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1. Introduction

In [2] has been introduced partial Hausdroff metric, but it is less than perfect that is

only meets three from four of partial metric axioms. Therefore in this paper will be re-

fined. Before we start we write return Hausdorff metric induced by the metric d in [3].

Let (X, d) be a metric space and cb(X) denotes the family of all non-empty closed

bounded subsets of X. For every set A,B ∈ cb(X), define

h(A,B) = max{d(A,B), d(B,A)}
where d(A,B) = sup{d(a,B) | a ∈ A} and d(a,B) = inf{d(a, b) | b ∈ B}. It is know

h is metric on cb(X), called the Hausdorff metric induced by the metric d. Matthews

[4] introduced the concept of a partial metric as a part of the study of denotational

semantics of dataflow networks. The following notion of partial metric in [4].

Definition 1.1 Let X be a nonempty set. A function p : X ×X → R+ is said to

be a partial metric on X if for any x, y, z ∈ X, the following conditions holds.

(P1): p(x, x) ≤ p(x, y)
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(P2): p(x, x) = p(y, y) = p(x, y) if and only if x = y

(P3): p(x, y) = p(y, x)

(P4): p(x, z) ≤ p(x, y) + p(y, z)− p(y, y)

The pairs (X, p) is called a partial metric space.Note that the self-distance of any

point need not be zero. Partial metric p will become a metric if p(x, x) = 0.

If p is a partial metric on X, then the function dp : X ×X → [0,∞) given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

for each x, y ∈ X, is a metric on X:

Lemma 1.2 Let (X, p) be a partial metric space. If p(x, y) = 0 then x = y.

Proof. From (P1) and (P2) imply that x = y. But the convers does not hold always.

�

Let (X, p) partial metric spaces. Point a ∈ X dan ε > 0. The open ball for a

partial metric p are sets of the form

Bε(a) = {x ∈ X | p(a, x) < ε} .

Since p(a, a) ≥ 0, open ball can also be presented as

Bε+p(a,a)(a) = {x ∈ X | p(a, x) < ε+ p(a, a)} .

Contrary to the metric space case, some open balls may be empty. If ε > p(a, a),

then Bε(a) = Bε−p(a,a)(a). If 0 < ε ≤ p(a, a), then

Bε(a) = {x ∈ X | p(a, x) < ε ≤ p(a, a)} = ∅.

This means that the open ball Bp(a,a)(a) is an empty set. Therefore, the point a /∈
Bp(a,a)(a).

Definition 1.3 Let (X, p) be a partial metric space. A sequence 〈xn〉 in X con-

verges to the point x ∈ X if limn→∞ p(xn, x) = p(x, x).

Definition 1.4 Let (X, p) be a partial metric space. A sequence 〈xn〉 in X properly

converges to the point x ∈ X if 〈xn〉 converges to x and

lim
n→∞

p(xn, xn) = p(x, x).

In other words, a sequence 〈xn〉 properly converges to x ∈ X if limn→∞ p(xn, x).

and limn→∞ p(xn, xn) exists and

lim
n→∞

p(xn, xn) = lim
n→∞

p(xn, x) = p(x, x).
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Definition 1.5 Let (X, p) be a partial metric space. A sequence 〈xn〉 in X is said

to be a Cauchy sequence if limn,m→∞ p(xn, xm) exists and finite.

In other words,〈xn〉 is Cauchy sequence if the numbers sequence p(xn, xm) con-

verges to some λ ∈ R as n and m approach to infinity, that is, if limn,m→∞ p(xn, xm) =

λ < ∞. This means for every ε > 0 there exists n ∈ N such that for all

m,n ≥ N, |p(Xn, xm| < ε. If (X, p) is a metric space then λ = 0.

Theorem 1.6 A sequence 〈xn〉 in a partial metric space (X, p) is a Cauchy, if and

only if for all ε > 0 there exists N ∈ N such that for all n,m ≥ N we have

p(xn, xm)− p(xm, xm) < ε.

Proof. Since 〈xn〉 is Cauchy, there exists λ ∈ R such that for all ε > 0 there exists

N ∈ N such that for all n,m ≥ N we have

|p(xn, xm)− λ| < ε

2
.

