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Abstract

We discuss the global existence and uniqueness of solution to the Einstein-Maxwell
system with the cosmological constant. The space-time considered being a Bianchi
of type I, in the case of a perfect charged relativistic fluid.We obtain a global exis-
tence theorem in the single case where the derivatives of initial data of potentials
of gravitation a, b and the cosmological constant � are positive. The problem of
initial constraints is also highly studied. In the end, we remark that if a �= b, the
space-time never becomes empty to future infinity as it is the case when a = b.
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1. Introduction

In this paper, we study the evolution of a charged perfect fluid of pure radiation type,
the background space-time being the time-oriented Bianchi type 1 space-time, which
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is an immediate generalization of the flat Friedman-Lemaitre-Robertson-Walker space-
time, also known to be the basic space-time of Cosmology. In Cosmology, homogeneous
phenomena such as the one we consider here are relevant. The whole universe is modeled
and particles in the kinetic theory may be particles of ionized gas as nebular galaxies
or even cluster of galaxies, burning reactors, solar wind, for which only the evolution
in time is really significant. In the case we consider, the evolution is governed by the
coupled Einstein-Maxwell system, the Einstein equations for gravitational field inquiring
about gravitational effects, whereas the Maxwell equations for the electromagnetic field
inform about electromagnetic effects.

The Einstein theory stipulates that the gravitational field, which in the case we con-
sider, depends on the two real valued functions a and b, called potentials of gravitation,
is determined through the Einstein equations, by the material and energetic content of
space-time. The space-time content in this case is represented by a stress-matter tensor
defined by both the matter density ρ and the electromagnetic field F.

The Maxwell equations are the basic equations of Electromagnetism and determine
the electromagnetic field F created by the charged particles. We consider the case where
the electromagnetic field F is generated through the Maxwell equations by a charged
density e, and a future pointing unit vector u, tangent at any point to the temporal axis.
The system is coupled in the sense that a and b which are subjected to the Einstein
equations also determine the electromagnetic field , whereas the electromagnetic field
F , which is subjected to the Maxwell equations also appears in the Einstein equations
through the Maxwell tensor ταβ.

The Einstein-Maxwell system coupled to the conservation laws, turns out to be a
non-linear differential system to determine a, b, ρ and F.

The main objective of this paper is to extend to the case where the gravitational field
depends on two real valued functions a and b, the result obtained by N. Noutchegueme
and C. Nangne[1] , where the gravitational field was depending only on a single real
valued function a.

We prove using a change of variables, that if the cosmological constant � > 0 and
if the initial datum ḃ0 of the derivative with respect to t of b is positive, then there exists
a global solution to the coupled system. And we also prove that if this derivative is
negative, or if the cosmological constant � < 0 even if ḃ0 > 0, then there cannot exist
global solutions. The fact that we prove global existence with cosmological constant
�, is with a great interest, in the sense that some recent observations show that the
whole universe is in an accelerated expansion, and it is the presence of the cosmological
constant in the Einstein equations which mathematically shapes this phenomenon.

The paper organizes as follows:

In section 2, we introduce equations and give some preliminaries. In section 3, we
study the global existence.
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2. Preliminaries and Equations

2.1. The Spacetime, the Unknowns and the reduced system

We consider the Bianchi type I space-time
(
R

4, g
)

and the usual coordinates in R
4; where

g = (
gαβ

)
stands for the metric tensor of hyperbolic signature (−, +, +, +) that can be

written:
g = − (dt)2 + a2 (t)

(
dx1)2 + b2 (t)

[(
dx2)2 + (

dx3)2
]

(1)

in which a > 0, b > 0 are two continuously differentiable unknown functions of the
single variable t .

Following Lichnerowicz[2] , the Einstein-Maxwell system with the cosmological
constant � reads:

Rαβ − 1

2
Rgαβ + gαβ� = 8π

(
Tαβ + ταβ

)
(2)

∇αFαβ = euβ (3)

∇αFβγ + ∇βFγα + ∇γ Fαβ = 0, (4)

where:

• (2) are the Einstein equations for the metric tensorg that represents the gravitational
field, and:

Rαβ is the Ricci tensor, contracted of the curvature tensor;

R = gαβRαβ is the scalar curvature, contracted of the Ricci tensor;

Tαβ and ταβ are respectively the matter tensor and the Maxwell tensor we specify
below;

• (3) and (4) are respectively the first and the second groups of the Maxwell equa-
tions for the electromagnetic field F = (

F 0i , Fij

)
which is a closed unknown

antisymmetric 2−form depending on the single variable t, F 0i and Fij stand for
the electric and magnetic parts respectively.

In (3) , e ≥ 0 is an unknown real-valued function of t,representing the charge
density, and u = (

uα
)

is a time-like future pointing unit vector tangent at any
point to the time axis; euβ is the Maxwell current. ∇α is the usual covariant
derivative in g.

• (4) only expresses the fact that dF = 0, because F is closed.

The general expression of the matter tensor of a relativistic perfect fluid is, in the
chosen signature of g :

Tαβ = (ρ + p) uαuβ + pgαβ

in which ρ ≥ 0 and p ≥ 0 are unknown functions of t, representing respectively the
matter density and the pressure.
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We consider here a perfect fluid of pure radiation type, which means that p = ρ

3
. In

that situation, one obtains:

Tαβ = 4

3
ρuαuβ + 1

3
ρgαβ. (5)

In order to simplify, we consider a co-moving fluid. This implies that:

ui = ui = 0, u0 = 1. (6)

The particles are then supposed to be spatially at rest.
In what follows, using (3) , the well known identities given below will also be very

useful:

∇α∇βFαβ = 0. (7)

Next, the Maxwell tensor ταβ is defined by:

ταβ = −gαβ

4
FλµFλµ + FβλF

λ
α . (8)

Using (7) , the Einstein-Maxwell System (2) − (3) − (4) then yields:

Rαβ − 1

2
Rgαβ + gαβ� = 8π

(
Tαβ + ταβ

)
∇α

(
euα

) = 0
∇αFβγ + ∇βFγα + ∇γ Fαβ = 0.

