¢']"5[1—¢-+q:(pj]g + - Fg+ 55 +8 +5p— Mg —fg

(= =tlgg +fz - Eg" —f'2] (22)
l ke ¢+ ! [1 fip —fip -I- E g]
Pr (pCp N+1l2
[1 RS J .
=mﬁ[fp§' +fx—gp — 0z (23)
gE0=0: 30 +22E60=0;: Eo=0;
gl =0: @lk=)=0 (24)

Equations (22)-(24) serve as auxiliaries to the governing equations (Equs. (19)-(21). It
should be pointed out that this form of local non-similarity solutions is also known as
the second level of truncation or also referred as two-equation local nonsimilarity
model [28]. To carry this method to the third level of truncation (or three-equation
model), in a similar manner, we differentiated the auxiliary equations (Equs. (22)-(24)
with respect to &, while the governing equations and their boundary conditions are
retained without approximation [39]. This yield the following equations and boundary
conditions

1 . 5., 1., :
- g +3gg +-fz+-fe +2¢p +5— M=z
-0 [1-¢+0(2)] 2 772
2gg — 2z = [3" 22g" + £ Fa—z] 25
—2gg -2z = 5|35z —gz — 228" + PP (25)
1 (%FE) ; 1 [3. 1, e — IF SEIf]
Pr (p., Xty 3Pet o — 20 — A +562
1 B
={N+1JE[E:{+LPZ—7’Z¢P -8+ B_E_Eﬂﬁ (26)

z(50) = 0; 5z(50) + EE'?E{E’ 0)=0; x(&0) =0;

z(Ex) =0; x{E=)=0 (27)
In order to complete the formulation of the three-equation model, following Chen

[40], terms involving £ aE E and ﬁ‘:—’é are deleted from equations (25)-(27). The
rationale for this reduction is S|milar to the concept in deriving the local similarity
model but with a fundamental difference in the outcome. In local similarity model, it

was postulated that derivatives involving /3% are very small when & is not small.
Similarly, in reducing Equs. (25)-(27), it was postulated that the derivatives of the
auxiliary functions [a%(a],a%(z‘] and aiE{x]] are sufficiently small for £ values not near

zero so that they may be neglected [39]. In the case of local similarity model, the
outcome is that a part of the momentum and energy equations itself is lost, but for the
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local non-similarity approach, the reduction is introduced in a auxiliary equations
(Equs.(25)-(27), so that the nonsimilarity terms in the governing equations are
retained. As a result the local nonsimilarity approach would yield more accurate
results compared to the local similarity model [41]. Therefore, the governing
equations and |ts auxiliary equation could be brought together as

1
- £ + ff' 4+ 50 — M(f — 1) = &lfg’ — gf'] (28)

{1—¢-J*-5[1—¢-+ o ()]

()

™ ; 1 , 1
— B+ Bf= tlfp — Bl (20)
(pCpl, 201 I
P[1_¢+¢_[|:E J 2(N+1) N+ 1)
1

P S Ca
. 75 +-feg+-fg +8+Ep—Mg —fg
a-@[1-o+o(2)]” 2 2

o =tgg +fz —gg — f"z] (30)
1 (kr) N 1 [lr" ¢ + E ]
= i .y p —fop g
P[1_¢_+¢[chj M+l
1
1 HJFHE[LPE +Fx gp —0z] (31)

] .
- - z +3gg -I——E'z-l——f'z +2p 45— Mz
-9 [1-¢+0(2)] 22

—2gg —2fz = El3gz — gz — 2zg"] (32
1 ()

il X+ 1 [
P[ (ppJ (N +1)

