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Abstract

The viscoelastic equation with fading memory in bounded spaces has been deeply
studied by several authors. Here, the energy decay results are established for weak-
viscoelastic wave equation in IRn, which depends on the behavior of both α and g.
The main idea of the proof is to construct an appropriate Lyapunov function of the
system obtained after taking the Fourier transform.
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1. Introduction and related results

The model here considered are well known ones and refer to materials with memory as
they are termed in the wide literature which is concerned about their physical, mechan-
ical behavior and the many interesting analytical problems. The physical characteristic
property of such materials is that their behaviour depends on time not only through the
present time but also through their past history.

Let us consider the weak-viscoelastic case in the following problem:


u′′ − �u − �u′ + α(t)

∫ t

0
g(t − s)�u(s, x)ds = 0, x ∈ IRn, t ∈ IR+∗

u(0, x) = u0(x) ∈ H 1(IRn), u′(0, x) = u1(x) ∈ L2(IRn), x ∈ IRn,

(1.1)

where n ≥ 2. It is well known that the presence of a viscoelastic term with and without
the weighted function α doest not preclude the question of existence, but its effects are
on the stability of the existing solution. For the existence, we refer the reader to works
in [6], [7], [9], [13], [16], [17], [23] and [24].

The energy of u at time t is given by

E(t) = 1

2
‖u′‖2

2 + 1

2

(
1 − α(t)

∫ t

0
g(s)ds

)
‖∇u‖2

2 + 1

2
α(t)(g ◦ ∇u). (1.2)

and the following energy functional law holds.

E′(t) = 1

2
α(t)(g′ ◦ ∇u) − 1

2
α(t)g(t)‖∇u‖2

2 − ‖∇u′‖2
2

+1

2
α′(t)(g ◦ ∇u) − 1

2
α′(t)

t∫
0

g(s)ds‖∇u‖2
2. (1.3)

The following notation will be used throughout this paper

(g ◦ �) =
∫ t

0
g(t − τ) ‖�(t) − �(τ)‖2

2 dτ, for any � ∈ L∞(0, T ; L2(IRn)) (1.4)

This type of problems is usually encountered in viscoelasticity in various areas of math-
ematical physics. It was first considered by Dafermos in [5], where the general decay
was discussed. The problems related to (1.1) attracted a great deal of attention in the
last decades and numerous results appeared on the existence and long time behavior of
solutions but their results is by now rather developed, especially in any space dimension
when it comes to nonlinear problems.

For the literature, in IRn we quote essentially the results of [3], [10], [11], [12],
[14], [18]. In [11], authors showed that, for compactly supported initial data and for
an exponentially decaying relaxation function, the decay of the energy of solution of a
linear Cauchy problem related of (1.1) is polynomial. The finite-speed propagation is



Decay rate estimate of solution to damped wave equation 3

used to compensate for the lack of Poincarés inequality. In [10], the author looked into a
linear Cauchy viscoelastic equation with density. His study included the exponential and
polynomial rates, where he used the spaces weighted by density to compensate for the
lack of Poincaré’s inequality. The same problem treated in [10], was considered in [12],
where they consider a Cauchy problem for a viscoelastic wave equation. Under suitable
conditions on the initial data and the relaxation function, they prove a polynomial decay
result of solutions. Conditions used, on the relaxation function g and its derivative g′
are different from the usual ones.

Ikehata in [6] considered, in the one-dimensional half space, the mixed problem of
the equation

vtt − vxx + vt = 0 (1.5)

with a weighted initial data and presented a new decay estimates of solutions which also
can be derived for the Cauchy problem in IRn. Let us mention that a pioneer question on
the long time asymptotic of strongly damped wave equations in [9]. Authors, studied the
Cauchy problem for abstract dissipative equations in Hilbert spaces generalizing wave
equations with strong damping terms in IRn or exterior domains

utt (t) + Au(t) + Au′(t) = 0, t ∈ (0, ∞). (1.6)

u(0) = u0, ut (0) = u1, (1.7)

where A : D(A) ⊂ H → H is a nonnegative self-adjoint operator in (H, ‖.‖) with
a dense domain D(A). Using the energy method in the Fourier space and its general-
ization based on the spectral theorem for self-adjoint operators, their main result was a
combination of solutions of diffusion and wave equations.

