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Abstract. This article introduced the concept of the Hausdroff partial metric. By using the Haus-
dorff partial metric we study the fixed point theory for set-valued mappings on partial metric spaces.
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1. INTRODUCTION

In [2] has been introduced partial Hausdroff metric, but it is less than perfect that is
only meets three from four of partial metric axioms. Therefore in this paper will be re-

fined. Before we start we write return Hausdorff metric induced by the metric d in [3].

Let (X, d) be a metric space and ¢b(X) denotes the family of all non-empty closed
bounded subsets of X. For every set A, B € ¢b(X), define
h(A, B) = max{d(A, B),d(B,A)}
where d(A, B) = sup{d(a, B) | a € A} and d(a, B) = inf{d(a,b) | b € B}. It is know
h is metric on ¢b(X), called the Hausdorff metric induced by the metric d. Matthews
[4] introduced the concept of a partial metric as a part of the study of denotational

semantics of dataflow networks. The following notion of partial metric in [4].

Definition 1.1 Let X be a nonempty set. A function p: X x X — R* is said to

be a partial metric on X if for any z,y, z € X, the following conditions holds.

(P1): p(z,z) < p(z,y)
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(P2): p(,2) = p(y,y) = pl(a,y) if and only if = = y
(P3): p(z,y) = p(y, )
(P4): p(z,2) < p(x,y) +p(y, 2) — (Y, y)
The pairs (X, p) is called a partial metric space.Note that the self-distance of any
point need not be zero. Partial metric p will become a metric if p(x,z) = 0.
If p is a partial metric on X, then the function d, : X x X — [0, 00) given by
dp(x,y) = 2p(z,y) — p(x, ) — p(y, y)
for each z,y € X, is a metric on X:

Lemma 1.2 Let (X, p) be a partial metric space. If p(x,y) = 0 then x = y.

Proof. From (P1) and (P2) imply that x = y. But the convers does not hold always.
O

Let (X,p) partial metric spaces. Point ¢ € X dan € > 0. The open ball for a
partial metric p are sets of the form

B.(a) ={z € X | p(a,z) < €}.
Since p(a, a) > 0, open ball can also be presented as
Beiplaay(a) = {z € X | p(a,z) < e +p(a,a)}.

Contrary to the metric space case, some open balls may be empty. If € > p(a,a),
then Be(a) = Be_p(q,0)(a). If 0 < € < p(a,a), then

B(a) ={z € X | p(a,z) < e <p(a,a)} = 0.
This means that the open ball B, 4)(a) is an empty set. Therefore, the point a ¢
Bp(a@) (a)

Definition 1.3 Let (X, p) be a partial metric space. A sequence (z,) in X con-

verges to the point x € X if lim,, 00 p(@n, ) = p(x, x).

Definition 1.4 Let (X, p) be a partial metric space. A sequence (z,,) in X properly
converges to the point z € X if (x,) converges to z and

lim p($n7$n) = p(l’,l‘).

n—oo

In other words, a sequence (x,) properly converges to x € X if lim,, o, p(zn, ).

and lim,—, o0 p(@p, ) exists and

nlingop(xnvxn) = nli}n;op(znax) =p(z, 7).
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Definition 1.5 Let (X, p) be a partial metric space. A sequence (x,) in X is said

to be a Cauchy sequence if limy, 00 P(@n, T, exists and finite.

In other words,(z,) is Cauchy sequence if the numbers sequence p(z, %) con-
verges to some A € R as n and m approach to infinity, that is, if lim,, y,—c0 P(Tn, Tm) =
A < oo. This means for every € > 0 there exists n € N such that for all

m,n > N, |p(Xp, zm| < e If (X,p) is a metric space then A = 0.

Theorem 1.6 A sequence (x,,) in a partial metric space (X,p) is a Cauchy, if and
only if for all € > 0 there exists N € N such that for all n,m > N we have

P(Tn, Tm) = P(Tm, Tm) < €.

Proof. Since (x,) is Cauchy, there exists A € R such that for all € > 0 there exists
N € N such that for all n,m > N we have

€
|p(9€n,xm) - /\l < 5
Let n =m > N, then |[p(zm, zm) — A| < % . Therefore

|p($n7xm) _p(xm71'm)| < |p(1‘namm) - /\‘ + |/\ —p(Im,.fEm)| < €.