(9)

The following property of ταβ will be very useful:

Proposition 1.

∇ατα
β = Fβλ∇αFαλ. (10)

Proof. See Noutchegueme & Nangne [1]. �

Proposition 2. e, ρ, F 0i , Fij satisfy the following equations:

ė +
(

ȧ

a
+ 2

ḃ

b

)
e = 0

3ρ̇ + 4

(
ȧ

a
+ 2

ḃ

b

)
ρ = 0

Ḟ 0i +
(

ȧ

a
+ 2

ḃ

b

)
F 0i = 0

Ḟij = 0

(11)
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and are given by the relations:

e =
(a0

a

) (
b0

b

)2

e0

ρ = ρ0

(a0

a

) 4
3
(

b0

b

)2

F 0i =
(a0

a

) (
b0

b

)2

Ei

Fij = φij ,

(12)

where e0 = e (0) , ρ0 = ρ (0) , a0 = a (0) , b0 = b (0) , F 0i (0) = Ei, Fij (0) = φij .

Proof. See Noutchegueme & Nangne [1]. �

Proposition 3. We have for the Einstein tensor:

S00 = 2
ȧḃ

ab
+

(
ḃ

b

)2

, S11 = −a2

[
2
b̈

b
+

(
ḃ

b

)2]
S22 = S33 = −b2

[
ä

a
+ b̈

b
+ ȧḃ

ab

]
Sαβ = 0, if α �= β.

(13)

Proof. See Noutchegueme & Nangne [1] . �

Proposition 4. Tαβ and ταβ are given by the following relations

T00 = ρ, T11 = a2 ρ

3
, T22 = T33 = b2 ρ

3
, Tαβ = 0 if α �= β (14)
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

τ00 = 1

2

(
a0E

1)2
(

b0

b

)4

+ (
a0E

2)2

(
b2

0

ab

)2

+ (
a0E

3)2

(
b2

0

ab

)2


+1

2

[(
φ12

ab

)2

+
(

φ13

ab

)2

+
(

φ23

b2

)2
]

τ11 = 1

2

[
− (

aa0E
1)2

(
b0

b

)4

+ (
a2

0b2
0E

2)2
(

b0

b

)2

+ (
b2

0E
3)2

(
b0

b

)2
]

+1

2

[(
φ12

b

)2

+
(

φ13

b

)2

−
(

aφ23

b2

)2
]

τ22 = 1

2

[(
a0b0E

1)2
(

b0

b

)2

− (
b2

0E
2)2

(a0

a

)2 + (
b2

0E
3)2

(a0

a

)2
]

+1

2

[(
φ12

a

)2

−
(

φ13

a

)2

+
(

φ23

b

)2
]

τ33 = 1

2

[(
a0b0E

1)2
(

b0

b

)2

+ (
b2

0E
2)2

(a0

a

)2 − (
b2

0E
3)2

(a0

a

)2
]

+1

2

[
−

(
φ12

a

)2

+
(

φ13

a

)2

+
(

φ23

b

)2
]

τ0i = −
(a0

a

) (
b0

b

)2

Ejφij , τ12 = 1

b2

(−a2
0b4

0E
1E2 + φ13φ23

)
τ13 = − 1

b2

(
a2

0b4
0E

1E3 + φ12φ23
)
, τ23 = 1

a2

(−a2
0b4

0E
2E3 + φ12φ13

)
.

(15)

Proof.

i) For (14) , we use the expression of Tαβ given by (5) invoking the fact that u0 = 1,
ui = 0 and g00 = −1.

ii) For (15) , we use the expression of ταβ given by (8) which writes:

ταβ = −gαβ

4
FλµFλµ + FβλF

λ
α .

• We then have:

τ00 = −g00

4
FλµFλµ + F0λF

λ
0 .

But FλµFλµ = −2gii

(
F 0i

)2 + giigjj
(
Fij

)2
and F0λF

λ
0 = gii

(
F 0i

)2
, so

τ00 = 1

2
gii

(
F 0i

)2 + 1

4
giigjj

(
Fij

)2
.



Global Dynamic of Einstein-Maxwell system 7

Using the relation (1) , and the relation (12) , one obtains:

τ00 = 1

2

(
a0E

1)2
(

b0

b

)4

+ (
a0E

2)2

(
b2

0

ab

)2

+ (
a0E

3)2

(
b2

0

ab

)2


+ 1

2

[(
φ12

ab

)2

+
(

φ13

ab

)2

+
(

φ23

b2

)2
]

.

• We also have τ0i = F0λF
λ
i , since F0λF

λ
i = −FijF

0j , consequently by (1) and
(12) , we obtain:

τ0i = τ0i = −
(a0

a

) (
b0

b

)2

Ejφij .

τij = −giigjjF
0iF 0j + gkkFikFjk, i �= j

and

τkk = −gkk

4

[
−2gii

(
F 0i

)2 + giigjj
(
Fij

)2
]

− (gkk)
2 (

F 0k
)2 + gjj

(
Fkj

)2
.

Invoking once more (1) and (12) , we find:

τij = −giigjja
2
0b4

0

a2b4
EiEj + gkkφikφjk, i �= j.