Let n = m ≥ N , then |p(xm, xm)− λ| < ε

2
. Therefore

|p(xn, xm)− p(xm, xm)| ≤ |p(xn, xm)− λ|+ |λ− p(xm, xm)| < ε.

By (P1), we obtain p(xn, xm) − p(xm, xm) < ε. Conversly it is obvious.

�

Definition 1.7 A partial metric space (X, p) is said a complete if every sequence

Cauchy in X properly converges.

For A,B ∈ cb(X) and point x ∈ X is defined

p(x,A) = inf
a∈A

p(x, a), p(A,B) = sup
a∈A

p(a,B), p(B,A) = sup
b∈B

p(b, A)

In general p(A,B) 6= p(B,A). For example X = R and function p : R× R −→ R+

we define

p(x, y) = max{x, y} x, y ∈ R

Clear that p is a partial metric. If A = [1, 3] and B = [2, 4], then

p(A,B) = supa∈A p(a,B) = p(1, B) = infb∈B p(1, b) = p(1, 2) = max{1, 2} = 2 and

p(B,A) = supb∈B p(b, A) = p(4, A) = infa∈A p(4, a) = p(4, 3) = max{4, 3} = 4.

In [2] we obtain the following.
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Proposition 1.8 Let (X, p) be a partial metric space. For any A,B,C ∈ cb(X)

we have the following.

(i): p(A,A) = supa∈A p(a, a);

(ii): p(A,A) ≤ p(A,B)

(iii): p(A,B) = 0 implies that A = B

(iv): p(A,B) ≤ p(A,C) + p(C,B)− infc∈C p(c, c).

2. Main results

2.1. Hausdorff Partial Metric. We start with the following Definitions and Lem-

mas needed to prove our main result.

Definition 2.1.1 Let (X, p) be a partial metric space and A 6= ∅ ⊂ X.

(i): A is a bounded if there exists x0 ∈ X and M ≥ 0 such that for all a ∈ A we

have

p(x0, a) ≤M + p(a, a).

(ii): The point x ∈ X is said a limit point of A if all ε > 0 there exists a 6= x ∈ A
such that

p(x, a) ≤ ε+ p(x, x).

(iii): A is a closed set if for all its limit point belongs in A.

Lemma 2.1.2 Let (X, p) be a partial metric space and A ⊂ X. The point x ∈ X
is a limit point of A if and only if p(x,A) = p(x, x).

Proof.By Definition 2.1.1 part (ii) for every ε > 0 there exists a 6= x ∈ A we have

p(x, a) ≤ ε+ p(x, x).

Since p(x,A) ≤ p(x, a) for all a ∈ A, we have

p(x,A) ≤ ε+ p(x, x). (1)

On the other hand

p(x, a)− ε ≤ p(x,A). (2)

From inequality (1) and (2)we obtained

p(x, a)− ε ≤ ε+ p(x, x).

Thus

p(x, x)− ε ≤ p(x, a)− ε ≤ p(x,A) ≤ ε+ p(x, x).

The number ε > 0 is arbitrary , p(x,A) = p(x, x).

The converse, for all ε > 0 there exists a ∈ A and p(x, a) < p(x,A) + ε. Since
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p(x,A) = p(x, x) , then p(x, a) < p(x, x) + ε. By Definition 2.1.1 part (ii), x is the

limit point of A.

�

Corollary 2.1.3 Let (X, p) be a partial metric space and A any nonempty set in

(X, p)

x ∈ Ā⇐⇒ p(x, x) = p(x,A), (3)

where Ā is closure of A.

The following proposition is addition the above of Proposition 1.8.

Proposition 2.1.4 Let (X, p) be a partial metric space. For any A,B ⊂ X we

have the following.