By (P1), we obtain p(xn,Zm) — P(Tm,2m) < e Conversly it is obvious.
|

Definition 1.7 A partial metric space (X, p) is said a complete if every sequence

Cauchy in X properly converges.

For A, B € ¢b(X) and point € X is defined

p(z, A) = inf p(x,a), p(A, B)=supp(a,B), p(B,A)=supp(b,A)
acA acA beB

In general p(A, B) # p(B, A). For example X = R and function p: R x R — R™

we define
p(z,y) = max{z,y} z,y€R

Clear that p is a partial metric. If A = [1,3] and B = [2,4], then
p(A, B) = sup,eqp(a, B) = p(1,B) = infycpp(1,b) = p(1,2) = max{1,2} = 2 and
p(B, A) = supyc g p(b, A) = p(4, A) = infoca p(4, a) = p(4,3) = max{4,3} = 4.

In [2] we obtain the following.
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Proposition 1.8 Let (X,p) be a partial metric space. For any A,B,C € cb(X)

we have the following.

(1): p(A, A) = sup,e 4 p(a, a);

(ii): p(A, A) < p(A, B)

(iii): p(A, B) = 0 implies that A = B

(iv): p(A,B) <p(A,C) +p(C,B) —inf.cc p(c, c).

2. MAIN RESULTS

2.1. Hausdorff Partial Metric. We start with the following Definitions and Lem-
mas needed to prove our main result.
Definition 2.1.1 Let (X, p) be a partial metric space and A # 0 C X.

(i): Ais a bounded if there exists xp € X and M > 0 such that for all a € A we

have
p(xo,a) < M +p(a,a).

(ii): The point x € X is said a limit point of A if all € > 0 there exists a #x € A
such that

p(z,a) < e+ p(x,x).

(iii): A is a closed set if for all its limit point belongs in A.

Lemma 2.1.2 Let (X,p) be a partial metric space and A C X. The point x € X
is a limit point of A if and only if p(z, A) = p(z, ).
Proof.By Definition 2.1.1 part (ii) for every € > 0 there exists a # = € A we have

p(z,a) < €+ p(z, ).
Since p(z, A) < p(z, a) for all a € A, we have

p(z, A) < e+ plz, v). (1)
On the other hand

p(x,a) — e < p(z, A). (2)
From inequality (1) and (2)we obtained

p(z,a) —€ < e+p(x, z).
Thus
p(z,x) —e <p(r,a) —e <p(z,A) < e+ p(z,z).

The number € > 0 is arbitrary , p(z, A) = p(z, ).
The converse, for all € > 0 there exists a € A and p(z,a) < p(z,A) + €. Since
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p(x, A) = p(x,z) , then p(x,a) < p(z,x) + e. By Definition 2.1.1 part (ii), « is the
limit point of A.
|

Corollary 2.1.3 Let (X,p) be a partial metric space and A any nonempty set in
(X,p)
r € A<= p(z,7) = p(z, A), (3)

where A is closure of A.

The following proposition is addition the above of Proposition 1.8.
Proposition 2.1.4 Let (X,p) be a partial metric space. For any A,B C X we
have the following.
(i): for any a € A p(a, B) = p(a, a) if and only if A C B;
(ii): for any b € B p(b, A) = p(b,b) if and only if B C 4;
(iii): for any a € A p(a, B) =0 then a € B
Proof (i) Let a € A. Since p(a,a) < p(a,b) for all b € B and p(A, B) = p(a,a) for
all @ € A, therefore we have p(a,a) < infpep p(a,b) = p(a, B) < p(A; B) = p(a; a) for
all @ € A and hence p(a, B) = p(a,a). Using (3) we have a € B whenever a € A so
A C B. The converse, If A C B ,then p(x, B) = p(x,z) for all z € A. We know that
(A, B) = sup,c 4 p(a, B) so that for every e > 0, there exists a € A such that

p(A,B) —e < pla,B) <p(A,B) <p(A,B) +e.

This means
Ip(a; B) = p(4, B)| < e.