Finally, we obtain the waiting results for τ11, τ22, τ33, τ12, τ13 and τ23. �

According to the relations (9) and (12) , we claim:

Proposition 5. The Einstein-Maxwell system (2) − (3) − (4) reduces to the following
system in a and b:

2
ȧḃ

ab
+

(
ḃ

b

)2

− � = 8π [T00 + τ00] (16)

−a2

[
2
b̈

b
+

(
ḃ

b

)2

− �

]
= 8π [T11 + τ11] (17)

−b2
[
ä

a
+ b̈

b
+ ȧḃ

ab
− �

]
= 8π [T22 + τ22] , (18)

in the condition that ταβ = 0 if α �= β and τ22 = τ33.

Proof. The Einstein equations (2) with the cosmological constant � write for:

• α = β = 0 : S00 + g00� = 8π (T00 + τ00);

• α = β = i : Sii + gii� = 8π (Tii + τii);
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• α �= β : ταβ = 0.

Using propositions 3 and 5, we immediately obtain equations (16) , (17) and (18) ,

to which we add the problem of constraints ταβ = 0 if α �= β and τ22 = τ33,that we
have to solve. �

2.2. The Cauchy problem and the problem of constraints

The above system is a system of second order non-linear differential equations in a and
b. We also suppose that a0 > 0, b0 > 0, ρ0 > 0, ȧ0, ḃ0 and Ei,φij , i, j = 1, 2, 3 are
given real numbers and we look for solutions a and b of the system (16) − (17) − (18)

and of course the system (2) − (3) − (4) satisfying the initial conditions:
ρ (0) = ρ0

F 0i (0) = Ei, Fij (0) = φij , i, j = 1, 2, 3

a (0) = a0, b (0) = b0, ȧ (0) = ȧ0, ḃ (0) = ḃ0.

(19)

The aim of the present work is then to prove the global existence of solutions on [0, +∞[
to the Cauchy problem (16) − (17) − (18) − (19) . The values prescribed at t = 0 will
be called initial data, and it is obvious that the signs of ȧ0 and ḃ0 play an important role.

Proposition 6.
1• The Einstein equation (16) , called the Hamiltonian constraint, is satisfied all over
the domain of the solutions a and b , if and only if, the initial data ρ0, a0, b0, ˙a0,ḃ0, E

i,

φij , i, j = 1, 2, 3 satisfy the initial condition:

2
ȧ0ḃ0

a0b0
+

(
ḃ0

b0

)2

= � + 8π

[
ρ0 + 1

2

[(
a0E

1)2 + (
b0E

2)2 + (
b0E

3)2
]]

+8π

1

2

(
φ12

a0b0

)2

+
(

φ13

a0b0

)2

+
(

φ23

b2
0

)2
 (20)

2• The remaining Einstein equations:

S0i + g0i� = 8π (T0i + τ0i) ; Sij + gij� = 8π
(
Tij + τij

)
(21)

are identically satisfied by any solutions a and b of (16) − (17) − (18) if the initial data
a, b0, E

i, φij , i, j = 1, 2, 3 verify:

Eiφij = 0 (22)∑
k

φikφjk − a2
0b4

0E
iEj = 0, i �= j (23)

φ2
12 − φ2

13 − a2
0b4

0

[(
E2)2 − (

E3)2
]

= 0. (24)
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Proof. The problem of constraints ταβ = 0 if α �= β and τ22 = τ33, appearing in
proposition 3 is easily computed, using proposition 4, to give the system (22) − (23) −
(24) . �

Remark 7.

1) The system of constraints (22) − (23) − (24) has non trivial solutions. Notice in
fact that if i �= j , and because a0 > 0, b0 > 0, the choice:{

E1 �= 0; E2 = E3 = 0

φ23 �= 0; φ12 = φ13 = 0,
(25)

gives a non trivial solution a0, b0, E
i, φij , i, j = 1, 2, 3, i �= j of (22) − (23) −

(24) .

2) In what follows, one supposes that the initial data ρ0, a0, b0, ˙a0,ḃ0, E
i, φij , i, j =

1, 2, 3 satisfy the constraints (20) , (22) , (23) and (24) . One must also remark that
if the cosmological constant � is non negative and if ρ0, a0, b0, , E

i, φij ,i, j =
1, 2, 3 are given, (20) requires that:

ȧ0 > 0 and ḃ0 > 0.

In the next section, we look for global existence of solutions a and b of equations
(17) and (18) , called evolution equations. The Hamiltonian constraint (16) will be used
as a property of the solutions.

3. Global Existence of Solutions

3.1. Change of variables

For the study of the Einstein system (17) − (18) , we write:

ρ̃ = 8π (T00 + τ00) , P1 = 8π (T11 + τ11)

a2
,

P2 = 8π (T22 + τ22)

b2
, R+ = P2 − P1

ρ̃
.

(26)

ρ̃ is called the energy density.
Now, following Rendall and Uggla(2000) , we make the change of variables as

indicated below:

H = 1

3

(
ȧ

a
+ 2

ḃ

b

)
, z = 1

a−2 + 2b−2 + 1
, s = b2

b2 + 2a2
, 
+ = 1

H

ḃ

b
− 1. (27)

H is called Hubble variable.
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We also set:

� = ρ̃

3H 2
, q = 2
2+ + �. (28)

� is the normalized energy density and q is the parameter of deceleration.

Lemma 1. We have:

0 < z < 1, 0 < s < 1, a2 = z

s (1 − z)
, b2 = 2z

(1 − s) (1 − z)
(29)



� = 1 − 
2+ − �

3H 2 , � ≥ 0

P1 = π (1 − s)2 (1 − z)2

z2

(
−

(
a0b

2
0E

1
)2 − φ2

23

)
+

2πs (1 − s) (1 − z)2

z2

((
a0b

2
0E

2
)2 +

(
a0b

2
0E

3
)2 + φ2

12 + φ2
13

)
+ 4πρ0a

4
3
0 b2

0s
2
3 (1 − s) (1 − z)

5
3

z
5
3

P2 = π (1 − s)2 (1 − z)2

z2

((
a0b

2
0E

1
)2 + φ2

23

)
+

2πs (1 − s) (1 − z)2

z2

(
−

(
a0b

2
0E

2
)2 +

(
a0b

2
0E

3
)2 + φ2

12 − φ2
13

)
+ 4πρ0a

4
3
0 b2

0s
2
3 (1 − s) (1 − z)

5
3

z
5
3

.

