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ABSTRACT 

 

Free surface flow of a conducting Jeffrey fluid in a channel is investigated. 

The channel is bounded below by a finite deformable porous layer. The 

governing equations are solved in the free flow and deformable porous flow 

regions. The expressions for the velocity field and solid displacement are 

obtained. The effects of the Jeffrey parameter, magnetic field parameter, 

viscosity parameter, the volume fraction component of the fluid on the flow 

velocity, displacement, mass flux and shear stress are discussed. It is found 

that the velocity increases with the increase in the non-Newtonian Jeffrey 

parameter whereas the velocity decreases with the increase in the magnetic 

field parameter. 

 

Keywords: MHD; free surface flow; Jeffrey fluid; Porous layer; permeable 

bed. 

 

 

1. INTRODUCTION 

Viscous flow through and past porous media has important applications in 

engineering and medicine. Most of the research works in flow through porous media 

available deal with undeformable porous media. But the studies on deformable porous 

media is very limited. The coupled phenomenon of fluid flow and deformation of 

porous materials is a problem of prime importance in geomechanics and 

biomechanics. One application of interaction of free flow and deformable porous 
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media, for example, is the study of haemodynamic effect of the endothelial 

glycocalyx. 

 

 

Nomenclature 

a   Apparent viscosity of the fluid in the porous material. 

K   Drag coefficient. 

   Lame constant. 

f   Coefficient of viscosity. 

q   Fluid velocity in the free flow region in 

x - direction. 

u   Displacement in x -direction. 

0G   Typical pressure gradient. 

1   Jeffrey parameter. 

M   Magnetic field parameter. 

   Porous layer thickness. 
   Electrical conductivity 

1   
Shear stress. 

   Volume fraction of component  and 

,s f   for the binary mixture of solid and fluid phases with 1s f   . 

2M
 

Mass flow rate in the deformable porous layer. 

0M   Mass flow rate in the non deformable porous layer. 

F   Fractional increase in mass flow rate. 

v   Velocity of the fluid in the deformable porous layer. 

   Viscous drag. 

   Viscosity parameter in porous layer. 

TM
  

Total mass flux in the channel. 

0B
  

Magnetic field strength 

 

 

The study of flow through deformable porous materials was initiated by Terzaghi [1] 

and later continued by Biot [2, 3, 4] into a successful theory of soil consolidation and 

acoustic propagation. Atkin and Craine [5], Bowen [6] and Bedford and Drumheller 

[7] made important contributions to the theory of mixtures. Mow et al. [8] developed 

a similar theory for the study of biological tissue mechanics. Applying the theory 

proposed by Biot [2] water transport in the artery wall is studied by Jayaraman [9]. 

Sreenadh et al. [10] analyzed the Couette flow of a viscous fluid in a parallel plate 

channel in which a finite deformable porous layer is attached to the lower plate. It is 

found that the increase in the volume fraction component of fluid phase reduces the 

magnitude of velocity in the free flow region of the horizontal channel. All these 

works are concerned with Newtonian fluid flow through deformable porous media. 
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But non-Newtonian behavior of the biofluids such as blood plays an important role in 

biofluid transport through and past tissue regions of biological systems. In view of 

this, it is necessary to consider non-Newtonian fluid flow through a deformable 

porous layer. 

Most of the industrial and biofluids are classified as non-Newtonian fluids. Further 

Jeffrey model is one of the best non-Newtonian fluid models used by researchers to 

explain the biological fluid flow in living organisms. Kothandapani and Srinivas [11] 

analyzed the peristaltic transport of a Jeffrey fluid under the effect of magnetic field in 

an asymmetric channel. Hayat and Ali [12] examined the peristaltic transport of a 

Jeffrey fluid in a tube under the effect of a magnetic field. Nadeem et al. [13] 

examined the effects of thermal radiation on the boundary layer flow of a Jeffrey fluid 

over an exponentially stretching surface. Makinde and Aziz [14] carried out the MHD 

mixed convection from a vertical plate embedded in a porous medium with a 

convective boundary condition. Vajravelu et al [15] studied the influence of heat 

transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum. Hayat et 

al. [16] analyzed the boundary layer flow of a Jeffrey fluid with convective boundary 

conditions. The effect of magnetic field on the peristaltic pumping of a Jeffrey fluid in 

an inclined channel is analyzed by Krishna Kumari et al. [17]. Bhaskara Reddy et al. 

