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Abstract

In this paper, we present a systematic studies of some families ofAppell-type Daehee
polynomials. In particular, we derive some interesting identities for the Appell-type
Daehee polynomials by using the basis properties of Appell-type Daehee polyno-
mials of degree less than and equal to n.
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will,
respectively, denote the ring of p-adic rational integers, the field of p-adic rational
numbers and the completion of the algebraic closure of Qp. Let νp be the normalized

exponential valuation of Cp with |p|p = p−νp(p) = 1

p
.

Let UD(Zp) be the space of uniformly differentiable function on Zp. For f ∈
UD(Zp), the bosonic p-adic integral on Zp is defined by

I0(f ) =
∫

Zp

f (x)dµ0(x) = lim
N→∞

pN−1∑
x=0

f (x)µ0(x + pNZp)

= lim
N→∞

1

pN

pN−1∑
x=0

f (x), ,

(1.1)

(see [5, 7, 8-10]). From (1.1), we have

I0(f1) = I0(f ) + f ′(0), (1.2)

where f1(x) = f (x + 1).
The Daehee polynomials are defined by the generating function to be

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n! , (see [5, 7–9]), (1.3)

and there are many works related with Daehee numbers and polynomials (see [3, 6–9,
11, 14–17]).

As is well known, the Bernoulli polynomials are defined by the generating function
to be

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n! , (see [1, 2]). (1.4)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers, and Bernoulli polynomials
of the second kind are defined by the generating function to be

t

log(1 + t)
(1 + t)x =

∞∑
n=0

bn(x)
tn

n! , (see [12, 13]). (1.5)

For λ, t ∈ Cp with |λt | < p
− 1

p−1 , the Daehee polynomials with parameter λ are
defined by the generating function to be

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

Dn(x|λ)
tn

n! , (see [7, 16]). (1.6)
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A polynomial sequence {pn(x)} is called Appell sequence if

d

dx
pn(x) = npn−1(x)

for all positive integer n.
Let Vn = {p(x) ∈ Q[x]| deg p(x) ≤ n} be the (n+1)-dimensional vector space over

Q. Probably,
{
1, x, . . . , xn

}
is the most natural basis for Vn.

In this paper, we prove that {D0(x|λ), D1(x|λ), . . . , Dn(x|λ)} is also a good basis
for the space Vn for our purpose of arithmetical and combinatorial applications of the
Appell-type Daehee polynomials, and investigate some properties of those polynomials.

2. Degenerate Daehee polynomials

Let us assume that λ, t ∈ Cp with |λt |p < p
− 1

p−1 .
We consider the Appell-type Daehee polynomials which is defined by

log(1 + t)

log(1 + λt)
1
λ

ext =
∞∑

n=0

Dn(x|λ)
tn

n! . (2.1)

When x = 0, Dn(λ) = Dn(0|λ) are called the Appell-type Daehee numbers.
Note that

log(1 + t)

log(1 + λt)
1
λ

ext =
( ∞∑

n=0

Dn(λ)
tn

n!

) ( ∞∑
m=0

xm

m! t
m

)

=
∞∑

n=0

(
n∑

m=0

(
n

m

)
Dn−m(λ)xm

)
tn

n! ,
(2.2)

From (2.1) and (2.2), we have the following theorem

Theorem 2.1. For n ≥ 0, we have

Dn(x|λ) =
n∑

m=0

(
n

m

)
Dn−m(λ)xm.

From Theorem 2.1,

d

dx
Dn(x|λ) =

n∑
m=1

(
n

m

)
Dn−m(λ)mxm−1

= n

n∑
m=1

(
n − 1

m − 1

)
Dn−m(λ)xm−1

= n

n−1∑
m=0

(
n

m

)
Dn−m(λ)xm

= nDn−1(x|λ),

(2.3)
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and so we know that a sequence {Dn(x|λ)} is Appell sequence.
By (2.3), we have

Dn(x|λ) =
∫

d

dx
Dn−1(x|λ)dx = 1

n
Dn(x|λ)

= n

∫
Dn−1(x|λ)dx.

(2.4)

By (2.4), we obtain the following corollary.

Corollary 2.2. For n ≥ 0, we have∫
Dn−1(x|λ)dx = 1

n
Dn(x|λ) + C

where C is a constant.

Since

ext = log(1 + λt)
1
λ

log(1 + t)

∞∑
n=0

Dn(x|λ)
tn

n!

= log(1 + λt)

λt

t

log(1 + t)

∞∑
m=0

Dm(x|λ)
tm

m!

=
( ∞∑

n=0

Dn

λntn

n!

) 
 ∞∑

j=0

bj

tj

j !


 ( ∞∑

m=0

Dm(x|λ)
tm

m!

)

=
( ∞∑

m=0

(
m∑

l=0

(
m

l

)
λlDlbn−l

)
tm

m!

) ( ∞∑
k=0

Dk(x|λ)
tk

k!

)

=
∞∑

n=0

(
n∑

m=0

m∑
l=0

(
m

l

)(
n

m

)
λlDlbn−lDn−m(x|λ)

)
tn

n! ,

(2.5)

and ∞∑
n=0

xn tn

n! = ext , (2.6)

by (2.5) and (2.6),

xn =
n∑

m=0

m∑
l=0

(
m

l

)(
n

m

)
λlDlbn−lDn−m(x|λ)

=
n∑

m=0

n−m∑
l=0

(
n

n − m

)(
n − m

l

)
λlDlbn−lDm(x|λ)

(2.7)
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for all nonnegative integers n. Hence, by (2.7), we obtain the following theorem.

Theorem 2.3. {D0(x|λ), D1(x|λ), . . . , Dn(x|λ)} is a basis of Vn.