(30)

Proof.

(a) It is clear, in view of formulas (27) which give

z = 1

a−2 + 2b−2 + 1
, s = b2

b2 + 2a2
,

solved in a2 and b2, that:

0 < z < 1, 0 < s < 1, a2 = z

s (1 − z)
, b2 = 2z

(1 − s) (1 − z)
.

(b) Now we want to show that � = 1 − 
2+ − �

3H 2
.

The equation (16) writes 2
ȧḃ

ab
+

(
ḃ

b

)2

− � = ρ̃.

So by (28) one has:

2
ȧḃ

ab
+

(
ḃ

b

)2

− � = 3H 2�. (31)

But invoking (27) one obtains:

ḃ

b
= H (1 + 
+) . (32)
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And using (27) and (32) , we get:

ȧ

a
= H (1 − 2
+) . (33)

Then reporting the expressions of
ȧ

a
and

ḃ

b
given by (33) and (32) in (31) , we

obtain:

2 (H) (1 − 2
+) (H) (1 + 
+) + H 2 (1 + 
+)2 − � = 3H 2�.

Consequently:

� = 1 − 
2+ − �

3H 2
.

(c) � ≥ 0 because ρ̃ ≥ 0.

(d) Using (29) and the values of Tii, τii, i = 1, 2 given by (14) and (15) , we find
the given results for P1 and P2.

One should also remark using (14) , (15) that

ρ̃ = P1 + 2P2. (34)

�

Remark 2.

1) By (30) we have � ≥ 0. So the first equation in (30) gives the inequality:

3H 2 (
1 − 
2+

) ≥ �. (35)

Since the cosmological constant � takes both negative and non negative values,
(35) leads to the fact that if � ≥ 0, then:


+ ∈ [−1, 1] .

2) From now on, the variables H and 
+ should verify the inequality (35) .

3) We also have:

q ≥ 0, ∀� ∈ R, and 0 ≤ q ≤ 2 if � ≥ 0. (36)

Theorem 3. (No global existence in the case � ≥ and ḃ0 < 0) If � ≥ 0 and ḃ0 < 0,
then the Einstein-Maxwell system (16)−(17)−(18) has no global solution on [0, +∞[.

Proof. Let us assume that � ≥ 0 and ḃ0 < 0. We set:

U = ȧ

a
, V = ḃ

b
, W = 1

ab2
,
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then

Ẇ = − (U + 2V ) W. (i)

First of all, we observe that since � ≥ 0, ḃ is never vanishes.
So, using equation (16) and � ≥ 0, we have:

ḃ

b

(
ḃ

b
+ 2

ȧ

a

)
= � + 8π (T00 + τ00) ≥ 8πρ

= 8πρ0a0b
2
0

ab2
:= C2

0

ab2
(ii)

where C2
0 = 8πρ0a0b

2
0 > 0.

Thus
ḃ

b
(t) �= 0, ∀t and then ḃ (t) �= 0, ∀t .

If there exists a global solution, then by (ii) , V (V + 2U) ≥ C2
0W.

Since ḃ0 < 0 and ḃ never vanishes , then by the Weierstrass intermediate value
theorem:

ḃ < 0.

So
V < 0, V + 2U < 0.

It then follows that:

V (V + 2U) = V 2 + 2UV = (U + V )2 − U2 ≥ C2
0W,

and that
(U + V )2 ≥ C2

0W > 0.

Consequently |U + V | ≥ C0
√

W. But

V + U = 1

2
(2V + 2U) = 1

2
[V + (V + 2U)] < 0.

So |U + V | = −U − V ≥ C0
√

W implies that:

U + V ≤ −C0
√

W. (iii)

Invoking now (i) and (iii) , one has:

d

dt

[
1√
W

]
= −Ẇ

2W
√

W

= (U + 2V ) W

2W
√

W

= U + 2V

2
√

W
= (U + V ) + V

2
√

W
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≤ U + V

2
√

W
≤ −C0

√
W

2
√

W
= −C0

2
.

Thus:

d

dt

[
1√
W

]
≤ −C0

2
. (iv)

Integrating (iv) over [0, t], one gets:

1√
W

≤ 1√
W0

− C0

2
t, (v)

where t > 0 is an arbitrary real number , since the solution is global.
The r.h.s of (v) vanishes after a finite time

t∗ = 2

C0
√

W0

and this implies that
1√
W

also vanishes. This is a contradiction because following (i)

W ∗ = 1

a0b
2
0

exp

(∫ t

0
− (U + 2V ) (s) ds

)
> 0.