[18] studied the flow of a Jeffrey fluid between torsionally oscillating disks. Rudraiah 

et al. [19] analyzed the Hartmann flow over an undeformable permeable bed. 

Motivated by these studies, MHD free surface flow of a Jeffrey fluid over a 

deformable porous layer is investigated. The fluid velocity, the displacement of the 

solid matrix, the mass flux and its fractional increase are obtained. The effects of 

various physical parameters on the flow quantities are discussed through graphs. 

 

 

2. MATHEMATICAL FORMULATION 

Consider the free surface flow of a Jeffrey fluid over a finite deformable porous layer 

of thickness L  (Fig. 1). The deformable porous layer is bounded below by a rigid 

plate. The flow region is divided into two regions. The flow region between the lower 

plate y L  and the interface 0y   of deformable porous layer is named as Region-

I. The flow region between the interface 0y  and the free surface y h is designated 

as Region-II. The fluid velocity in the free flow region and the porous flow region are 

assumed to be  ,0,0q and  ,0,0v respectively. The displacement due to the 

deformation of the solid matrix is taken as  ,0,0u . A pressure gradient 0

p
G

x





is 

applied, producing an axially directed flow in the channel. A uniform transverse 

magnetic field of strength 0B is applied perpendicular to the rigid plate y L  . 

In view of the assumptions mentioned above, the equations of motion in the flow 

Regions I and II are [19] 
2

02
0su

G K v
y

 


  


   (1) 
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 
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2

0 02
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f q
B q G

y







 

 
   (3) 

The boundary conditions are 

at : 0, 0y L v u     

at 0 : fy q v   

2f

f a

dq dv

dy dy
    

f s

dq du

dy dy





  

at : 0
dq

y h
dy

 
   

(4)
 

 

 
 

Figure 1: Physical model 

 

 

3. NON-DIMENSIONALIZATION OF THE FLOW QUANTITIES 

It is convenient to introduce the following non-dimensional quantities: 
2 2 2

0 0 0ˆ ˆ ˆ ˆ, , , , ,
f f

h G h G h G L
y hy u u v v q q

h


  
       

0

ˆ
hG


  

 
In view of the above dimensionless quantities, the equations (1) – (4) takes the 

following form after the hats ( )  are neglected.
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2

2

sd u
v

dy
       (5) 

2
2

12
(1 ) ( ) fd v

M v
dy

            (6) 

2
2

1 12
(1 ) (1 )

d q
M q

dy
         (7) 

where
2 2

2 0

f

B h
M




 , 

2

0

0

ˆ, , , .
2

f

f a

Kh G dp
G G

G dx


 

 
     

The parameter   is a measure of the viscous drag of the outside fluid relative to drag 

in the porous medium. The parameter  is the ratio of the bulk fluid viscosity to the 

apparent fluid viscosity in the porous layer. 

The boundary conditions are 

at : 0, 0y v u    ; 
at 0: fy q v   

1
f

dq dv

dy dy
  

1
s

dq du

dy dy
 . 

at 1: 0
dq

y
dy

     (8) 

 

 

4. SOLUTION OF THE PROBLEM 

Equations (5)-(7) are coupled differential equations that can be solved by using the 

boundary conditions (8). The solid displacement and fluid velocities in the free flow 

region and deformable porous layer are obtained as 
2 2

3 4
5 62 2 2

( ) (1 )
2 2

b y b y f
f c e c ey y

u y c y c
b b M

   






       
    

(9)
 

1 2 2

1
( ) a y a yq y c e c e

M

  
   

(10) 

3 4 2
( )

f
b y b yv y c e c e

M





  


   (11) 

where 1(1 )a M   and  1(1 )b a      the constants 1c , 2c , 3c , 4c , 5c  and 

6c found from the boundary conditions, are 

 
2

3 4 2 2

1 2

1
( )

1

f

f

a

c c
M M

c
e






 
   
 
 


, 2

2 1

ac c e , 
 

 
2

2

1

1
1

a

f a

f

b e
A a e




   , 
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2

2
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1
1

f

aA a e
M M





 
   