As is well known, the Bell polynomials are defined by the generating function to be

e(et−1)x =
∞∑

n=0

Beln(x)
tn

n! , (see [4]). (2.8)

When x = 0, Beln = Beln(0) are called the Bell numbers
By replacing t by et − 1 in (2.1), we have

e(e
t−1)x =

∞∑
n=0

Dn(x|1)
1

n!
(
et − 1

)m

=
∞∑

m=0

Dm(x|1)
1

m!m!
∞∑

n=m

S2(n, m)
tn

n!

=
∞∑

n=0

(
n∑

m=0

Dm(x|1)S2(n, m)

)
tn

n! ,

(2.9)

by (2.21) and (2.8), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, we have

Beln(x) =
n∑

m=0

Dm(x|1)S2(n, m).

Indeed,

e(et−1)x =
∞∑

m=0

xn 1

m!
(
et − 1

)m

=
∞∑

m=0

xm 1

m!m!
∞∑

n=m

S2(n, m)
tn

n!

=
∞∑

n=0

(
n∑

m=0

xmS2(n, m)

)
tn

n! ,

(2.10)

and thus, by Theorem 2.4 and (2.22), we obtain the following corollary.

Corollary 2.5. For n ≥ 0, we have

Beln(x) =
n∑

m=0

S2(n, m)xm,
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and
Dn(x|1) = xn.

For λ �= 1, since

log(1 + t)

log(1 + λt)
1
λ

ext =
( ∞∑

l=0

Dl(λ)
t l

l!

)
ext , (2.11)

by replacing t by et − 1 in (2.11),

∞∑
m=0

Dm(x|λ)
(et − 1)m

m! =
( ∞∑

l=0

Dl(λ)
1

l!(e
t − 1)l

) ( ∞∑
m=0

Belm(x)
tm

m!

)

=
( ∞∑

l=0

Dl(λ)

∞∑
k=l

S2(k, l)
tk

k!

) ( ∞∑
m=0

Belm(x)
tm

m!

)

=
( ∞∑

n=0

n∑
l=0

Dl(λ)S2(n, l)
tn

n!

) ( ∞∑
m=0

Belm(x)
tm

m!

)

=
∞∑

n=0

(
n∑

k=0

k∑
l=0

Dl(λ)S2(k, l)Beln−k(x)

(
n

k

))
tn

n! ,

(2.12)

and

∞∑
m=0

Dm(x|λ)
(et − 1)m

m! =
∞∑

m=0

Dm(x|λ)
1

m!m!
∞∑

l=m

S2(l, m)
t l

l!

=
∞∑

n=0

(
n∑

m=0

Dm(x|λ)S2(n, m)

)
tn

n! .
(2.13)

By (2.12) and (2.13), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, we have

n∑
k=0

k∑
l=0

(
n

k

)
Dl(λ)S2(k, l)Beln−k(x) =

n∑
m=0

Dm(x|λ)S2(n, m).

Note that, by Theorem 2.1 and (2.3), we get

dk

dxk
Dn(x|λ) =

n∑
m=0

(
n

m

)
Dn−m(λ)

dk

dxk
xm

=
n∑

m=k

(
n

m

)
Dn−m(λ)(m)kx

m−k

(2.14)
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and so
dk

dxk
Dn(x|λ)

∣∣∣∣
x=0

=
(

n

k

)
Dn−k(λ)k!. (2.15)

Let us assume that p(x) ∈ Vn. Then, by Theorem 2.3, p(x) can be generated by
D0(x|λ), D1(x|λ), . . . , Dn(x|λ) to be

p(x) =
n∑

m=0

amDm(x|λ). (2.16)

Note that

D0(x|λ) = lim
t→0

log(1 + t)

log(1 + λt)
1
λ

ext = 1. (2.17)

Then,
dk

dxk
p(x) =

n∑
m=k

am

dk

dxk
Dm(x|λ), (2.18)

and so, by (2.15),

dk

dxk
p(0) =

n∑
m=k

am

(
m

k

)
Dm−k(λ)k!. (2.19)

By (2.17) and (2.19),

am = 1

m!

(
dm

dxm
p(0) − m!

n∑
k=m+1

ak

(
k

m

)
Dk−m(λ)

)
(2.20)

for each m = 0, 1, . . . , n. Thus we can determine am by inductively.
From now on, We consider the higher-order Appell-type Daehee polynomials which

is defined by (
log(1 + t)

log(1 + λt)
1
λ

)r

ext =
∞∑

n=0

D(r)
n (x|λ)

tn

n! . (2.21)

When x = 0, Dn(λ) = Dn(0|λ) are called the higher-order Appell-type Daehee numbers.
Since(

log(1 + t)

log(1 + λt)
1
λ

)r

=
(

log(1 + t)

t

)r (
λt

log(1 + λt)

)r

ext

=
( ∞∑

n=0

D(r)
n

tn

n!

) ( ∞∑
n=0

B(n−r+1)
n (1)

λntn

n!

) ( ∞∑
n=0

xn tn

n!

)

=
( ∞∑

n=0

n∑
m=0

B(m−r+1)
m (1)D

(r)
n−m

(
n

m

)
tn

n!

) ( ∞∑
n=0

xn tn

n!

)

=
∞∑

n=0

(
n∑

k=0

k∑
m=0

B(m−r+1)
m (1)D

(r)
k−m

(
k

m

)(
n

k

)
xn−k

)
tn

n! ,

(2.22)
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by (2.21) and (2.22), we obtain the following theorem.

Theorem 2.7. For given n ≥ 0, we have

D(r)
n (x|λ) =

n∑
k=0

k∑
m=0

B(m−r+1)
m (1)D

(r)
k−m

(
k

m

)(
n

k

)
xn−k.
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