Recently, in [7], Ryo Ikehata considered the Cauchy problem in IRn for strongly
damped wave equations (1.6) with A = −�. He derived asymptotic profiles of its
solutions with weighted L1,1(IRn) data by using a method introduced in [6] and developed
in [9]. The same author, extend his results in [8] when the initial data belongs to a
weighted L1,2(IRn) space.

2. Statement

We omit the space variablex ofu(x, t), u′(x, t) and for simplicity reason denoteu(x, t) =
u and u′(x, t) = u′, when there is no confusion. The constants c used throughout this
paper are positive generic constants which may be different in various settings, here
u′ = du(t)/dt and u′′ = d2u(t)/dt2.

In order to investigate the decay structure based on the memory and the weighted
function, we also consider the following assumptions: g, α : IR+ −→ IR+ are non-
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increasing differentiable functions of class C1 satisfying:

1 − α(t)

∫ t

0
g(s)ds ≥ k > 0, g(0) = g0 > 0 (2.1)

∞ >

∞∫
0

g(t)dt, α(t) > 0, (2.2)

In addition, there exists a non-increasing differentiable function β : IR+ −→ IR+ satis-
fying

β(t) > 0, g′(t) + β(t)g(t) ≤ 0, ∀t ≥ 0, lim
t→∞ = α′(t)

β(t)α(t)
= 0. (2.3)

We give some notations to be used below. Let F denote the Fourier transform in L2(IRn)

defined as follows:

F [f ](ξ) = f̂ (ξ) = (2π)−n/2
∫

IRn
exp(−ix.ξ)f (x)dx. (2.4)

Here ξ is the variable associated with the Fourier transform, where i = √−1, x.ξ =
n∑

i=1

xiξi and denote its inverse transform by F−1. The operator −� is defined by

−�v(x) = F−1 (|ξ |2F(v)(ξ)
)
(x), v ∈ H 2(IRn), x ∈ IRn.

For 1 ≤ p ≤ ∞, we denote by Lp(IRn) the usual Lebesgue space on IRn with the
norm ‖.‖Lp . For a nonnegative integer m, Hm(IRn) denotes the Sobolev space of L2(IRn)

functions on IRn, equipped with the norm ‖.‖Hm . By direct calculations, we have the
following technical Lemma which will play an important role in the sequel.

Lemma 2.1. ([23]) For any two functions g ∈ C1(IR), v ∈ W 1,2(0, T ), it holds that

Re


α(t)

t∫
0

g(t − s)v(s)dsv′(t)


 = −1

2
α(t)g(t)|v(t)|2 + 1

2
α(t)(g′ ◦ v)(t)

− 1

2

d

dt
α(t)(g ◦ v)(t) + 1

2

d

dt
α(t)

∫ t

0
g(s)ds|v(t)|2

(2.5)

+ 1

2
α′(t)(g ◦ v)(t) − 1

2
α′(t)

t∫
0

g(s)ds|v|2
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and∣∣∣∣∣∣
t∫

0

g(t − s)(v(s) − v(t))ds

∣∣∣∣∣∣
2

≤
∫ t

0
|g(s)|ds

∫ t

0
|g|(t − s)|v(t) − v(s)|2ds

Finally, we give the definition of weak solutions for the problem (1.1).