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 

, 

2
3 2

3

1 2

f
b

b b

A
A e

M
c

Ae A e



 






 
 
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

, 4 3 2

f
b bc c e e

M

 



  
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5 1 2
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f

f

c c
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b





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 
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2
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2

f
b b fc c e c e c
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 



  
      

   

 

4.1 Mass Flux 

(i) Let TM denote the dimensionless mass flow rate per unit width of the channel 

is 

1 2TM M M 
   

(12) 

where 

0

3 4 3 4
1 2

b b fc c c e c e
M v dy

b b M

 



 







  
    

 
  and 

 1

1 2 1 2

2 2

0

1
a ac e c e c c

M q dy
a M

  
  

 
Here we note that 1M and 2M describe the mass flow rates in the porous and free flow 

regions.
 

(ii) The fluid velocity 0q for the MHD free surface flow of a Jeffrey fluid over a 

rigid plate is obtained on solving the equation (7) subject to the following 

boundary conditions: 

at 00 : 0y q   

at 01: 0
dq

y
dy

   

It can be seen that 0 2

1
e ea y a yq A B

M

  
 

where
 2

a

a a

e
A

M e e




 


, 2

1
.B A

M
    

Then the dimensionless mass flow rate 0M per unit width of the channel in the free 

flow region  0 1y   is given by 

  1
1 2 1 2

0 0 2

0

1
a ac e c e c c

M q dy
a M

  
      (13) 

 



MHD Free Surface Flow Of A Jeffrey Fluid Over 3895 

3895 
 

4.2 Fractional increase 

Let F denote the fractional increase in mass flow rate due to deformable porous layer 

and it is defined by 

2 0

0

M M
F

M




   (14) 

 

4. 3 Shear stress

 

The shear stress at the deformable interface y = 0 is given by 

1

1 0

1

1
y

dq

dy





 
  

    

 1 2

11

a
c c


 


   (15) 

 

 

5. RESULTS AND DISCUSSIONS 

The solutions for the fluid velocities q , v  in the free flow region and deformable 

porous layer and solid displacement of solid matrix u  are evaluated numerically for 

different values of physical parameters such as the volume fraction of component
f , 

the viscous drag parameter , the viscosity parameter  and the thickness of lower 

wall , magnetic field parameter M and Jeffrey parameter 1 . 

The variation of fluid velocities in the channel q , v  is calculated for different values 

of viscosity parameter and is shown in figure 2 for fixed =2. 0, f =0. 5, 1M  , 

1 0.1  and  =0. 2. We observe that the velocities q  and v  increases with the 

increasing viscosity parameter . 

The variation of fluid velocities in the channel q , v  and solid displacement u  in the 

channel is calculated for different values of volume fraction of component f  and is 

shown in figures 3 for fixed  =2. 0,  =0. 5, 1M  , 1 0.1   and  =0. 2. We 

observe that the velocities q , v  increase with the increasing f  whereas the solid 

displacement u decreases with the increase in f . 

The variation of fluid velocities q , v  and solid displacement u  in the channel is 

calculated for different values of Jeffrey parameter 1  and is shown in figure 4 for 

fixed  =2. 0,  =0. 5, 1M  , f =0. 5and  =0. 2. We observe that the velocities ,q

v  and solid displacement increase with the increase Jeffrey parameter 1 . 
The variation of fluid velocities q , v  and solid displacement u  in the channel is 

calculated for different values of magnetic field parameter M  and is shown in figure 

5 for fixed  =2. 0,  =0. 5, f =0. 5, 1 0.1  and  =0. 2. We observe that the 
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velocities ,q v  and solid displacement decreases with the increase magnetic field 

parameter M . 

The variation of dimensionless mass flow rate per unit width of the channel TM  with 

f  is calculated from equation (12) and is shown in figure 6 for fixed  =2. 0,  =0. 

5,  =0. 2 and 1 0.1  . We observe that the mass flow rate decreases with increasing 

magnetic field parameter M . Further the effect of magnetic field is to reduce the mass 

flow rate and the rate of reduction depends on the strength of the magnetic field, 

which is similar to the observation made by Rudraiah et al. [18] for the Hartmann 

flow over a non-deformable permeable bed. 

