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ABSTRACT

Free surface flow of a conducting Jeffrey fluid in a channel is investigated.
The channel is bounded below by a finite deformable porous layer. The
governing equations are solved in the free flow and deformable porous flow
regions. The expressions for the velocity field and solid displacement are
obtained. The effects of the Jeffrey parameter, magnetic field parameter,
viscosity parameter, the volume fraction component of the fluid on the flow
velocity, displacement, mass flux and shear stress are discussed. It is found
that the velocity increases with the increase in the non-Newtonian Jeffrey
parameter whereas the velocity decreases with the increase in the magnetic
field parameter.

Keywords: MHD; free surface flow; Jeffrey fluid; Porous layer; permeable
bed.

1. INTRODUCTION

Viscous flow through and past porous media has important applications in
engineering and medicine. Most of the research works in flow through porous media
available deal with undeformable porous media. But the studies on deformable porous
media is very limited. The coupled phenomenon of fluid flow and deformation of
porous materials is a problem of prime importance in geomechanics and
biomechanics. One application of interaction of free flow and deformable porous
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media, for example, is the study of haemodynamic effect of the endothelial
glycocalyx.

Nomenclature

U, Apparent viscosity of the fluid in the porous material.
K Drag coefficient.

7 Lame constant.

M Coefficient of viscosity.

Fluid velocity in the free flow region in
direction.

Displacement in x -direction.

Typical pressure gradient.

Jeffrey parameter.

Magnetic field parameter.
Porous layer thickness.
Electrical conductivity
Shear stress.
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Volume fraction of component A and

for the binary mixture of solid and fluid phases with ¢° + " =1.
Mass flow rate in the deformable porous layer.

Mass flow rate in the non deformable porous layer.

Fractional increase in mass flow rate.

Velocity of the fluid in the deformable porous layer.
Viscous drag.

Viscosity parameter in porous layer.

Total mass flux in the channel.

Magnetic field strength
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The study of flow through deformable porous materials was initiated by Terzaghi [1]
and later continued by Biot [2, 3, 4] into a successful theory of soil consolidation and
acoustic propagation. Atkin and Craine [5], Bowen [6] and Bedford and Drumheller
[7] made important contributions to the theory of mixtures. Mow et al. [8] developed
a similar theory for the study of biological tissue mechanics. Applying the theory
proposed by Biot [2] water transport in the artery wall is studied by Jayaraman [9].
Sreenadh et al. [10] analyzed the Couette flow of a viscous fluid in a parallel plate
channel in which a finite deformable porous layer is attached to the lower plate. It is
found that the increase in the volume fraction component of fluid phase reduces the
magnitude of velocity in the free flow region of the horizontal channel. All these
works are concerned with Newtonian fluid flow through deformable porous media.
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But non-Newtonian behavior of the biofluids such as blood plays an important role in
biofluid transport through and past tissue regions of biological systems. In view of
this, it is necessary to consider non-Newtonian fluid flow through a deformable
porous layer.

Most of the industrial and biofluids are classified as non-Newtonian fluids. Further
Jeffrey model is one of the best non-Newtonian fluid models used by researchers to
explain the biological fluid flow in living organisms. Kothandapani and Srinivas [11]
analyzed the peristaltic transport of a Jeffrey fluid under the effect of magnetic field in
an asymmetric channel. Hayat and Ali [12] examined the peristaltic transport of a
Jeffrey fluid in a tube under the effect of a magnetic field. Nadeem et al. [13]
examined the effects of thermal radiation on the boundary layer flow of a Jeffrey fluid
over an exponentially stretching surface. Makinde and Aziz [14] carried out the MHD
mixed convection from a vertical plate embedded in a porous medium with a
convective boundary condition. Vajravelu et al [15] studied the influence of heat
transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum. Hayat et
al. [16] analyzed the boundary layer flow of a Jeffrey fluid with convective boundary
conditions. The effect of magnetic field on the peristaltic pumping of a Jeffrey fluid in
an inclined channel is analyzed by Krishna Kumari et al. [17]. Bhaskara Reddy et al.
[18] studied the flow of a Jeffrey fluid between torsionally oscillating disks. Rudraiah
et al. [19] analyzed the Hartmann flow over an undeformable permeable bed.
Motivated by these studies, MHD free surface flow of a Jeffrey fluid over a
deformable porous layer is investigated. The fluid velocity, the displacement of the
solid matrix, the mass flux and its fractional increase are obtained. The effects of
various physical parameters on the flow quantities are discussed through graphs.