.1, . ]
3Lpg+;l=x — 2 —2Fx+;ﬂ“z]
1=et+erey

1
{‘1+1]E[ 2gx+ 9z — 2z — gx1 (33)

subject to the boundary conditions

fE0) =0, A0 =2s— 25500, BE0 =1 fE=)=1, 8E=x)=0

g0 =0;3gG0) +262E0=0; o0 =0; glE=)=0; =) =0

z(£0) =0; SzE0 =0; xE&0=0; z(Ex)=0; x(Ex)=0 (34)
Since the values of the problem parameters are given, these resulting system of
equations resembles as a system of ordinary differential equations for function f and 6
that contain a parameter £ which also being treated as buoyancy force. Whether the
solution is to be carried out at the first, second or third level of truncation, functions of
interest are f(z.n). 8(%.m) and their derivatives. The major physical quantities of interest
are the local skin friction coefficient and the local Nusselt number which are

respectively defined by [42]
_ Ty _ h; x
| Cr= UL Nu= - 5 (33)
with =, , b, and k; are the surface shear stress, heat transfer coefficient and thermal
conductivity of fluid respectively. Also given that

du Qo
Tw = HDE(EJ and hy, = (T.—T.)
Y y=p w @

(36)



3962 Radiah Mohamad et al

where the wall (or surface) heat flux is defined as aq,, = —knf(j—;] . Both quantities,
¥=0

the local skin friction coefficient and the local Nusselt number can be written in term
of velocity gradient and temperature gradient respectively as
_ 1 ({50 _ kne8E0)
TA-9F re” T ki ReY

(37)

Ce

4. RESULTS AND DISCUSSION

In the present investigation, the results are obtained by two different methodologies
namely the Runge-Kutta-Gill integration scheme in conjunction with the shooting
method and the three-equation local nonsimilarity model method. The two-point
boundary value problem of the non similar system of ordinary differential equations
has been obtained by the Falkner-Skan transformation. The results are presented
graphically for dimensionless velocity and temperature distribution for various
prescribed parameters, namely the magnetic parameter M, thermal radiation
parameter N, nanoparticles volume fraction ¢, suction parametes s and the buoyancy
parameter £. The validation of the present results has been verified with the case of a
regular Newtonian fluid (¢ =0} and no suction/ injection, no magnetic effect and no
thermal radiation, which first studied by Minkowycz and Sparrow [43]. We have
compared steady-state results on skin friction, "oy and the rate of heat transfer, —a'(0)
for various value of & The results are found in excellent agreement and the
comparisons are shown in Table 1.

Table 1: Comparison of the values of 'z 07 and —&'(z, 0 for various values of &.

£ = Gr,/Rel Minkowycz and Sparrow [43] Present work
£ (£0) —6 (% 0) £ (£0) —6 (% 0)

0 0.33206 0.29268 0.3320573 | 0.2926804
0.4 0.73916 0.35774 0.7391622 | 0.3577421
1.0 1.21795 0.41054 1.2179529 | 0.4105355
1.5 1.56566 0.44106 1.5656630 | 0.4410137
2.5 2.18819 0.48619 2.1881869 | 0.4861908
5.0 3.52696 0.56067 3.5269162 | 0.5606733
7.0 4.47647 0.60283 4.4764563 | 0.6028282

Five different types of nanoparticles were considered as listed in Table 2, with water
as the base fluid. Thermophysical properties of the nanoparticles and base fluid are
listed in Table 2 [14]. Following Oztop and Abu-Nada [7], the Prandtl number Pr of
base fluid is kept constant as 6.2. The effects of some prescribed parameters are
presented graphically in Figures 2-12.
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Table 2: Thermophysical properties of fluid and nanoparticles [8].
Physical properties Co(Jkg K) | p (kg/m*) | K (W/ mK) K
(rCp)
Water 4179 997.1 0.613 -
Cu (Copper) 385 8933 400 1.163 x 107*
Al,O3 (Alumina) 765 3970 40 1.317 x 107°
TiO; (Titanium) 686.2 4250 8.9538 3.070 = 1075
CuO (Copper oxide) 540 6510 18 5120 x 10~°
Ag (Silver) 235 10500 429 1,739 x 10~*

The effects of buoyancy parameter on dimensionless velocity over a vertical plate in
the presence of magnetic and radiation for Cu-water nanofluid are shown in Figure 2
and 3. It is an interesting note from Fig. 2 and Fig.3 that the increasing of assisting
buoyancy flow (¢ = 0), the fluid velocity inside the boundary layer increases and
whereas increasing in the opposing flow (t< 0) decreases the magnitude of the
velocity profiles. From the definition of buoyancy parameter [:= ;{= x| (a

constant), variation of £ actually means variation of the distance along the surface.
This shows that an assisting buoyancy force acts like a favorable pressure gradient
meanwhile the opposing buoyancy force retard the velocity of the flow. The effect of
buoyancy forces plays an important role on the displacement of one liquid by another
in a consolidated porous medium. The effect of £ is insignificant in temperature
profiles because & does not appear directly in the energy Equ. (9). Moreover, the effect
of higher Prandtl number results into thinner thermal boundary layer as the higher
Prandtl number has a lower thermal conductivity.