Since € > 0 is arbitrary, we have p(A, B) = p(a, B). The other hand, for alla € A C
B, p(a,a) = p(a, B) so that p(A, B) = p(a,a) for all @ € A. Similarly to prove part
(ii). (iii) Suppose that p(a, B) = 0 for all a € A. Consequently p(A, B) = 0. Putting
a € A. Since p(a,a) < p(a,b) for all b € B, we have p(a,a) < p(a,B) < p(A,B) =0
for all a € A, thus p(a,a) = 0, and hence p(a,a) = p(A, B) = 0. From (i), it follows
that a € B.

|

Now, suppose (X, p) be a partial metric space. For any A, B € ¢b(X), the function
H :cb(X) x cb(X) — RY we define

H(A, B) = max{p(A, B),p(B, A)}. (4)
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Proposition 2.1.5 Let (X;p) be a partial metric space. For all A,B,C € cb(X)

we have

(h1): H(A,
(h2): H(A,
(h3): H(A ;

(h4): H(A,B) < H(A,C)+ H(C,B)— H(C,C).

Proof. From proposition 1.8 part (ii), we have H(A, A) = p(A, A) < p(A,B) <
H(A,B). For (h2), suppose H(A,A) = H(B,B) = H(A,B). Since A C A and
B C B and from Lemma 2.1.4, we have H(A, A) = p(4, A) = p(a,a) for all a € A and
H(B,B) = p(B,B) = p(b,b) for all b € B. Since H(A, A) = H(B, B), we obtained
H(A, B) = p(a,a) = p(b,b). Therefore we have, p(A, B) < H(A, B) = p(a,a) and the
other hand, p(a,a) < p(a, B) < p(4, B) thus

IN
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)= H(B, B) if and only if A = B;
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p(4A, B) = p(a,a)

By Proposition 2.1.4 part (i) we have A C B. Whenever p(B, A) < H(A, B) = p(b,b)
and the other hand, p(b,b) < p(b, A) < p(B, A) and hence

p(Ba A) = p(bv b)

By Proposition 2.1.4 part (i), we have B C A so A = B. The converse, A = B
this implies H(A,B) = H(A,A) = p(A,A) = p(a,a) for all a € A and H(A, B) =
H(B,B) = p(B,B) = p(b,b) for all b € B. Since p(a,a) = p(4,A) < P(A,B) =
P(B,B) = p(b,b) and p(b,b) = p(B,B) < p(B,A) = p(A, A) = p(a,a), we obtain
p(a,a) = p(b,b) for all a € A and b € B. We conclude that

H(A,A) = H(A, B) = H(B, B)

By Definition equation (4), (h3) holds obviously. Now for (h4), by using property (iv)

of Proposition 1.8, we have

H(A,B) = max{p ,p(B, A)}

+p(C,B) = p(C,C),p(B,C) +p(C, A) — p(C,C)}
+p(C, B),p(B,C) +p(C,A)} — P(C,C)

,p(C, A)} + max {p(C, B),p(B,C)} — P(C,C)
+H(C,B)—- P(C,C)

+ H(C,B) — H(C,C)

(A, B
< max {p(A,C
= max {p(4,C
AC

—_ — — —

< max {p(4,
= H(A,C
= H(A,C

~— ~—
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Corollary 2.1.6 Let (X,p) be a partial metric space. For A,B € cb(X) the

following holds
H(A,B)=0 -+implies that A= B.

Proof. Let H(A,B) = 0. By Definition of H, p(A,B) = p(B,A) = 0. This
implies that p(a,B) = 0 for all @ € A and p(b,A) = 0 for all b € B. Using
part (iii) of Proposition 2.1.4, we obtain A C B and B C A. Thus A = B.

[ |

Remark 2.1.7 The converse of Corollary 2.1.6 is false in general. (see [2] )
In view of Proposition 2.1.5, we call the mapping H : ¢b(X) X ¢b(X) — RT a
Hausdorff partial metric induced by p. The pairs (¢b(X), H) is called partial metric
space with ¢b(X) is based of set and H is a partial metric on ¢b(X).

Given a set A € ¢b(X) and a number € > 0, we define the set (A + €) by
(A+e)={x e X :p(z,A) < e+px,x)}. (5)

Clear that A C (A +€). We need to show that such set is closed for all possible
choices of A and € > 0. To do this, we will begin by choosing an arbitrary limit point
of the set (A + ¢) , and then showing that it is contained in the set.