2. MATHEMATICAL FORMULATION

Consider the free surface flow of a Jeffrey fluid over a finite deformable porous layer
of thickness L (Fig. 1). The deformable porous layer is bounded below by a rigid
plate. The flow region is divided into two regions. The flow region between the lower
plate y =—Land the interface y =0 of deformable porous layer is named as Region-
I. The flow region between the interface y =0and the free surface y = his designated
as Region-I1. The fluid velocity in the free flow region and the porous flow region are
assumed to be (q,0,0) and (v,0,0) respectively. The displacement due to the

deformation of the solid matrix is taken as (u,0,0). A pressure gradient ?:Go Is
X

applied, producing an axially directed flow in the channel. A uniform transverse

magnetic field of strength B, is applied perpendicular to the rigid plate y =—L .

In view of the assumptions mentioned above, the equations of motion in the flow

Regions | and 11 are [19]

ou
yy—gﬁ G, +Kv=0 (1)
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The boundary conditions are
at y=—L:v=0,u=0
at y=0: q=¢'v

¢ dg dv

A9y ==

¢ 1 dy M, dy
d du
L, ag 4

dy ¢ dy

aty=h:d—q:0 4)

...................................... v=h
Free flow region ¢ Region-II
_________________________________________________ y=0
0 Deformable Porous layer v Reglon I
............................. y=-L

‘TTTTTTTTTTTHTTTTT

B,

Figure 1: Physical model

3. NON-DIMENSIONALIZATION OF THE FLOW QUANTITIES
It is convenient to introduce the following non-dimensional quantities:

h*G, . h*G, ., h*G, . L . T
u, v=- V, =~ ,e=—, 7=—
H Hy My h hG,

In view of the above dimensionless quantities, the equations (1) — (4) takes the
following form after the hats (A) are neglected.

y:hy, u=-—
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d?u .
o ®
dv ) .
d—y2=(1+ﬂl)n[(6+M w-¢'] (6)
d’q 2
a;—M A+4)g=-(1+4) @)
2182 2
whereMZ:GBoh ,5=Kh : G=£, n:i, o=d—p.
My K GO zzua dx

The parameter & is a measure of the viscous drag of the outside fluid relative to drag
in the porous medium. The parameter 7 is the ratio of the bulk fluid viscosity to the
apparent fluid viscosity in the porous layer.

The boundary conditions are

aty=—¢:v=0,u=0;

aty=0: gq=¢'v

dg_ 1 dv

dy n¢' dy

dg_ 1au

dy ¢°dy

atyzl:d—q:O (8)
dy

4. SOLUTION OF THE PROBLEM

Equations (5)-(7) are coupled differential equations that can be solved by using the
boundary conditions (8). The solid displacement and fluid velocities in the free flow
region and deformable porous layer are obtained as

2 s5ce® Sce™? s y?
u(y) =g L - SE PN oy, ©)
q(y)=ce®’ +ce®’ +% (10)
f
- %
v(y)=ce®’ +c,e®’ Ve (11)

where a=M,/(1+4) andb:\/((1+/11)5+a)77 the constants c,, c,, c,, c,, ¢, and
¢, found from the boundary conditions, are

o {1,

M2 5+M?
C1 =

1+e*
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b(1+e23) f ’s 1 ¢' i ’a
A= g +ag (1—9 ) As—{—Mz——(S(H\ZIZ]a(l—e )
be A2¢f
[Ase +5+M2j ( -be ¢f ] -be
3:— bz b ,C4__ Cse + > e ,
Ae’" +Ae™° o+M