Figure 4 depict the influence of the suction parameter (S > 0) on velocity and
temperature profiles in the presence of buoyancy force and thermal radiation of Cu-
water nanofluid. With the increasing in the values of suction, the velocity is found to
increase, i.e. suction causes to increase the velocity of the fluid in the boundary layer
region. While, for the temperature profiles it is observed that increasing S will
decreases the temperature distribution inside the boundary layer. In the presence of
suction, the heated fluid is pushed towards the wall thus reduces the thermal boundary
layer thickness i.e. thins out the thermal boundary layers. Thus the presence of suction
decreases the momentum boundary layer thickness but increases the thermal boundary
layer thickness. The application of suction through the walls is a well known and
effective method for postponing transition.
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Fig. 2: Velocity profiles for various positive values of the buoyancy parameter &
$=01M=05N=05ands= 0.5
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Fig. 3: Velocity profiles for various negative values of the buoyancy parameter &
$=01M=05N=05ands= 0.5
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5=05,1,2,5& 10
Cu-watr

$=05,1,2,5&10
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Fig. 4: Effect of suction, s on velocity and temperature profile £=1.M =0.5,N = 0.5
and ¢ = 0.1

£'(m)

| ¢=0005018&0.2

Fig. 5: Velocity and temperature profiles for various values of ¢
t=1M=05N=05ands=1.

Figure 5 is presented to show the effect of nanoparticle volume fraction parameter ¢
on velocity and temperature profiles in the presence of Cu-water nanofluid. In these
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figures, it is seen that when volume fraction of the nanoparticles increase from 0 to
0.2, the velocity increases inside the boundary layer which may due to the increasing
of the viscosity of the fluid. Referring to Equ. (2), its clearly shown that the velocity is
linearly proportional to the fluid viscosity. This means that when the fluid viscosity
increases, it will increase the fluid velocity. Also it is observed that with increasing
the volume fraction of nanoparticles, the temperature distribution inside boundary
layer is increased. This agrees with the physical behavior that when the volume
fraction of nanoparticles increases, the density and thermal conductivity of the
nanofluid would increases. The stochastic motion of nanoparticles could be an
explanation to the thermal conductivity enhancement since smaller particles are more
easily to mobilize and causes a higher level of stochastic motion.

Figure 6 represents the velocity and temperature profiles using different types of
nanoparticles (Ag, Cu, CuO, Al,O3 and TiO;) when £=1,¢ =01 and == 0.1, It was
noticed that the velocity distribution of Silver nanofluid (Ag-water) is higher
compared to all the other nanofluids. This behavior due to the combined effect of
density and thermal diffusivity of Ag-nanofluid as can be seen in Table 2. Higher
thermal diffusivity means a higher conductivity compared to heat capacity. This
means that the material transfer more heat to the surrounding touching the material
rather than stores it. Therefore, the heat that was absorbed by the particles would
increase the level of kinetic energy of the particles and indirectly would decreases the
viscosity of the nanofluid and therefore increase the velocity of the flow. On the other
hand, since silver has the highest thermal conductivity, then this particles has the
lowest temperature distribution inside the boundary layer compared to other
nanofluids, Higher thermal conductivity means higher heat transfer rate.
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Fig. 6: Velocity and temperature profiles for different nanoparticles
t=1M=05N=05¢=01lands=1.
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Fig. 8: Effect of thermal radiation on velocity and temperature profiles when
t=1 M=05¢=01ands=05,

Fig.7 presents typical profiles for velocity and temperature for different values of
magnetic parameter. It is observed that an increase in the value of magnetic field, M
increases the fluid velocity inside the boundary layer but has no significant effect on
the fluid temperature distribution. Meanwhile, the effects of thermal radiation, N, on
velocity and temperature profiles of Cu-water nanofluid are illustrated in Fig.8 in the
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case of uniform suction and magnetic field. It is observed that both the velocity and
temperature of the nanofluid increases with the increase of radiation parameter N.