Proosition 2.1.8 The set (A + €) is closed for all of A € ¢b(X) and € > 0.

Proof. Let z be a limit point of (A + €). Then for all 6 > 0, there exists y # z €
(A + €) such that p(z,y) < § + p(z,z). Since A C (A +¢), choose y € A. This is
implies p(x, A) < p(z,y) < § + p(z,z). If € > 4, then p(x, A) < € + p(x,x). In other
words, z € (A + €).

[ |

Proosition 2.1.9 Suppose that A, B € ¢b(X) and that ¢ > 0. Then H(A,B) —
H(A,A) <e€if and only if AC (B+¢€) and B C (A +e¢).
Proof. By simmetry it is suffucient to prove p(A, B) — p(A, A) < ¢ if and only if
A C (B+-¢€). Suppose p(A, B)—p(A, A) < e. Then for every a € A,p(a, B)—p(a,a) <
e. It follows by definition of (B + €), that A C (B + €). Now suppose A C (B + ¢).
By definition of the set (B + ¢), for every a € A, p(a, B) < € + p(a,a). It follow that
p(A,B) < e+ p(A,A).
]

Definition 2.1.10 Let (¢b(X), H) be a partial metric space. A sequence (4,,) in
cb(X) converges to set A € ¢b(X) if lim,,—, oo H(An, A) = H(A, A).
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Definition 2.1.11 Let (¢b(X), H) be a partial metric space. A sequence (A,) in
cb(X) properly converges to set A € ¢b(X) if (A,,) converges to A and
lim H(A,,A,) = H(A4,A).

n— 00

In other words, a sequence (A,) properly converges to A € ¢b(X) if
lim,, oo H(Ay, A). and lim, o H(A,, A,) exists and
lim H(A,, A,) = lim H(A,, A) = H(A, A).

n—oo n—oo

Definition 2.1.12 Let (¢b(X), H) be a partial metric space. A sequence (A,) in
cb(X) is said to be a Cauchy sequence if lim,, 00 H (A, Ay ) exists and finite.

In other words,(4,) is Cauchy sequence if the numbers sequence H(A,, A4,,)
converges to some o € R as m and m approach to infinity, that is, if
limy, 1m—oo H(An, Am) = a < oo. This means for every € > 0 there exists n € N
such that for all m,n > N, we have

|H(Ap, Ap) — al <e. (6)

Theorem 2.1.13 A sequence (A,) in a partial metric space (cb(X),H) is a
Cauchy, if and only if for all € > 0 there exists N € N such that for all n,m > N we
have

H(Ap, An) — H(Am, Ap) < e
Proof. Since (4,) is Cauchy, there exists o € R such that for all € > 0 there exists
N € N such that for all n,m > N we have

\H(An, Ap) — al < ;

Let n =m > N, then |H(Ay,, Am) — o] < % . Therefore
|H (A, Am) — H(Hpm, Ap)| < [H(An, Am) — of + o — H(Am, An)| <e.

By (P1), we obtain H(A,, An) — H(Am, Am) < €. Conversly it is obvious.
|

Lemma 2.1.14 Let (A,,) be a Cauchy sequence in cb(X) and let (ng) be an in-
creasing sequence of positive integers. If (yn, ) is a Cauchy in X for which y,, € Ap,
for all k € N, then there exists a Cauchy sequence {x,) in X such that z, € A, for

all n and xp, = yYn, for all k.
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Proof. Suppose (yy,) is a Cauchy in X for which y,, € A,, for all k € N. By
definition of infmum, there exists a; € A, such that p(yn,,a;) < P(Yn,,An) + %
Suppose (an;) in A, that converges to a € A,,. Then we find that

P(Yny» An) < P(Ynyra) < p(ynmanj) er(anj ,T) — p(anj7a’n_7‘)