41  Mass Flux
() Let M, denote the dimensionless mass flow rate per unit width of the channel

is
M, =M, +M, (12)
‘ c,—C, [ce®™-ce” g'e
where Mlzjvdy: S —— -~ | and
.. b b o+M
1 a —a
~ _cet-cet—(c-¢c,) 1
M 2 '([q dy - a + M 2
Here we note that M, and M, describe the mass flow rates in the porous and free flow

regions.
(i) The fluid velocity q,for the MHD free surface flow of a Jeffrey fluid over a

rigid plate is obtained on solving the equation (7) subject to the following
boundary conditions:

at y=0:¢,=0
at y=1: %zo
dy

1
It can be seen that g, = Ae*’+Be ™Y+ —
M

g ? 1
whereA=—————~  _ B=——+--A
M? (e +e*) M?
Then the dimensionless mass flow rate M, per unit width of the channel in the free
flow region (0 <y <1) is given by
(Clea _Cze_a _(Cl _Cz)) + 1

a M? (13)

M, :j'qody:
0
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4.2  Fractional increase
Let F denote the fractional increase in mass flow rate due to deformable porous layer
and it is defined by

F_M,-M,

M, (14)

4. 3 Shear stress
The shear stress at the deformable interface y = 0 is given by

1+ 4 (15)

5. RESULTS AND DISCUSSIONS
The solutions for the fluid velocities g, V in the free flow region and deformable

porous layer and solid displacement of solid matrix U are evaluated numerically for
different values of physical parameters such as the volume fraction of componentg¢’,
the viscous drag parameter o, the viscosity parameterz and the thickness of lower
wall &, magnetic field parameter M and Jeffrey parameter 4, .

The variation of fluid velocities in the channel g, V is calculated for different values
of viscosity parameter »and is shown in figure 2 for fixed 5 =2. 0, ¢'=0. 5, M =1,
A =0.1and ¢ =0. 2. We observe that the velocities g and V increases with the
increasing viscosity parameter 7 .

The variation of fluid velocities in the channel g, V and solid displacementu in the
channel is calculated for different values of volume fraction of component ¢" and is
shown in figures 3 for fixed 6 =2. 0, =0. 5, M =1, 4 =0.1and ¢=0. 2. We
observe that the velocities q, V increase with the increasing ¢’ whereas the solid
displacement U decreases with the increase in ¢".

The variation of fluid velocities g, V and solid displacement U in the channel is
calculated for different values of Jeffrey parameter 4, and is shown in figure 4 for
fixed 5=2. 0, n=0. 5, M =1, ¢'=0. 5and £=0. 2. We observe that the velocities q,
Vv and solid displacement increase with the increase Jeffrey parameter 4.

The variation of fluid velocities q, vV and solid displacement U in the channel is

calculated for different values of magnetic field parameter M and is shown in figure
5 for fixed 6 =2. 0, =0. 5, ¢' =0. 5, 4, =0.1and &£ =0. 2. We observe that the
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velocities g, vV and solid displacement decreases with the increase magnetic field
parameter M .

The variation of dimensionless mass flow rate per unit width of the channel M, with
¢f is calculated from equation (12) and is shown in figure 6 for fixed 6 =2. 0, 7,=0.
5, €=0. 2 and 4, =0.1. We observe that the mass flow rate decreases with increasing

magnetic field parameter M . Further the effect of magnetic field is to reduce the mass
flow rate and the rate of reduction depends on the strength of the magnetic field,
which is similar to the observation made by Rudraiah et al. [18] for the Hartmann
flow over a non-deformable permeable bed.