This result can be explained by the definition in the value of N =kfr'?fg-,. Since N is
FRply

linearly proportional with temperature, increasing in N will increase the temperature
distribution in the boundary layer region.
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Fig.9: Variation of -s8@) with Fig.10: Variation of -&@) with
positive values of & for different negative values of & for different
values of ¢ when Pr=6.2and S=0.2 values of ¢ when Pr=6.2and S =0.2
for Cu-water for Cu-water

In the presence of aiding buoyancy force =0, it is predicted that the rate of heat
transfer of Cu-nanofluid increases with increase of nanoparticle volume fraction
whereas the rate of heat transfer firstly decreases and then increases with increase of
nanoparticle volume fraction in the presence of aiding buoyancy force ¢ < 0 . All these
physical behaviour are the combined effects of the strength of density, kinematic
viscosity and thermal conductivity of Cu-nanofluid, see Fig.9 and 10.
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In the presence of thermal radiation, it is observed that the rate of heat transfer of Cu-
nanofluid increases with increase of nanoparticle volume fraction because of the
combined effects of thermal conductivity and the kinematic viscosity of the cu-
nanofluid whereas the rate of heat transfer decreases with increase of nanoparticle
volume fraction in the presence of magnetic parameter. All these are the joined effects
of density and electrical conductivity of the Cu-nanofluid, see Fig.11 and 12.

5. CONCLUSION

In the present paper, we have examined the influence of the different type of
nanoparticles on boundary layer flow and heat transfer of incompressible nanofluid
along the permeable vertical plate with thermal radiation in the presence of magnetic
field. The governing partial differential equations for mass, momentum and energy
conservation are transformed into ordinary differential equations by using a non-
dimensional local non similarity transformation. These equations are solved
numerically using Runge-Kutta-Gill integration scheme in conjunction with the
shooting method. The two-point boundary value problem of the non similar system of
ordinary differential equations has been obtained by the Falkner-Skan transformation.
The effects of the magnetic parameter M, thermal radiation parameter N, , suction
parameter S, the buoyancy parameter Z and nanoparticles volume fraction ¢ of Cu-
nanofluid and different types of nanofluids (Ag, CuO, Al,O3, TiO;) are discussed.
Numerical results for the skin friction, rate of heat transfer, temperature and velocity
are presented graphically for various parameter conditions.
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The results can be summarized as follows:

o Physically, it is interesting to note that the increase of momentum / thermal
boundary layer field due to increase in nanoparticle volume fraction parameter
shows that the velocity/temperature decreases/increases gradually as we
replace Ag, Cu, CuO, TiO; and Al,Os in the said sequence. It implies that the
thermal conductivity of nanofluid is strongly dependent on the nanoparticle
volume fraction.

o It is predicted that the velocity /temperature of Cu-nanofluid
increases/decreases with increase of magnetic strength because of the transport
properties of the copper nanofluid. Copper nanoparticles in the magnetic field
are a unique material that has both the nanofluid and magnetic properties.

o It is noticed that the velocity and temperature of the copper nanofluid is
accelerated significantly with increase of convective radiation because of
decrease of thermal conductivity of the copper nanoparticles is to decrease the
rate of energy transport to the copper nanofluid.

o In the presence of thermal radiation/magnetic field, the rate of heat transfer of
Cu-nanofluid increases/decreases with increase of nanoparticle volume
fraction. All these are the joined effects of kinematic viscosity and thermal and
electrical conductivity of the Cu-nanofluid.

o In the presence of aiding buoyancy force, the rate of heat transfer of Cu-
nanofluid increases with increase of nanoparticle volume fraction because of
the combined effects of the strength of density and thermal conductivity of the
Cu-nanofluid.

o It is observed that the velocity/temperature of the Cu-nanofluid
increases/decreases with increase of suction parameter. This is due to the fact
that the heated fluid is pushed towards the wall thus reduces the thermal
boundary layer thickness i.e. thins out the thermal boundary layers.