Definition 2.2. A weak solution of (1.1) is u such that

• u ∈ C([0, T ); H 1(IRn)), u′ ∈ C1([0, T ); L2(IRn))

• For all v ∈ C∞
0 ([0, T ] × IRn), u satisfies the generalized formulae:

0 =
∫ T

0
(u′′, v)ds +

∫ T

0

∫
IRn

∇u∇vdxds +
∫ T

0

∫
IRn

∇u′∇vdxds

−
∫ T

0

∫
IRn

α(t)

∫ s

0
g(s − τ)∇u(τ)dτ∇v(s)dxds, (2.6)

• u satisfies the initial conditions

u0(x) ∈ H 1(IRn), u1(x) ∈ L2(IRn).

We can now state and prove the asymptotic behavior of the solution of (1.1). Through-
out this paper, let us set û(t, ξ) = F(u(t, .))(ξ).

3. Main result

We show that our solution decays time asymptotically to zero and the rate of decay for
the solution is fast and similar to both α and g.

Theorem 3.1. Assume u is the solution of (1.1), then the next general exponential
estimate satisfies in the Fourier space

E(t) ≤ W exp


−ω

t∫
0

α(s)β(s)ds


 , ∀t ≥ 0. (3.1)

for some positive constants W, ω.

Proof. We take the Fourier transform of both sides of (1.1). Then one has the reduced
equation for ξ ∈ IRn, t ∈ IR+∗ :

 û′′(t, ξ) + |ξ |2û(t, ξ) − |ξ |2α(t)

∫ t

0
g(t − s)̂u(s, ξ)ds + |ξ |2û′(t, ξ) = 0

û(0, ξ) = û0(ξ) ∈ H 1(IRn), û′(0, ξ) = û1(ξ) ∈ L2(IRn).

(3.2)
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We apply the multiplier techniques in Fourier space in order to obtain useful estimates
and prepare some functionals associated with the nature of our problem to introduce an
appropriate Lyapunov functions.

First, to derive the equality for the physical energy, we multiply both sides of (3.2)
by û′. Then, taking the real part of the resulting identities, we obtain

E1(t) = 1

2
|̂u′|2 + 1

2
|ξ |2(1 − α(t)

∫ t

0
g(s)ds)|̂u|2 + 1

2
|ξ |2α(t)(g ◦ û)(t)

and

e1(t) = 1

2
|ξ |2 (

α(t)g(t)|̂u|2 − α(t)(g′ ◦ û)(t) + 2|̂u′|2) (3.3)

+1

2
|ξ |2


α′(t)(g ◦ û)(t) − α′(t)

t∫
0

g(s)ds |̂u|2

 .

Then,

d

dt
E1(t) + e1(t) = 0. (3.4)

Second, the existence of the memory term forces us to make the first modification of the

energy by multiplying (3.2) by
(

− d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

))
and taking the real

part, we have that

0 = −Re

{
û′′(t, ξ)

d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}

−Re

{
|ξ |2û d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}

+1

2
|ξ |2 d

dt

(∣∣∣α(t)

∫ t

0
g(t − s)̂u(s)ds

∣∣∣2
)

−Re

{
|ξ |2û′ d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}
(3.5)

Since

d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)

= α′(t)
∫ t

0
g(t − s)̂u(s)ds + α(t)

d

dt

(∫ t

0
g(t − s)̂u(s)ds

)

= α′(t)
∫ t

0
g(t − s)̂u(s)ds + α(t)g0û + α(t)

∫ t

0
g′(t − s)̂u(s)ds. (3.6)
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The first term in Eq.(3.5) takes the forme

− Re

{
û′′(t, ξ)

d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}

= −Re

{
û′ d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}′

+ Re

{
û′ d2

dt2

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}

= −Re

{
û′ d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}′
+ α(t)g0 |̂u′|2

+ Re

{
û′(α(t)

d

dt

( ∫ t

0
g′(t − s)̂u(s)ds

)
+ α′(t)

∫ t

0
g(t − s)̂u(s)ds

)}
.