(i): for any a ∈ A p(a,B) = p(a, a) if and only if A ⊂ B̄;

(ii): for any b ∈ B p(b, A) = p(b, b) if and only if B ⊂ Ā;

(iii): for any a ∈ A p(a,B) = 0 then a ∈ B̄
Proof (i) Let a ∈ A. Since p(a, a) ≤ p(a, b) for all b ∈ B and p(A,B) = p(a, a) for

all a ∈ A, therefore we have p(a, a) ≤ infb∈B p(a, b) = p(a,B) ≤ p(A;B) = p(a; a) for

all a ∈ A and hence p(a,B) = p(a, a). Using (3) we have a ∈ B̄ whenever a ∈ A so

A ⊂ B̄. The converse, If A ⊂ B̄ ,then p(x,B) = p(x, x) for all x ∈ A. We know that

p(A,B) = supa∈A p(a,B) so that for every ε > 0, there exists a ∈ A such that

p(A,B)− ε < p(a,B) ≤ p(A,B) < p(A,B) + ε.

This means

|p(a,B)− p(A,B)| < ε.

Since ε > 0 is arbitrary, we have p(A,B) = p(a,B). The other hand, for all a ∈ A ⊂
B̄, p(a, a) = p(a,B) so that p(A,B) = p(a, a) for all a ∈ A. Similarly to prove part

(ii). (iii) Suppose that p(a,B) = 0 for all a ∈ A. Consequently p(A,B) = 0. Putting

a ∈ A. Since p(a, a) ≤ p(a, b) for all b ∈ B, we have p(a, a) ≤ p(a,B) ≤ p(A,B) = 0

for all a ∈ A, thus p(a, a) = 0, and hence p(a, a) = p(A,B) = 0. From (i), it follows

that a ∈ B̄.

�

Now, suppose (X, p) be a partial metric space. For any A,B ∈ cb(X), the function

H : cb(X)× cb(X) −→ R+ we define

H(A,B) = max{p(A,B), p(B,A)}. (4)
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Proposition 2.1.5 Let (X; p) be a partial metric space. For all A,B,C ∈ cb(X)

we have

(h1): H(A,A) ≤ H(A,B);

(h2): H(A,A) = H(A,B) = H(B,B) if and only if A = B;

(h3): H(A,B) = H(B,A);

(h4): H(A,B) ≤ H(A,C) +H(C,B)−H(C,C).

Proof. From proposition 1.8 part (ii), we have H(A,A) = p(A,A) ≤ p(A,B) ≤
H(A,B). For (h2), suppose H(A,A) = H(B,B) = H(A,B). Since A ⊂ A and

B ⊂ B and from Lemma 2.1.4, we have H(A,A) = p(A,A) = p(a, a) for all a ∈ A and

H(B,B) = p(B,B) = p(b, b) for all b ∈ B. Since H(A,A) = H(B,B), we obtained

H(A,B) = p(a, a) = p(b, b). Therefore we have, p(A,B) ≤ H(A,B) = p(a, a) and the

other hand, p(a, a) ≤ p(a,B) ≤ p(A,B) thus

p(A,B) = p(a, a)

By Proposition 2.1.4 part (i) we have A ⊂ B. Whenever p(B,A) ≤ H(A,B) = p(b, b)

and the other hand, p(b, b) ≤ p(b, A) ≤ p(B,A) and hence

p(B,A) = p(b, b)

By Proposition 2.1.4 part (i), we have B ⊂ A so A = B. The converse, A = B

this implies H(A,B) = H(A,A) = p(A,A) = p(a, a) for all a ∈ A and H(A,B) =

H(B,B) = p(B,B) = p(b, b) for all b ∈ B. Since p(a, a) = p(A,A) ≤ P (A,B) =

P (B,B) = p(b, b) and p(b, b) = p(B,B) ≤ p(B,A) = p(A,A) = p(a, a), we obtain

p(a, a) = p(b, b) for all a ∈ A and b ∈ B. We conclude that

H(A,A) = H(A,B) = H(B,B)

By Definition equation (4), (h3) holds obviously. Now for (h4), by using property (iv)

of Proposition 1.8, we have

H(A,B) = max {p(A,B), p(B,A)}

≤ max {p(A,C) + p(C,B)− p(C,C), p(B,C) + p(C,A)− p(C,C)}

= max {p(A,C) + p(C,B), p(B,C) + p(C,A)} − P (C,C)

≤ max {p(A,C), p(C,A)}+ max {p(C,B), p(B,C)} − P (C,C)

= H(A,C) +H(C,B)− P (C,C)

= H(A,C) +H(C,B)−H(C,C)

�
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Corollary 2.1.6 Let (X, p) be a partial metric space. For A,B ∈ cb(X) the

following holds

H(A,B) = 0 implies that A = B.