o It is observed that the velocity of the Cu-nanofluid increases/decreases with
increase of assisting buoyancy flow (z = 0)/opposing buoyancy flow (< 0)
respectively. This shows that an assisting buoyancy force acts like a favorable
pressure gradient meanwhile the opposing buoyancy force retard the velocity
of the flow. The effect of Z is insignificant in temperature profiles because 2
does not appear directly in the energy Equ. (9).

o It is interesting to note that the velocity and the temperature of the Cu-
nanofluid increase with increase of nanoparticle volume fraction which may
due to the combined effect of density and thermal conductivity of the Cu-
nanofluid. The stochastic motion of nanoparticles could be an explanation to
the thermal conductivity enhancement since smaller particles are more easily
to mobilize and causes a higher level of stochastic motion.

It is concluded that the novel and advanced concepts of nanofluids offer fascinating
heat transfer characteristics compared to conventional heat transfer fluids. There are
considerable researches on the superior heat transfer properties of nanofluids
especially on thermal conductivity and convective heat transfer. Applications of
nanofluids in industries such as heat exchanging devices appear promising with these


http://dictionary.reference.com/browse/significant
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characteristics. The increases in effective thermal conductivity are important in
improving the heat transfer behavior of fluids. An in-depth understanding of the
interactions between particles, stabilizers, the suspending liquid and the heating
surface will be important for applications.

References:

1.

2.

10.

11.

12.

Sadollah Ebrahimi, Anwar Gavili, et al. New Class of Coolants: Nanofluids in
Cutting Edge Nanotechnology, edited by Dragica Vasileska. InTech, (2010).
V. Trisaksri and S. Wongwises. Critical review of heat transfer characteristics
of nanofluids. Renewable and Sustainable Energy Reviews. Vol.11, pp. 512-
523 (2007).

P. Sreenavasulu and N. Bashkar Reddy. Thermal Radiation And Chemical
Reaction Effects On Mhd Stagnation-Point Flow Of A Nanofluid Over A
Porous Stretching Sheet Embedded In A Porous Medium With Heat
Absorption/Generation: Lie Group Analysis. Journal of Global Research in
Mathematical Archives . Vol.1(7), pp. 13-27 (2013).

E. Abu-Nada. Application of nanofluids for heat transfer enhancement of
separated flow encountered in a backward facing step. Int. J. Heat Fluid Flow,
vol.29, pp. 242-249 (2008).

S.E.B. Maiga, S.J. Palm, et al. Heat transfer enhancement by using nanofluids
in forced convection flows. Int. Journal Heat Fluid Flow, vol.26, pp. 530-546
(2005).

G. Polidari, S. Fohanno, C.T. Nguyen. A note on heat transfer modeling of
Newtonian nanofluids in laminar free convection. Int. Journal Thermal
Sciences, vol.46, pp 739-744 (2007).

H.F. Oztop and E. Abu-Nada. Numerical study of natural convection in
partially heated rectangular enclosures filled with nanofluids. Int. Journal Heat
Fluid Flow, vol.29, pp. 1326-1336 (2008).

D.A. Nield and A.V. Kuznetsov. The Cheng-Minkowycz problem for natural
convective boundary-layer flow in a porous medium saturated by a nanofluid.
Int. Journal of Heat and Mass Transfer, vol.52, pp 5792-5795 (2009).

A.V. Kuznetsov and D.A. Nield. Natural convective boundary-layer flow of a
nanofluid past a vertical plate. Int. J. Thermal Sci. vol.49, pp 243 — 247
(2010).

M. Muthtamilselvan, P. Kandaswamy and J. Lee. Heat Transfer Enhancement
Of Copper-Water Nanofluids In A Lid-Driven Enclosure. Commun. Nonlinear
Sci. Numer. Simulat, vol.15, pp.1501-1510 (2010).

N.A. Yacob, Anuar Ishak, loan Pop. Falkner-Skan problem for a static or
moving wedge in nanofluids. Int. Journal of Thermal Sciences, 50, pp 133-139
(2011).

Musundi S. Wabomba et al. Magnetic Field And Hall Current Effect On MHD
Free Convection Flow Past A Vertical Rotating Flat Plate. Asian Journal of
Current Engineering And Maths. Vol.1 (6), 346 - 354 (2012).