Denote by

E2(t) = 1

2

(
|ξ |2

∣∣∣α(t)

∫ t

0
g(t − s)̂u(s)ds

∣∣∣2 − Re

{
û′ d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)})
,

and

e2(t) = α(t)g0 |̂u′|2 − Re

{
|ξ |2û′ d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}

+Re

{
α′(t )̂u′

∫ t

0
g(t − s)̂u(s)ds

}

R2(t) = −Re

{
|ξ |2û d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)}

+Re

{
û′ d

dt

(
α(t)

∫ t

0
g′(t − s)̂u(s)ds

)}
.

Then,

d

dt
E2(t) + e2(t) + R2(t) = 0. (3.7)

Next, to make the second modification of the energy which corresponds to the strong
damping, we multiply (3.2) by û and taking the real part, we have

0 = (Re{̂u′û})′ − |̂u′|2 + |ξ |2 |̂u|2

−|ξ |2Re

{
α(t)

∫ t

0
g(t − s)̂u(s)̂u(t)ds

}
+ 1

2
|ξ |2(|̂u|2)′,

using results in Lemma 2.1, we get

0 = (Re{̂u′û})′ − |̂u′|2 + |ξ |2 |̂u|2 + 1

2
|ξ |2(|̂u|2)′

−|ξ |2
(

α(t)

∫ t

0
g(s)ds |̂u|2 + Re

{
α(t)

∫ t

0
g(t − s)(̂u(s) − û(t))̂u(s)ds

})
.
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Denote

E3(t) = Re{̂u′û} + 1

2
|ξ |2 |̂u|2,

and

e3(t) = |ξ |2
(

1 − α(t)

∫ t

0
g(s)ds

)
|̂u|2.

R3(t) = −|̂u′|2 − Re

{
α(t)

∫ t

0
g(t − s)(̂u(s) − û(t))̂u(s)ds

}

Then,

d

dt
E3(t) + e3(t) + R3(t) = 0. (3.8)

Let us define for some constants ε1, ε2 > 0 to be chosen later

E4(t) = E1(t) + ε1α(t)E2(t) + ε2α(t)E3(t)

= 1

2

{
|̂u′|2 + |ξ |2

(
1 − α(t)

∫ t

0
g(s)ds

)
|̂u|2 + |ξ |2α(t)(g ◦ û)(t)

}

+ε1α(t)

2

(
|ξ |2

∣∣∣α(t)

∫ t

0
g(t − s)̂u(s)ds

∣∣∣2

−Re

{
û′ d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)})

+ε2α(t)

(
Re

{
û′û

} + 1

2
|ξ |2 |̂u|2

)

and

e4(t) = e1(t) + ε1α(t)e2(t) + ε2α(t)e3(t)

= |ξ |2
2

α(t)
(
g(t)|̂u|2 − (g′ ◦ û)(t) + 2α−1(t)|̂u′|2)

+|ξ |2
2

α′(t)


(g ◦ û)(t) − û′

t∫
0

g(s)ds |̂u|2



+ε1α(t)

(
α(t)g0 |̂u′|2 − Re

{
|ξ |2û′ d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)})

+ε1α(t)

(
Re

{
α′(t)

∫ t

0
g(t − s)̂u(s)ds

})

+ε2|ξ |2α(t)

(
1 − α(t)

∫ t

0
g(s)ds

)
|̂u|2



Decay rate estimate of solution to damped wave equation 9

and

R4(t) = ε1α(t)R2(t) + ε2α(t)R3(t)

= ε1α(t)

(
−Re

{
|ξ |2û d

dt

(
α(t)

∫ t

0
g(t − s)̂u(s)ds

)})

+ε1α(t)

(
Re

{
û′ d

dt

(
α(t)

∫ t

0
g′(t − s)̂u(s)ds

)})

+ε2α(t)

(
−|̂u′|2 − Re

{
α(t)

∫ t

0
g(t − s)(̂u(s) − û(t))̂u(s)ds

})

At this point, we introduce the Lyapunov functions as

L1(t) = {|̂u′|2 + k|ξ |2 |̂u|2 + |ξ |2α(t)(g ◦ û)(t)
}

(3.9)

and

L2(t) = α(t)g(t)|̂u|2 + α(t)β(t)(g ◦ û)(t). (3.10)