This completes the proof of theorem 1. �

Using the values of ρ̃, P1 and P2,the system (16) − (17) − (18) , becomes:

2
ȧḃ

ab
+

(
ḃ

b

)2

− � = ρ̃ (37)

−
[

2
b̈

b
+

(
ḃ

b

)2

− �

]
= P1 (38)

−
[
ä

a
+ b̈

b
+ ȧḃ

ab
− �

]
= P2. (39)

3.2. The new system

In view of obtaining a differential system of first order, we will next show that, combining
conveniently the equations of the system (37) − (38) − (39) , we get to the following
system:

ä

a
= 2

3

((
ḃ

b

)2

− ȧḃ

ab

)
− ρ̃

6
+ P1 − 2P2

2
+ �

3
(40)
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b̈

b
= 1

3

(
ȧḃ

ab
−

(
ḃ

b

)2)
− ρ̃

6
− P1

2
+ �

3
. (41)

Proposition 4. The Einstein system of equations (40) − (41) in a and b ensures to
express all derivatives of second order as functions of derivatives of first order and leads
to the non linear first order differential system in H, s, z, 
+ given below:

dH

dt
= −H 2 (1 + q) + �

3
(42)

ds

dt
= 6s (1 − s) 
+H (43)

dz

dt
= 2z (1 − z) (1 + 
+ − 3s
+) H (44)

d
+
dt

= − (2 − q) 
+H + �R+H − �
+
3H

. (45)

Proof. It shall be done in two steps.

i) First of all, let us prove that the system (40) − (41) implies the system (42) − (43) −
(44) − (45) .

It will be sufficient to establish the relation (42) ,the demonstration of the other
relations being identical.

Suppose that (40) − (41) is realized. Since by (27) H = 1

3

(
ȧ

a
+ 2

ḃ

b

)
, then:

dH

dt
= 1

3

(
ä

a
+ 2

b̈

b
−

(
ȧ

a

)2

− 2

(
ḃ

b

)2)
.

Summing (40) and the double of (41) , one has:

ä

a
+ 2

b̈

b
−

(
ȧ

a

)2

− 2

(
ḃ

b

)2

= 1

2
(ρ̃ + P1 + 2P2) −

(
ȧ

a

)2

− 2

(
ḃ

b

)2

+ �.

Thus:
dH

dt
= 1

3

(
−1

2
(ρ̃ + P1 + 2P2) −

(
ȧ

a

)2

+ 2

(
ḃ

b

)2)
+ �

3
.

But
ȧ

a
=

(
ȧ

a
+ 2

ḃ

b

)
− 2

ḃ

b
, so:

dH

dt
= 1

3

(
−1

2
(ρ̃ + P1 + 2P2) −

((
ȧ

a
+ 2

ḃ

b

)
− 2

ḃ

b

)2)

− 1

3

(
4
ḃ

b

((
ȧ

a
+ 2

ḃ

b

)
− 2

ḃ

b

)
− 6

(
ḃ

b

)2)
+ �

3
.
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Now P1 + 2P2 = ρ̃, according to (34) . Since � = ρ̃

3H 2
( given by (28)), one gets:

dH

dt
= 1

3

(
6�H 2

2
− 9H 2 + 6H 2 (


2+ − 1
)) + �

3
= −H 2 [

� + 2
2+ + 1
] + �

3
.

Using (28) which also implies q = 2
2+ + �, one obtains:

dH

dt
= −H 2 (1 + q) + �

3
.

We have proved that the system (40)−(41) implies the system (42)−(43)−(44)−(45) .

There is still to prove the converse.

ii) Proof of the converse.

Let (H, s, z, 
+) be a solution of the system (42) − (43) − (44) − (45) . We are
going to prove that if we set:

a2 = z

s (1 − z)
, b2 = 2z

(1 − s) (1 − z)


+ = 3ḃ(
ȧ
a

+ 2 ḃ
b

)
b

− 1, H =
(

ȧ
a

+ 2 ḃ
b

)
3

(46)

then a and b verify the system (40) − (41) .

From the second line of relation (46) one has:

ḃ

b
= H (1 + 
+) (47)

ȧ

a
= H (1 − 2
+) . (48)

On the one hand we have, taking the derivative with respect to t :

d

dt

(
ȧ

a

)
= ä

a
−

(
ȧ

a

)2

, (49)

and on the other hand, using (48) :
d

dt

(
ȧ

a

)
= Ḣ (1 − 2
+) − 2H
̇+. (50)

From equations (49) and (50) , one deduces that:

ä

a
= Ḣ (1 − 2
+) − 2H
̇+ +

(
ȧ

a

)2

.
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Since (H, s, z, 
+) is a solution of the system (42)−(43)−(44)−(45) , one obtains:

ä

a
=

(
−H 2 (1 + q) + �

3

)
(1 − 2
+) −

2H

(
− (2 − q) 
+H + �R+H − �
+

3H

)
+

(
ȧ

a

)2

. (51)

Now, using (28) , and from P1 + 2P2 = ρ̃ given by the relation (34) one gets:

q = 2
2+ + � = 2
2+
ρ̃

3H 2
= 2
2+

ρ̃

6H 2

(
1 + P1 + 2P2

ρ̃

)
. (52)

Invoking the second line of the relations (46) ,the equation (52) yields:

q = 2

(
1

H

ḃ

b
− 1

)2

+ 1

6H 2 (ρ̃ + P1 + 2P2)

= 2

H 2

(
ḃ

b

)2

− 4ḃ

bH
+ 2 + 1

6H 2 (ρ̃ + P1 + 2P2) . (53)

Consequently:

1 + q = 2

H 2

(
ḃ

b

)2

− 4ḃ

bH
+ 3 + 1

6H 2 (ρ̃ + P1 + 2P2)

−q = −2

H 2

(
ḃ

b

)2

+ 4ḃ

bH
− 1

6H 2 (ρ̃ + P1 + 2P2) .

(54)

Carrying forward the relations (54) inside (51) , and taking in account the equalities

� = ρ̃

3H 2
, R+ = P2 − P1

ρ̃
, one obtains the equalities:

ä

a
= −2

(
ḃ

b

)2

+ 4ḃ

bH
− 3H 2 − ρ̃

6
− 1

6
(P1 + 2P2) + 6H 2
+

+
(

ȧ

a

)2

− 2

3
(P2 − P1) + �

3
− 2

(
ḃ

b

)2

+ 4ḃ

bH
− ρ̃

6
− 1

6
(P1 + 2P2)

+3H 2 (2
+ − 1) +
(

ȧ

a

)2

− 2

3
(P2 − P1) + �

3
.