Proof. Let H(A,B) = 0. By Definition of H, p(A,B) = p(B,A) = 0. This

implies that p(a,B) = 0 for all a ∈ A and p(b, A) = 0 for all b ∈ B. Using

part (iii) of Proposition 2.1.4, we obtain A ⊂ B and B ⊂ A. Thus A = B.

�

Remark 2.1.7 The converse of Corollary 2.1.6 is false in general. (see [2] )

In view of Proposition 2.1.5, we call the mapping H : cb(X) × cb(X) −→ R+ a

Hausdorff partial metric induced by p. The pairs (cb(X), H) is called partial metric

space with cb(X) is based of set and H is a partial metric on cb(X).

Given a set A ∈ cb(X) and a number ε > 0, we define the set (A+ ε) by

(A+ ε) = {x ∈ X : p(x,A) < ε+ p(x, x)}. (5)

Clear that A ⊆ (A + ε). We need to show that such set is closed for all possible

choices of A and ε > 0. To do this, we will begin by choosing an arbitrary limit point

of the set (A+ ε) , and then showing that it is contained in the set.

Proosition 2.1.8 The set (A+ ε) is closed for all of A ∈ cb(X) and ε > 0.

Proof. Let x be a limit point of (A+ ε). Then for all δ > 0, there exists y 6= x ∈
(A + ε) such that p(x, y) < δ + p(x, x). Since A ⊆ (A + ε), choose y ∈ A. This is

implies p(x,A) ≤ p(x, y) < δ + p(x, x). If ε ≥ δ, then p(x,A) < ε + p(x, x). In other

words, x ∈ (A+ ε).

�

Proosition 2.1.9 Suppose that A,B ∈ cb(X) and that ε > 0. Then H(A,B) −
H(A,A) < ε if and only if A ⊆ (B + ε) and B ⊆ (A+ ε).

Proof. By simmetry it is suffucient to prove p(A,B) − p(A,A) < ε if and only if

A ⊆ (B+ε). Suppose p(A,B)−p(A,A) < ε. Then for every a ∈ A, p(a,B)−p(a, a) <

ε. It follows by definition of (B + ε), that A ⊆ (B + ε). Now suppose A ⊆ (B + ε).

By definition of the set (B + ε), for every a ∈ A, p(a,B) < ε+ p(a, a). It follow that

p(A,B) < ε+ p(A,A).

�

Definition 2.1.10 Let (cb(X), H) be a partial metric space. A sequence 〈An〉 in

cb(X) converges to set A ∈ cb(X) if limn→∞H(An, A) = H(A,A).
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Definition 2.1.11 Let (cb(X), H) be a partial metric space. A sequence 〈An〉 in

cb(X) properly converges to set A ∈ cb(X) if 〈An〉 converges to A and

lim
n→∞

H(An, An) = H(A,A).

In other words, a sequence 〈An〉 properly converges to A ∈ cb(X) if

limn→∞H(An, A). and limn→∞H(An, An) exists and

lim
n→∞

H(An, An) = lim
n→∞

H(An, A) = H(A,A).

Definition 2.1.12 Let (cb(X), H) be a partial metric space. A sequence 〈An〉 in

cb(X) is said to be a Cauchy sequence if limn,m→∞H(An, Am) exists and finite.

In other words,〈An〉 is Cauchy sequence if the numbers sequence H(An, Am)

converges to some α ∈ R as n and m approach to infinity, that is, if

limn,m→∞H(An, Am) = α < ∞. This means for every ε > 0 there exists n ∈ N
such that for all m,n ≥ N , we have

|H(An, Am)− α| < ε. (6)

Theorem 2.1.13 A sequence 〈An〉 in a partial metric space (cb(X), H) is a

Cauchy, if and only if for all ε > 0 there exists N ∈ N such that for all n,m ≥ N we

have

H(An, Am)−H(Am, Am) < ε.