3972

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Radiah Mohamad et al

S. Nadeem and Rizwan Ul Haq. Effect of Thermal Radiation for
Magnetohydrodynamic Boundary Layer Flow of a Nanofluid Past a Stretching
Sheet with Convective Boundary Conditions. Journal of Computational and
Theoretical Nanoscience. Vol.11, 1-9, (2014).

Hamad, M.A.A, Pop, |., and Md Ismail, A.l. Magnetic field effects on free
convection flow of a nanofluid past a vertical semi-infinite flat plate.
Nonlinear Analysis: Real World Applications. Vol.12, pp. 1338 —1346 (2010).
A.J. Chamka and A.M.Aly. MHD Free Convection Flow of A Nanofluid Past
A Vertical Plate in The Presence of Heat Generation or Absorption Effects.
Chemical Engineering Communications. VVol.198 (3), 425- 441 (2011).
Mohammed J. Uddin et al. MHD Free Convective Boundary Layer Flow of a
Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary
Condition. PLOS ONE. Vol. 7(11), pp. 1-8 (2012).

Wubshet Ibrahim & B. Shanker. Magnetohydrodynamic Boundary Layer Flow
and Heat Transfer of a Nanofluid Over Non-Isothermal Stretching Sheet.
Journal of Heat Transfer. Vol.136, pp. 051701-1 - 051701-6 (2014).

O. D. Makinde and A. Aziz. Boundary layer flow of a nanofluid past a
stretching sheet with a convective boundary condition. International Journal of
Thermal Sciences, vol.50 (7), pp. 1326-1332 (2011).

S. M. AbdEI-Gaied and M. A. A. Hamad. MHD Forced Convection Laminar
Boundary Layer Flow of Alumina-Water Nanofluid over a Moving Permeable
Flat Plate with Convective Surface Boundary Condition. Journal of Applied
Mathematics. Vol. 2013, 1-9 (2013).

Meisam Habibi Matin and Pouyan Jahangiri. Forced Convection Boundary
Layer Magnetohydrodynamic Flow of Nanofluid Over a Permeable Stretching
Plate With Viscous Dissipation. Thermal Science. Vol.18 (2), pp. S587-5598
(2014).

Mohammad Mehdi Keshtkar, Neda Esmaili, Mohammad Reza Ghazanfari,
Effect Of Heat Source/Sink On MHD Mixed Convection Boundary Layer
Flow On A Vertical Surface In A Porous Medium Saturated By A Nanofluid
With Suction Or Injection. International Journal of Engineering and Science.
Vol.4 (5), pp. 1-11 (2014).

MS Khan, I Karim, MS Islam, M Wahiduzzaman, MHD Boundary Layer
Radiative, Heat Generating and Chemical Reacting Flow Past A Wedge
Moving In A Nanofluid. Nano Convergence 2014. Vol.1 (20), pp. 1-13
(2014).

T. Poornima and N. Bhaskar Reddy. Radiation effects on MHD free
convective boundary layer flow of nanofluids over a nonlinear stretching
sheet. Advances in Applied Science Research. VVol.4 (2), pp. 190-202 (2013).
Aini Mat, Nor Azian; Arifin, Norihan Md.; Nazar, Roslinda; Ismail, Fudziah;
Bachok, Norfifah, MHD mixed convection flow of a power law nanofluid
over a vertical stretching sheet with radiation effect. AIP Conference
Proceedings. Vol. 1557 (1), p604 (2013).

Stanford Shateyi and Jagdish Prakash. A New Numerical Approach For MHD
Laminar Boundary Layer Flow And Heat Transfer Of Nanofluids Over A


https://scholar.google.com/citations?user=vhGoSnoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=rkeJFZkAAAAJ&hl=en&oi=sra

Local non-similarity solution for MHD mixed convection flow 3973

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Moving Surface In The Presence Of Thermal Radiation. Boundary
ValueProblems 2014. Vol.2, pp. 1-12 (2014).