(55)

So using (48) to express 2
+ − 1 and then H =
(

ȧ
a

+ 2 ḃ
b

)
3

to express H, equalities

(55) imply that:

ä

a
= 2

3

((
ḃ

b

)2

− ȧḃ

ab

)
− ρ̃

6
+ P1 − 2P2

2
+ �

3
.
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This proves (40) . Similarly, one establishes the relation (41) . In conclusion, the proof
of proposition 7 is complete. �

Remark 5. We are going to use this new system of the Einstein equations to prove that
there is no global existence of solutions in the case � < 0. Since the aim of this work
is the proof of global existence of solutions, based on theorem 1, we will in the next
take an interest to the single case � ≥ 0 and ḃ0 > 0. This because ḃ never vanishes,
and so ḃ (0) = ḃ0 must be taken strictly non negative. In view of this, let us remind the
following useful result:

Lemma 6. Let u and v be two continouosly differentiable real valued functions of the
variable t , satisfying the following conditions in which α �= 0 is a constant and t0 ∈ R:

u̇ ≤ −α2u2

v̇ = −α2v2

u (t0) = v (t0) .

Then:
u (t) ≤ v (t) , ∀t ≥ t0.

Theorem 7. (No global existence in the case � < 0) The Einstein-Maxwell system
with the cosmological constant � < 0, in the Bianchi type I space-time has no global
solution on [0, +∞[.

Proof. Suppose that � < 0. If there exists a global solution on [0, +∞[ , then by (35)

and owing to q ≥ 0, we have:
dH

dt
≤ �

3
. (56)

Integrating (56) over [0, t] , t > 0, since H is defined on [0, +∞[ , we obtain:

H (t) ≤ H (0) + �

3
t. (57)

Inequality (57) shows that:
H (t)
t→+∞

→ −∞ (58)

because � < 0.
There then exists according to (58) , t0 ∈ R such that:

H (t) < 0, ∀t ≥ t0. (59)

Using once more (35) and the inequality � < 0, we obtain:

dH

dt
≤ −H 2. (60)
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We consequently find on [t0, +∞[ the inequalities:

Ḣ ≤ −H 2

H (t0) < 0.
(61)

According to (61) , we conclude using lemma 2 that:

H (t) ≤ v (t) , ∀t ≥ t0 (62)

v̇ = −v2

v (t0) = H (t0) .
(63)

But (63) shows that v̇ < 0, so v decreases. Consequently:

v (t) ≤ v (t0) = H (t0) < 0, (64)

and hence:
v (t) �= 0, ∀t ≥ t0. (65)

Separating and integrating (63) over [t0, t], we find:

v (t) = H (t0)

1 + H (t0) (t − t0)
. (66)

The equality (66) shows that:
v (t)
t→<t∗

→ −∞ (67)

where t∗ = t0 − 1

H (t0)
> t0.

Consequently:
H (t)
t→<t∗

→ −∞. (68)

This result is absurd since, H being a continuous function on [0, +∞[ , is bounded
over the compact

[
t0, t

∗] . �

In what follows, we assume that � ≥ 0 and ḃ0 > 0.

3.3. The global existence

We are going to solve the system (42) − (43) − (44) − (45) , whose unknown is
(H, s, z, 
+), this will provide the solution of the equivalent system (40) − (41) whose
unknown is (a, b).

We are looking for a solution (H, s, z, 
+) of the system (42)−(43)−(44)−(45) , on
the interval I = [0, T ] , T > 0 which satisfies at the initial instant t = 0, the condition:

(H, s, z, 
+) (0) = (H0, s0, z0, 
+0) (69)
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where H0, s0, z0, 
+0 are real numbers conveniently fixed. In fact we must return to
definitions of H, s, z, 
+ and choose those data according to a0, b0, ȧ0, ḃ0 (and so
to ρ0, Ei, φij , i, j = 1, 2, 3) and furthermore, subjected to the Hamiltonian constraint
(20) .

Remark 8. Using the definition of q, the equalities ρ̃ = P1+2P2 and
�H 2

ρ̃
= 1

3
, � =

1−
2+− �

3H 2
, to rewrite the equations (42) and (45) , the system (42)−(43)−(44)−(45)

turns into a new system given by:

dH

dt
= −3

2
H 2 (

1 + 
2+
) − P1 + 2P2

6
+ �

2
ds

dt
= 6s (1 − s) 
+H

dz

dt
= 2z (1 − z) (1 + 
+ − 3s
+) H

d
+
dt

= −3

2
H
+

(
1 − 
2+

) − P1 (
+ − 2)

6H
+ P2 (
+ + 1)

3H
− �
+

2H

(70)

and that we now solve.

Remark 9. Domain of the variables H, s, z, 
+. We will take the variables H, s, z, and

+ on the set B defined below by:

B = {
(H, s, z, 
+) ∈ R

4/ 0 < H ≤ H0, 0 < s < 1, 0 < z < 1, −1 < 
+ < 1
}
.

(71)
In fact, it is easily shown using (35) and the definitions of s, z that:

0 < s < 1, 0 < z < 1, −1 < 
+ < 1. (72)

Now, using (35) , (42) and the fact that 0 < H0, one gets:

0 < H ≤ H0 (73)

where H0 = H (0) .

Let us now give the following definition which shows helpful in the next:

Definition 10. If s is a real number such that 0 < s < 1, we set:

α (s) = inf (s, 1 − s) .

Remark 11. Since H0 > 0, one can assume that ȧ0 > 0.