Proof. Since 〈An〉 is Cauchy, there exists α ∈ R such that for all ε > 0 there exists

N ∈ N such that for all n,m ≥ N we have

|H(An, Am)− α| < ε

2
.

Let n = m ≥ N , then |H(Am, Am)− α| < ε

2
. Therefore

|H(An, Am)−H(Hm, Am)| ≤ |H(An, Am)− α|+ |α−H(Am, Am)| < ε.

By (P1), we obtain H(An, Am)−H(Am, Am) < ε. Conversly it is obvious.

�

Lemma 2.1.14 Let 〈An〉 be a Cauchy sequence in cb(X) and let 〈nk〉 be an in-

creasing sequence of positive integers. If 〈ynk
〉 is a Cauchy in X for which ynk

∈ Ank

for all k ∈ N, then there exists a Cauchy sequence 〈xn〉 in X such that xn ∈ An for

all n and xnk
= ynk

for all k.
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Proof. Suppose 〈ynk
〉 is a Cauchy in X for which ynk

∈ Ank
for all k ∈ N . By

definition of infmum, there exists aj ∈ An such that p(ynk
, aj) < p(ynk

, An) + 1
j .

Suppose 〈anj
〉 in An that converges to a ∈ An. Then we find that

p(ynk
, An) ≤ p(ynk

, a) ≤ p(ynk
, anj

) + p(anj
, x)− p(anj

, anj
)

< p(ynk
, An) +

1

nj
+ p(anj

, x)− p(anj
, anj

).

Since limj→∞
1
nj

+[p(anj
, x)−p(anj

, anj
)] = 0, it follow that p(ynk

, An) = p(ynk
, a)

For each n ≤ nk to choose xn ∈ An such that p(ynk
, An) = p(ynk

, xn) . Then we

find p(ynk
, xn) = p(ynk

, An) ≤ p(Ank
, An) ≤ H(Ank

, An). Similarly p(ynk
, xnk

) =

p(ynk
, Ank

) ≤ p(Ank
, Ank

) ≤ H(Ank
, An). Since, 〈An〉 is a Cauchy sequence, it follow

that p(ynk
, xnk

) = p(ynk
, Ank

) = 0. This implies ynk
= xnk

. Let ε > 0. Since 〈ynk
〉 is

a Cauchy sequence in X, there exists K ∈ N such that p(ynk
, ynj

) − p(ynj
, ynj

) < ε
4

for all k, j ≥ K. Since 〈An〉 is Cauchy sequence in cb(X), there exists N ≥ nK ≥ K

such that H(An, Am)−H(Am, Am) < ε
4 for all n,m ≥ N . We choose j, k ≥ K such

that nk ≥ n and nj ≥ m. Then we find that

p(xn, xm)− p(xm, xm) ≤ p(xn, ynk
) + p(ynk

, xm)− p(ynk
, ynk

)− p(xm, xm)

≤ p(xn, ynj ) + p(ynj , ynk
)− p(ynj , ynj ) + p(ynk

, xm)

− p(ynk
, ynk

)− p(xm, xm)

= p(ynk
, An) + p(ynj

, ynk
)− p(ynj

, ynj
) + p(ynk

, Am)

− p(ynk
, ynk

)− p(xm, xm)

≤ p(Ank
, An) + p(ynj

, ynk
)− p(ynj

, ynj
) + p(Ank

, Am)

− p(Ank
, Ank

)− p(Am, Am)

≤ [p(Ank
, An)− p(Ank

, Ank
)] +

ε

4

+ [p(Ank
, Am)− p(Am, Am)]

≤ [H(Ank
, An)−H(Ank

, Ank
)] +

ε

4

+ [H(Ank
, Am)−H(Am, Am)]

<
ε

4
+
ε

4
+
ε

4
< ε.

Therefore, by definition and from our earlier set up, 〈xn〉 is a Cauchy sequence in

X such that xn ∈ An for all n and xnk
= ynk

for all k. This complete the proof.

�
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Lemma 2.1.15 Let (X, p) be a complete partial metric space and 〈An〉 be a se-

quence in cb(X) and let A = {x ∈ X : ∃〈xn〉;xn ∈ An;n ∈ N;xn → x}. If 〈An〉 is a

Cauchy sequence, then the set A is nonempty closed and bounded.