It is easy to verify that there exists positive constants c1(g0), c2(g0) such that

c1L1(t) ≤ E1(t) ≤ c2L1(t), ∀t > 0. (3.11)

Thanks to Holder, Young’s inequalities, one gets for some constant c3

|ε1E2(t) + ε2E3(t)| ≤ c3L1(t),

which means that L1(t) ∼ E(t). Using again (2.3), Holder andYoung’s inequalities and
assumptions on g to obtain

|R4(t)| = ε1α(t)R2(t) + ε2α(t)R3(t)

≤ ε1α(t)Re

{
|ξ |2ûα(t)

d

dt

( ∫ t

0
g(t − s)̂u(s)ds

)}

+ε1α(t)Re

{
û′α(t)

d

dt

( ∫ t

0
g′(t − s)̂u(s)ds

)}

+ε2α(t)

(
|̂u′|2 + Re

{
α(t)

∫ t

0
g(t − s)(̂u(s) − û(t))̂u(s)ds

})
≤ ε1α(t)|̂u′|2 + c4ε1α(t)|ξ |2 |̂u|2 + c5ε1|ξ |2L2(t)

+ε2α(t)
[|̂u′|2 + c6|ξ |2 (

λ|̂u|2 + cλα(t)(g ◦ û)(t)
)]

≤ (ε1 + ε2)α(t)|̂u′|2 + (c4ε1 + ε2c6λ)α(t)|ξ |2 |̂u|2 + (c5ε1 + cλε2)|ξ |2L2(t).

Since L2(t) ≤ c3 e1(t), one can easily check that there exists positive constants ε1, ε2,

λ, c4, c5, c6 such that

|R4(t)| ≤ ce4(t), c > 0. (3.12)
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By (3.4), (3.7) and (3.8), we get

d

dt
E4(t) = d

dt
E1(t) + ε1α(t)

d

dt
E2(t) + ε2α(t)

d

dt
E3(t)

+ε1α
′(t)E2(t) + ε2α

′(t)E3(t).

We use lim
t→∞

α′(t)
α(t)

= 0 by (2.1)-(2.3) to choose t1 > t0 and since e4(t) ≥ cE4(t), then

(3.12) gives for some positive constant N

d

dt
E4(t) ≤ −Nα(t)E4(t) + cα(t)(g ◦ û)(t). (3.13)

Multiplying (3.13) by β(t) and using (2.3), (3.10), we obtain

β(t)
d

dt
E4(t) ≤ −Nβ(t)α(t)E4(t) + cβ(t)α(t)(g ◦ û)(t)

≤ −Nβ(t)α(t)E4(t) − cα(t)(g′ ◦ û)(t)

≤ −Nβ(t)α(t)E4(t)

−c|ξ |2α′(t)
∫ t

0
g(s)ds |̂u|2 − 2c

d

dt
E4(t), ∀t > t1. (3.14)

Since β ′(t) ≤ 0, we set L(s) = (β(s) + 2c)E4(s) which is equivalent to E4(t), then

d

dt
L(t) ≤ −Nβ(t)α(t)E4(t) − c|ξ |2α′(t)

∫ t

0
g(s)ds |̂u|2

≤ −β(t)α(t)

[
N − 2α′(t)

kβ(t)α(t)

∫ t

0
g(s)ds

]
E4(t), ∀t > t1. (3.15)

By (2.3), we can choose t2 > t1 such that

d

dt
L(t) ≤ −cβ(t)α(t)E4(t)

≤ −cβ(t)α(t)L(t), ∀t > t2. (3.16)

Integrating (3.16) over [t2, t] using equivalence between Lyapunov function and the
energy function, it yields that

E(t) ≤ W exp(−ω

∫ t

0
α(s)β(s)ds), W, ω > 0.

�
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