M. G. Reddy. Influence of Magnetohydrodynamic and Thermal Radiation
Boundary Layer Flow of a Nanofluid Past A Stretching Sheet. Journal of
Scientific Research. VVol.6 (2), pp. 257-272 (2014).

Eshetu Haile and B. Shankar. A Steady MHD Boundary-layer Flow of Water-
Based Nanofluids Over A Moving Permeable Flat Plate. International Journal
of Mathematical Research. Vol. 4 (1), pp. 27- 41 (2014/15).

E.M. Sparrow, H. Quack and C.J. Boerner. Local Nonsimilarity Boundary-
Layer Solutions. AIAA Journal, vol.8, pp. 1936-1942 (1970).

I.Muhaimin and R.Kandasamy. Local Nonsimilarity Solution For The Impact
Of A Chemical Reaction In An MHD Mixed Convection Heat And Mass
Transfer Flow Over A Porous Wedge In The Presence Of Suction/injection.
Journal of Applied Mechanics and Technical Physics, vol.51, pp. 721-731
(2010).

M. B. Akgu” | and M. Pakdemirli. Cooling Intensification of a Continuously
Moving Stretching Surface Using DifferentTypes of Nanofluids. Journal of
Applied Mathematics, VVol. 2012, Article ID 581471, 11 pages.

T. Watanabe. Forced and Free Mixed Convection Boundary Layer Flow With
Uniform Suction Or Injection On A Vertical Flat Plate. Aeta Mechanica,
vol.89, pp. 123-132 (1991).

R.J. Tiwari and M.K. Das. Heat Transfer augmentation in a two-sided lid-
driven differentially heated square cavity utilizing nanofluids. Int. Journal
Heat Mass Transfer, vol.50, pp. 2002-2018 (2007).

H.C. Brinkman. The Viscosity Of Concentrated Suspensions And Solutions. J.
Chem. Phys., vol.20, pp. 571-581 (1952).

Norfifah Bachok, Anuar Ishak and loan Pop. Boundary layer flow over a
moving surface in a nanofluid with suction or injection. Acta Mech. Sin., 28
(2012), pp. 34-40.

Aminossadati SM, Ghasemi B. Natural convection cooling of a localized heat
source at the bottom of a nanofluid-filled enclosure. Eur. J. Mech. B. Fluids.
28 (2009), pp. 630-640.

Kh Abdul Maleque. Effects of Exothermic/Endothermic Chemical Reactions
with Arrhenius Activation Energy on MHD Free Convection and Mass
Transfer Flow in Presence of Thermal Radiation. Journal of Thermodynamics,
Vol. 2013, Article ID 692516, pp 1-11 (2013).

Sadia Siddiga and M. A. Hossain. Mixed Convection Boundary Layer Flow
over a Vertical Flat Plate with Radiative Heat Transfer. Applied Mathematics,
vol.3, pp. 705-716 (2012).

Lok Yian Yian and Norsarahaida Amin. Local Nonsimilarity Solution For
Vertical Free Convection Boundary Layers. Matematika, vol.18, pp. 21-31
(2002).

E.M. Sparrow and H.S. Yu. Local Non-Similarity Thermal Boundary-Layer
Solutions. ASME Journal, pp 328-334 (1971).



3974

40.

41.

42.

43.

Radiah Mohamad et al

T.S.Chen. Parabolic System: Local Nonsimilarity Method in Handbook of
Numerical Heat Transfer (1988). Wiley-Interscience, New York.

Mehrdad Massoudi. Local Non-Similarity Solutions For The Flow Of A Non-
Newtonian Fluid Over A Wedge. International Journal of Non-Linear
Mechanics. VVol.36, pp. 961-976 (2001).

I. Muhaimin, R.Kandasamy, P. Loganathan, P. Puvi Arasu, Local Non-
similarity Solution For The Impact of The Buoyancy Force On Heat And Mass
Transfer In A Flow Over A Porous Wedge With A Heat Source In The
Presence Of Suction/Injection. Journal of Applied Mechanics and Technical
Physics, vol.53, pp. 231-241 (2012).

W.J. Minkowycz and E.M. Sparrow. Numerical Solution Scheme For Local
Nonsimilarity Boundary-Layer Analysis. Numerical Heat Transfer, vol.1, pp.
69-85 (1978).