The variation of dimensionless mass flow rate per unit width of the channel c with ¢f
is calculated from equation (12) and is shown in figure 7 for fixed 6 =2. 0, =0.5, ¢

=0. 2 and M =1. We observe that the mass flow rate increases with increasing Jeffrey
parameter A, .

The variation of fractional increase F with M is calculated from equation (14) and is
shown in figure 8 for fixed & =2. 0, =0.5, £=0. 2 and 4, =0.1. We observe that the

fractional increase decreases with increasing magnetic field parameter M .
The variation of shear stress 7, with 4, is calculated from equation (14) and is shown

in Table 1 for fixedo =2, &£=0.2, M =1land n=0.5. We observe that the shear
stress at the wall interface decreases with increasing Jeffrey parameter 4, .

The variation of shear stress 7, with M is calculated from equation (14) and is shown
in Table 1 for fixedo=2, &£=02, A =021andn=0.5. We observe that the

shear stress at the wall interface decreases with increasing magnetic field parameter
M.
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Figure 2: Velocity profiles for deformable porous region V( y= —0.2—0) and free flow
region q(y=0-1) for different values of 7;.
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Figure 3: Velocity and displacement profiles for deformable porous region
v(y=-0.2-0)and free flow region q(y=0-1) for different values of ¢
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Figure 4: Velocity and displacement profiles for deformable porous region
V(y=-0.2-0)and free flow region q(y=0-1) for different values of 4,.
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Figure 5. Velocity and displacement profiles for deformable porous region
V(y=-0.2-0)and free flow region q(y=0-1) for different values of M .
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Figure 6: Mass flux M. for different values of M .
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Figure 7: Mass flow rate M. for different values A4, .
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Figure 9: Fractional increase F for different values of 4, .
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Table 1: Shear stress for different values of M and A4, at the porous boundary wall
y =0.For fixed valuesof6 =2, &£=0.2, n=0..

¢’ (Tl)y:o for 4, =0.1 (rl)y:O for M =1

M=1] M=2| M=3 | M=4| 4 =0 [4=01]4=02[4=03
0.2/0.742285|0.458438(0.312334(0.233978/0.759030(0.742285|0.726438(0.711416
0.3/0.738939|0.453352(0.307086|0.228815|0.755846(0.738939|0.722945(0.707791
0.4/0.734300|0.446397(0.299993|0.221915|0.751428|0.734300/0.718106(0.702769
0.50.728410|0.437724(0.291285|0.213563|0.745814(0.728410|0.711966(0.696405
0.6/0.721323|0.427515(0.281222|0.204071|0.739052|0.721323|0.704587|0.688762
0.7/0.713102|0.415973|0.270082|0.193759|0.731199|0.713102|0.696038(0.679919
0.8/0.703820]0.403309(0.258141|0.182927|0.722319|0.703820/0.686398(0.669959
0.9/0.693554|0.389741(0.245661|0.171842(0.712482|0.693554/0.675752(0.658977
1.0/0.682387|0.375478|0.232880/0.160733/0.701762|0.682387(0.664191|0.647069

6. CONCLUSIONS:

The present study deals with MHD free surface flow of a Jeffrey fluid over a
deformable porous layer. The results are analyzed for different values of the pertinent
parameters, namely, Jeffrey parameter, volume fraction component. The findings of
the problem find applications in understanding the blood (modelled as Jeffrey fluid)
flow behavior near the tissue layer (modelled as a deformable porous layer). Some of
the interesting findings are as follows:

1. The effect of increase in the volume fraction component ¢"is to enhance the
fluid velocity between the parallel plates.
2. The effect of magnetic field is to reduce the fluid velocity in the free flow

region whereas in the deformable porous layer, both the fluid velocity and
solid displacement decreases with increasing magnetic field.

3. The flux in the free flow region increases with an increase in the Jeffrey
parameter. Also opposite behavior is noticed in case of magnetic field.
4. The effect of increase in the magnetic field parameter and Jeffrey parameter is

to reduce the shear stress at the deformable porous boundary.
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