Proof. Since 〈An〉 is a Cauchy sequence, by Theorem 2.1.13, for every ε > 0, there

exists N ∈ N such that for every n,m ≥ N , we have

H(An, Am)−H(Am, Am) < ε. (7)

Since H(Am, Am) = p(Am, Am) and p(An, Am) ≤ H(An, Am), from (7) for every

n,m ≥ N we obtain

p(An, Am)− p(Am, Am) < ε. (8)

For each xn ∈ An and xm ∈ Am, p(xn, xm) ≤ p(An, Am). Since p(xm, xm) =

p(Am, Am). From (8) for every n,m ≥ N we obtain

p(xn, xm)− p(xm, xm) < ε. (9)

By Theorem 1.6 show that,〈xn〉 is a Cauchy sequence. Since X is complete, the

Cauchy sequence properly converges to a point x ∈ X. Since xn ∈ An for all n ∈ N,

then by definition of the set A, x ∈ A. Hence A is nonempty. Furthermore, we

will prove that A is closed set. Suppose x is a point limit of A. Then there exists

ak 6= x ∈ A such that

lim
k→∞

p(ak, x)− p(x, x) = 0. (10)

Since for each ak ∈ A, there exists a sequence 〈yn〉,with yn ∈ An for each n ∈ N
and yn converges to ak. Consequently, there exists an integer n1 such that yn1

∈ An1

and p(yn1
, a1) − p(a1, a1) < 1. Similarly, there exists an integer n2 > n1 such that

yn2 ∈ An2 and p(yn2 , a2) − p(a2, a2) < 1
2 . Continuing this process we can choose

nk > nk+1 such that ynk
∈ Ank

and

p(ynk
, ak)− p(ak, ak) <

1

k
. (11)

It follows that

p(ynk
, x)− p(x, x) ≤ p(ynk

, ak) + p(ak, x)− p(ak, ak)− p(x, x).

From (10) and (11) we have

lim
k→∞

p(ynk
, x)− p(x, x) = 0.

It follows that 〈ynk
〉 converges to x. We show 〈ynk

〉 is a Cauchy sequence. Let

ε > 0. Since 〈An〉 is Cauchy sequence in cb(X), there exists N ≥ nK ≥ K such that
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H(An, Am)−H(Am, Am) < ε
2 for all n,m ≥ N . We choose j, k ≥ K such that nk ≥ n

and nj ≥ m. Then we find that

p(ynk
, ynj

)− p(ynj
, ynj

) ≤ p(ynk
, yn) + p(yn, ynj

)− p(yn, yn)− p(ynj
, ynj

)

= p(ynk
, An) + p(ynj , An)− p(An, An)− p(Anj , Anj )

≤ [p(Ank
, An) + p(An, An)] + [p(Anj

, An)− p(Anj
, Anj

)]

≤ [H(Ank
, An) +H(An, An)] + [H(Anj

, An)− p(Anj
, Anj

)]

< ε

It follow that 〈ynk
〉 is a Cauchy sequence for which ynk

∈ Ank
for all k. By Lemma

2.1.14 guarantees that there exists a Cauchy sequence 〈xn〉 in X such that xn ∈ An
for all n and xnk

= ynk
. Therefore x ∈ A, so A is closed.

Now, we show A is bounded set. For each x ∈ A there exists xn ∈ An such

that p(xn, x) < ε + p(x, x), for all ε > 0 and n ≤ N . Suppose x0 ∈ X and K =

max{p(x0, x1), p(x0, x2), · · · , p(x0;xN−1), ε + p(x, x)}. For n = 1, 2, · · · (N − 1), we

have

p(x0, x) ≤ p(x0, xn) + p(xn, x)− p(xn, xn) < K + ε+ p(x, x) = M + p(x, x).

�

Definition 2.1.16 A partial metric space (cb(X), H) is said a complete if every

Cauchy sequence properly converges in cb(X).