Under this assumption, initial data a0, b0, ȧ0, and ḃ0 shall be such that:

a0 > 0, b0 > 0, ȧ0 > 0, ḃ0 > 0. (74)



20 Remy Magloire Etoua and Raoul Domingo Ayissi

Inequalities (73) imply using
ȧ0

a0
> 0 and ḃ0 > 0 that: −1 < 
+0 <

1

2

+0 = 
+ (0) .

(75)

We now prove the global existence theorem of solutions to the Einstein system (70) with
the initial data given by (69) and where

H0 > 0, 0 < s0 < 1, 0 < z0 < 1, −1 < 
+0 <
1

2
. (76)

We will apply the standard theory on first order differential systems. With a view to
succeed, we will study the function G defined using the r.h.s of the system (70) by:

G (t,H, s, z,
+) = (G1, G2, G3, G4) (t, H, s, z,
+) (77)

where

G1 (t, H, s, z,
+) = −3

2
H 2 (

1 + 
2+
) − P1 + 2P2

6
+ �

2
G2 (t, H, s, z,
+) = 6s (1 − s) 
+H

G3 (t, H, s, z,
+) = 2z (1 − z) (1 + 
+ − 3s
+) H

G4 (t, H, s, z,
+) = −3

2
H
+

(
1 − 
2+

) − P1 (
+ − 2)

6H
+ P2 (
+ + 1)

3H
− �
+

2H
.

(78)
Recall that G is defined on the set

B = ]0, H0] × ]0, 1[ × ]0, 1[ × ]−1, 1[ .

We must prove that G is a continuous function of t, locally Lipschitzian in X =
(H, s, z, 
+) ∈ R

4 endowed with the norm:

‖X‖R4 = |H | + |s| + |z| + |
+| . (79)

G is obviously a continuous function of t , on one hand. On the other hand, G2 and G3
are polynomial functions in H, s, z and 
+, so are locally Lipschitzian.

Concerning now G1 and G4, we have:

Lemma 12. Let δ > 0, t0 ≥ 0 to be given. If s1, s2, z1, z2 ∈ ]0, 1[ , H1, H2 ∈ ]0, H0[
then:

|Pi (s1, z1) − Pi (s2, z2)| ≤ C [|s1 − s2| + |z1 − z2|]
α4 (si) α5 (z1) α5 (z2)

|Pi (s, z)| ≤ C

α2 (z)∣∣∣∣Pi (s1, z1)

H1
− Pi (s2, z2)

H2

∣∣∣∣ ≤ C [|H1 − H2| + |s1 − s2| + |z1 − z2|]
H1H2α4 (si) α5 (z1) α5 (z2)

i = 1, 2.

(80)
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Proof. We set:

Ui = si (1 − si) (1 − zi)
2

z2
i

, Vi = (1 − si)
2 (1 − zi)

2

z2
i

, Wi = s
2
3
i (1 − si) (1 − zi)

5
3

z
5
3
i

, i = 1, 2

C1 = −π

((
a0b

2
0E

1
)2 + φ2

23

)
, C2 = 2π

((
a0b

2
0E

2
)2 +

(
a0b

2
0E

3
)2 + φ2

12 + φ2
13

)
C3 = 2π

(
−

(
a0b

2
0E

2
)2 +

(
a0b

2
0E

3
)2 + φ2

12 − φ2
13

)
, C4 = 4πρ0a

4
3
0 b2

0.

(81)

We want to estimate

|Pi (s1, z1) − Pi (s2, z2)| , |Pi (s, z)| ,

∣∣∣∣Pi (s1, z1)

H1
− Pi (s2, z2)

H2

∣∣∣∣ .
(a) Estimation of |Pi (s1, z1) − Pi (s2, z2)|. To handle the differences appearing in

Pi (s1, z1) − Pi (s2, z2) , i = 1, 2, it will be sufficient to handle U1 − U2, V1 − V2 and
W1 − W2 since C1, C3, C3, and C4 are absolute constants.

We have:

W1 − W2 = z5
2s

2
1 (1 − s1)

3 (1 − z1)
5 − z5

1s
2
2 (1 − s2)

3 (1 − z2)
5(

a2 + ab + b2
)
z

5
3
1 z

5
3
2

(82)

where

a = z
5
3
2 s

2
3
1 (1 − s1) (1 − z1)

5
3 , b = z

5
3
1 s

2
3
2 (1 − s2) (1 − z2)

5
3 .

Since:

si, , zi, 1 − si, 1 − zi ∈ ]0, 1[ , si, 1 − si ≥ α (si) , zi, 1 − zi ≥ α (zi) , i = 1, 2

it follows by usual factorizations that∣∣∣z5
2s

2
1 (1 − s1)

3 (1 − z1)
5 − z5

1s
2
2 (1 − s2)

3 (1 − z2)
5
∣∣∣ ≤ C [|s1 − s2| + |z1 − z2|] (83)

and (
a2 + ab + b2) z

5
3
1 z

5
3
2 ≥ a2z

5
3
1 z

5
3
2 ≥ α5 (z1) α5 (z2) α4 (si) , i = 1, 2. (84)

So, from (82) , (83) , (84) , on concludes that

|W1 − W2| ≤ C [|s1 − s2| + |z1 − z2|]
α4 (si) α5 (z1) α5 (z2)

, i = 1, 2. (85)

Similarly, on obtains:

|U1 − U2| ≤ C [|s1 − s2| + |z1 − z2|]
α2 (z1) α2 (z2)

|V1 − V2| ≤ C [|s1 − s2| + |z1 − z2|]
α2 (z1) α2 (z2)

.