The variation of dimensionless mass flow rate per unit width of the channel 
c
 with 

f  

is calculated from equation (12) and is shown in figure 7 for fixed  =2. 0,  =0. 5, 
=0. 2 and 1M  . We observe that the mass flow rate increases with increasing Jeffrey 

parameter 1 . 

The variation of fractional increase F with M  is calculated from equation (14) and is 

shown in figure 8 for fixed  =2. 0,  =0. 5,  =0. 2 and 1 0.1  . We observe that the 

fractional increase decreases with increasing magnetic field parameter M . 

The variation of shear stress 1  with 1  is calculated from equation (14) and is shown 

in Table 1 for fixed 2  , 0.2  , 1M  and 0.5  . We observe that the shear 

stress at the wall interface decreases with increasing Jeffrey parameter 1 . 

The variation of shear stress 1  with M is calculated from equation (14) and is shown 

in Table 1 for fixed 2  , 0.2  , 1 0.1  and 0.5  . We observe that the 

shear stress at the wall interface decreases with increasing magnetic field parameter

.M  
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Figure 2: Velocity profiles for deformable porous region  0.2 0v y    and free flow 

region  0 1q y    for different values of . 

 

 
 

Figure 3: Velocity and displacement profiles for deformable porous region 

 0.2 0v y    and free flow region  0 1q y    for different values of f . 
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Figure 4: Velocity and displacement profiles for deformable porous region 

 0.2 0v y    and free flow region  0 1q y    for different values of 1 . 

 

 
 

Figure 5: Velocity and displacement profiles for deformable porous region 

 0.2 0v y    and free flow region  0 1q y    for different values of M . 
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Figure 6: Mass flux TM  for different values of M . 

 

 
 

Figure 7: Mass flow rate TM  for different values 1 . 
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Figure 8: Fractional increase F  for different values of M . 

 

 
 

Figure 9: Fractional increase F  for different values of 1 . 
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Table 1: Shear stress for different values of M  and 1  at the porous boundary wall

0y  .For fixed values of 2  , 0.2  , 0.5. 
 

 
f   1 0y


  

for 1  = 0.1  1 0y


  
for 1M 

 
M = 1 M = 2 M = 3 M = 4 

1  = 0 1  = 0.1 1  = 0.2 1  = 0.3 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.742285 
0.738939 
0.734300 
0.728410 
0.721323 
0.713102 
0.703820 
0.693554 
0.682387 

0.458438 
0.453352 
0.446397 
0.437724 
0.427515 
0.415973 
0.403309 
0.389741 
0.375478 

0.312334 
0.307086 
0.299993 
0.291285 
0.281222 
0.270082 
0.258141 
0.245661 
0.232880 

0.233978 
0.228815 
0.221915 
0.213563 
0.204071 
0.193759 
0.182927 
0.171842 
0.160733 

0.759030 
0.755846 
0.751428 
0.745814 
0.739052 
0.731199 
0.722319 
0.712482 
0.701762 

0.742285 
0.738939 
0.734300 
0.728410 
0.721323 
0.713102 
0.703820 
0.693554 
0.682387 

0.726438 
0.722945 
0.718106 
0.711966 
0.704587 
0.696038 
0.686398 
0.675752 
0.664191 

0.711416 
0.707791 
0.702769 
0.696405 
0.688762 
0.679919 
0.669959 
0.658977 
0.647069 

 
 

6. CONCLUSIONS: 

The present study deals with MHD free surface flow of a Jeffrey fluid over a 

deformable porous layer. The results are analyzed for different values of the pertinent 

parameters, namely, Jeffrey parameter, volume fraction component. The findings of 

the problem find applications in understanding the blood (modelled as Jeffrey fluid) 

flow behavior near the tissue layer (modelled as a deformable porous layer). Some of 

the interesting findings are as follows: 

1. The effect of increase in the volume fraction component f is to enhance the 

fluid velocity between the parallel plates. 

2. The effect of magnetic field is to reduce the fluid velocity in the free flow 

region whereas in the deformable porous layer, both the fluid velocity and 

solid displacement decreases with increasing magnetic field. 

3. The flux in the free flow region increases with an increase in the Jeffrey 

parameter. Also opposite behavior is noticed in case of magnetic field. 

4. The effect of increase in the magnetic field parameter and Jeffrey parameter is 

to reduce the shear stress at the deformable porous boundary. 
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