Proposition 2.1.17 If (X, p) is a complete partial metric space, then (cb(X), H)

is a complete partial metric space

Proof.Let 〈An〉 be a Cauchy sequence in cb(X) and A = {x ∈ X : ∃〈xn〉;xn ∈
An;n ∈ N;xn → x}. We must prove that A ∈ cb(X) and 〈An〉 converges to A. By

Lemma 2.1.15, the set A is nonempty, closed and bounded, so that A ∈ cb(X). Now,

we will prove that 〈An〉 converges to A. Let ε > 0. We need to show that there exists

N ∈ N such that H(An, A) − H(A,A) < ε for all n ≥ N . To do this, Proposition

2.1.9 tells us that to show two conditions, that An ⊆ (A+ ε) and A ⊆ (An+ ε). Since

〈An〉 is Cauchy sequence, by Theorem 2.1.13 we have

H(An, Am)−H(Am, Am) < ε (12)

for all n,m ≥ N .

Since p(An, Am) ≤ H(An, Am) we obtain

p(An, Am)− p(Am, Am) < ε (13)
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for all n,m ≥ N .

Let xn ∈ An. Since p(xn, xm) ≤ p(An, Am). From (13), we have

p(xn, xm)− p(xm, xm) < ε (14)

for all n,m ≥ N .

It follows that, 〈xn〉 is Cauchy sequence in X. By completeness of X, 〈xn〉 properly

converges to x ∈ X and of course, sequence 〈xn〉 converges to x ∈ X, that for all

ε > 0 there exists N ∈ N such that

p(xn, x)− p(xn, xn) < ε (15)

for every n ≥ N .

If x ∈ A, then

p(xn, A)− p(xn, xn) < ε

By definition of the set (A+ ε), xn ∈ (A+ ε). Therefore

An ⊆ (A+ ε), (16)

for every n ≥ N .

Furthermore to prove A ⊆ (An + ε). Let ε > 0. Since 〈An〉 is a Cauchy sequence,

there exists N ∈ N such that

H(An, Am)−H(Am, Am) < ε, (17)

for all n,m ≥ N .

By Proposition 2.1.9, An ⊆ (Am + ε) for all n,m ≥ N . Let a ∈ A. By definition

of the set A, there exists a sequence 〈xn〉 such that xn ∈ An for all n ∈ N and 〈xn〉
converges to a, that for all ε > 0 there exists N ∈ N such that

p(a,An)− p(a, a) ≤ p(a, xn)− p(a, a) < ε, (18)

for every n ≥ N .

From (18) and by definition of the set (An + ε), a ∈ (An + ε). Therefore

A ⊆ (An + ε), (19)

for every n ≥ N . From (16),(19) and by Proposistion 2.1.9, then that H(An, A) −
H(A,A) < ε and thus 〈An〉 converges to A. Therefore if (X, p) is complete, then

(cb(X), H) is complete.

�
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2.2. Fixed Point Theorem. In this subsection, we focus our attention on the fixed

point theory for set-valued maps.

Let X is a partial metric space and P(X) the collection of all non-empty subsets

of X . The mapping F : X −→ P(X) is called set-valued maps. The points x ∈ X is

called a fixed point of F if x ∈ F (x).

Definition 2.2.1Let (X, p) be a partial metric space. The mapping F : X −→
cb(X) is called contraction mapping if there exists real number k ∈ [0, 1) such that

H(F (x), F (y)))−H(F (x), F (x)) < k[p(x, y)− p(x, x)], (20)

for all x, y ∈ X.

In 1969, Nadler [6] established the following analogue of Banach contraction theo-

rem for set-valued maps.

Theorem 2.2.2 [6] Let (X, d) be a complete metric space and let F : X −→ cb(X)

be a set-valued map. Assume that there exists k ∈ [0, 1) such that

h(F (x), F (y))) < kd(x, y), (21)

for all x, y ∈ X. Then F has a fixed point.

Note that the above notation h is called Hausdorff metric induced by d.

The following, our similarly introduce fixed point theorem for set-valued maps

based on partial metric space. Before, we present, the weak formulation of Ekeland’s

variational principle on partial metric space version.