(86)
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We deduce owing all the preceding steps that:

|Pi (s1, z1) − Pi (s2, z2)| ≤ C [|s1 − s2| + |z1 − z2|]
α4 (s1) α5 (z1) α5 (z2)

. (87)

(b) It is immediate that

|Pi (s, z)| ≤ C

α2 (z)
, i = 1, 2. (88)

(c) Handling of

∣∣∣∣Pi (s1, z1)

H1
− Pi (s2, z2)

H2

∣∣∣∣ .
We have:

Pi (s1, z1)

H1
− Pi (s2, z2)

H2
= H1 − H2

H1H2
Pi (s1, z1) + 1

H2
(Pi (s1, z1) − Pi (s2, z2)) .

It follows from (87) and (88) since 0 < Hi ≤ H0 that: s∣∣∣∣Pi (s1, z1)

H1
− Pi (s2, z2)

H2

∣∣∣∣ ≤ C [|H1 − H2| + |s1 − s2| + |z1 − z2|]
H1H2α2 (s1) α9 (z1) α2 (z2)

. (89)

This ends the proof of lemma 3. �

We conclude using lemma 3 that:

|G1 (H1, s1, z1, 
+1) − G1 (H2, s2, z2, 
+2)| ≤
C

[|H1 − H2| + |s1 − s2| + |z1 − z2| + |
+1 − 
+2|
]

α4 (si) α5 (z1) α5 (z2)
. (90)

We similarly conclude that:

|G4 (H1, s1, z1, 
+1) − G4 (H2, s2, z2, 
+2)| ≤
C

[|H1 − H2| + |s1 − s2| + |z1 − z2| + |
+1 − 
+2|
]

H1H2α4 (si) α5 (z1) α5 (z2)
. (91)

Let
(
H 0, s0, z0, 
0+

)
be given in B = ]0, H0] × ]0, 1[ × ]0, 1[ × ]−1, 1[ . Now

consider the neighborhood V of
(
H 0, s0, z0, 
0+

)
defined by:

V =
]
H 0

2
, H0

[
×

]
s0

2
,
s0 + 1

2

[
×

]
z0

2
,
z0 + 1

2

[
× ]−1, 1[ . (92)

If we take
(H1, s1, z1, 
+1) , (H2, s2, z2, 
+2) ∈ V,

then
H 0

2
< Hi < H0,

s0

2
< si <

s0 + 1

2
,

z0

2
< zi <

z0 + 1

2
, i = 1, 2,
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1

Hi

<
2

H 0
,

1

α (si)
<

2

α
(
s0

) ,
1

α (zi)
<

2

α
(
z0

) , i = 1, 2. (93)

Using(90) , (91) , (93) , we obtain:

|G1 (H1, s1, z1, 
+1) − G1 (H2, s2, z2, 
+2)| ≤

C
[|H1 − H2| + |s1 − s2| + |z1 − z2| + |
+1 − 
+2|

]
α4

(
s0

)
α10

(
z0

) , (94)

|G4 (H1, s1, z1, 
+1) − G4 (H2, s2, z2, 
+2)| ≤

C
[|H1 − H2| + |s1 − s2| + |z1 − z2| + |
+1 − 
+2|

](
H 0

)2
α4

(
s0

)
α10

(
z0

) . (95)

We conclude that, like G2 and G3, the functions G1 and G4 are locally Lipschitzian.
So is for the function G.

We can now prove our main result:

Theorem 13. If � ≥ 0 and ḃ0 > 0, then the Cauchy problem for the Einstein-Maxwell
system with the cosmological constant has a global solution on [0, +∞[.

Proof. We have seen before that G given by (77) and defined by the r.h.s of the system
(70) in (H, s, z, 
+) was continuous and locally Lipschitzian, so by the standard theory
on first order differential systems, this system for the initial data H0, s0, z0, 
+0 such
that:

H0 = 1

3

(
ȧ0

a0
+ 2

ḃ0

b0

)
, s0 = b2

0

b2
0 + 2a2

0

, , z0 = 1

a−2
0 + 2b−2

0 + 1
, 
+0 = 1

H0

ḃ0

b0
− 1,

(96)
where a0, b0, ȧ0, ḃ0 (and so ρ0, Ei, φij , i, j = 1, 2) satisfy the Hamiltonian con-
straint (20), has a unique local solution (H, s, z, 
+) . But moreover we have:

0 < s < 1, 0 < z < 1,

−1 ≤ 
+ ≤ 1, 0 < H ≤ H0.
(97)

Thus, the local solution (H, s, z, 
+) of the Cauchy problem is uniformly bounded,
so is global.

From there, results the global existence of the Cauchy problem for the equivalent
system (40) − (41) in a and b on [0, +∞[ . And from the global solution (a, b), we
deduce using proposition 2, the global existence of ρ, F 0i , Fij .

This completes the proof of theorem 3. �
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4. Conclusion

In this paper we have analyzed the Einstein-Maxwell system for perfect charged rela-
tivistic fluid in a Bianchi type I space-time with the cosmological constant. We have
seen that there cannot exist a global solution when the cosmological constant � < 0.

We have also proved that even if the cosmological constant � ≥ 0, there cannot exist
a global solution when ḃ0 < 0. But we have obtained a unique global solution in the
case � ≥ 0 and ḃ0 > 0. The result obtained here seems very important, because in the
General Theory of Relativity, it is the cosmological constant which models the accel-
eration of the expansion of our universe. Several scientists are now working to better
understanding such phenomena; which are essential to the future and the subsistence of
humanity. One can also easily see by ρ given in (12) , that; conveniently choosing a in
the case a = b ( Robertson-Walker space-time), the energy-momentum tensor Tαβ + ταβ

given in (14) , (15) vanishes when t → +∞. So the space-time in this case becomes
empty to future infinity. But in the case we have considered here where a �= b, we see
using (14) , (15) that Tαβ + ταβ never vanishes with t → +∞. So the space-time would
never be empty to future infinity.
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