Lemma 2.2.3 [5] Let (X, p) be a complete partial metric space and ϕ : X −→ [0, 1)

be lower semicontinuous function. Then for any ε > 0, there exists x∗ ∈ X such that

ϕ(x∗) ≤ inf
x∈X

ϕ(x) + ε

and

ϕ(x∗) < ϕ(x) + ε(p(x, x∗)− p(x∗, x∗))

for all x ∈ X with x 6= x∗

The continuity of the self-maps in the partial metric spaces is, in fact, the sequential

continuity.
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Definition 2.2.4 Let (X, p) be a partial metric space. The mapping f : X −→ X

is called continuous at the point x0 ∈ X if, for any sequence 〈xn〉 in X converges to

x0, then a sequence 〈f(xn〉 converges to f(x0)

Lemma 2.2.5 [7] Let (X, p) be a partial metric space and the function f : X −→ X.

Then for each x ∈ X, the function ϕ : X −→ [0, 1) given by ϕx(y) = p(x, f(y)) is

lower semicontinuous on (X, dp).

Proof. Assume that a sequence 〈yn〉 converges to the point y ∈ X, then

limn→∞ dp(f(yn), f(y)) = 0. Futhermore that

ϕx(y) = p(x, f(y))

≤ p(x, f(yn)) + p(f(yn), f(y))− p(f(yn), f(yn))

= p(x, f(yn)) + dp(f(yn), f(y))− (p(f(yn), f(y))− p(f(y), f(y))

≤ p(x, f(yn)) = ϕx(yn)

This yields lim infn→∞ ϕx(yn) ≥ ϕx(y) because p(f(yn), f(y)) ≥ p(f(y), f(y)).

�

Lemma 2.2.6 Let (X, p) be a partial metric space and F : X −→ cb(X) be a

set-valued map. For each x ∈ X, the function ϕx : X −→ [0, 1) given by ϕx(y) =

p(x, F (y)). If F contraction, then the function ϕx is continuous on X.}
Proof. Assume that a sequence yn converges to y in X, then limn→∞ p(yn, y) −

p(y, y) = 0. By (P4), for each x ∈ X , we have

|ϕx(yn)− ϕx(y)| = |p(x, F (yn))− p(x, F (y))|

≤ |p(F (y), F (yn))− p(F (y), F (y))|

= p(F (y), F (yn))− p(F (y), F (y))

≤ H(F (y), F (yn))−H(F (y), F (y))

< k(p(yn, y)− p(y, y))

This yields lim infn→∞ ϕx(yn) = ϕx(y) because limn→∞ p(yn, y) − p(y, y) = 0.

�

Theorem 2.2.7 Let (X, p) be a complete partial metric space. If set-valued map

F : X −→ cb(X) is contractive, then F has a fixed point.

Proof.Consider the function ϕ : X −→ [0, 1) defined by

ϕ(x) = p(x, F (x))

for all x ∈ X.

By Lemma 2.2.6, ϕ is a continuous on X. Choose ε > 0 such that 0 < ε < 1 − k,
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where k ∈ (0, 1). By Lemma 2.2.3, there exists x∗ ∈ X such that

ϕ(x∗) < ϕ(x) + ε(p(x, x∗)− p(x∗, x∗))

for all x ∈ X with x 6= x∗. Putting x ∈ F (x∗) and H((F (x∗), F (x∗)) = 0 , we have

p(x∗, F (x∗) < p(x, F (x)) + ε(p(x, x∗)− p(x∗), x∗))

≤ p(F (x∗), F (x)) + ε(p(x, x∗)− p(x∗), x∗))

≤ H(F (x∗), F (x))−H(F (x∗), F (x∗)) + ε(p(x, x∗)− p(x∗), x∗))

≤ (k + ε)(p(x, x∗)− p(x∗, x∗))

≤ inf
x∈F (x∗)

(k + ε)p(x, x∗)

= (k + ε)p(x∗, F (x∗).

If p(x∗, F (x∗)) 6= 0, then we obtain 1 ≤ (k + ε), which contradict to our assumption

that 1 > (k + ε). Therefore, we have p(x∗, F (x∗)) = 0. Since F (x∗) is closed set, by

Proposition 2.1.4 part (iii), x∗ ∈ F (x∗). We conclude that F has fixed point x∗ ∈ X.

�
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