1
< p(ynmAn) + ni +p(anj’x) *p(an]‘van_j)'
J

Since lim;_, o n%—k[p(anj ;) =p(@n, an;)] = 0, it follow that p(yn, , An) = P(Yn,, a)
For each n < ny to choose z,, € A, such that p(yn,,An) = P(Yn,,xn) . Then we
find p(Yn,, Tn) = P(Yny, An) < p(Any, An) < H(An,, Ap). Similarly p(yn,, Tn,) =
P(Ynys Any) < p(Ap,, An,) < H(Ap,, Ay). Since, (A,,) is a Cauchy sequence, it follow
that p(yn,, Tn,) = P(Yny» An,) = 0. This implies y,, = x,,. Let € > 0. Since (yy, ) is

a Cauchy sequence in X, there exists K € N such that p(yn,,yn;) — P(Yn,+¥n,;) < §

for all k,j > K. Since (A,) is Cauchy sequence in ¢b(X), there exists N > ng > K
such that H(A,, A,,) — H(A,, Ay,) < § for all n,m > N. We choose j,k > K such
that n, > n and n; > m. Then we find that

P(Tn, Tm) = P(@ms Tm) < P(Tns Yny) + PYngs Tm) — P(Yny s Yny) — P(Tms Tm)
< p(@nYny) + PWnys Yni) — PWUnys Yny) + P(Yngs Tim)
= P(Yni> Yni) — P(Tms Tpn)
= PWnis An) + PWn; > Yni) = P(Uny s Yn;) + P(Ynis Am)
= P(Yny Yni) — P(Tms Tm)
< p(Anys An) + 2Unys Yni) = P(Ynys Yny) + P(Anys Am)
— p(Anys Any) = P(Amy Am)
< [p(Any An) = P(Ans An)) + £
+ [P(Anys Am) — p(Am, Ar)]
< [H(An, An) — H(An,, An, )] + i
+ [H(Any, Am) — H(Am, Ap)]

<Syiiic
-+ -+-<e
4 4 4
Therefore, by definition and from our earlier set up, (x,) is a Cauchy sequence in
X such that z,, € A, for all n and z,, = y,, for all k. This complete the proof.
|
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Lemma 2.1.15 Let (X,p) be a complete partial metric space and (A,) be a se-
quence in cb(X) and let A ={zx € X : xyn);xn € Ap;n € Nz, — a}. If (A)) is a
Cauchy sequence, then the set A is nonempty closed and bounded.

Proof. Since (A,) is a Cauchy sequence, by Theorem 2.1.13, for every ¢ > 0, there
exists IV € N such that for every n,m > N, we have

H(Ap, Ap) — H(Ap, Ap) < e. (7)

Since H(Am, Am) = p(Am, Am) and p(A,, An) < H(A,, Ap), from (7) for every
n,m > N we obtain

p(An, Am) — p(Am, An) < €. (8)

For each z, € A, and x,, € A, p(tn,Tm) < p(An, An). Since p(Tpm, Tm) =

P(Am, Ap). From (8) for every n,m > N we obtain

P(Tny Tim) — P( Ty T < €. (9)

By Theorem 1.6 show that,(x,) is a Cauchy sequence. Since X is complete, the
Cauchy sequence properly converges to a point z € X. Since z,, € A, for all n € N,
then by definition of the set A, x € A. Hence A is nonempty. Furthermore, we
will prove that A is closed set. Suppose x is a point limit of A. Then there exists
ar # x € A such that

lim plax, @) — p(e,) = 0. (10)
k—o0

Since for each ar € A, there exists a sequence (y,),with y,, € A,, for each n € N
and y, converges to ap. Consequently, there exists an integer n; such that y,, € A,,
and p(Yn,,a1) — p(a,a1) < 1. Similarly, there exists an integer no > n; such that
Yny € An, and p(Yn,,a2) — plag, az) < % Continuing this process we can choose
ng > ngy1 such that y,, € A, and

(11)

P(Yni» ar) — plar, ag) <

T =

It follows that

p(ynmx) - p(x, .’I}) < p(ynkaak) +p(a’/€’ Ji) - p(ak? ak) - p(x’ ‘T)
From (10) and (11) we have

lim p(yn,,z) — p(z,z) = 0.
k—o0

It follows that (y,,) converges to . We show (y,,) is a Cauchy sequence. Let
e > 0. Since (A,) is Cauchy sequence in ¢b(X), there exists N > nx > K such that
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H(Ap, Ap)—H(Am, Ay) < § foralln,m > N. We choose j, k > K such that ny > n
and n; > m. Then we find that

PWnis Yng) — PWnys Yny) < PYnis Yn) + PYns Yny) = P(Yns Yn) = P(Yn; s Yn,;)
= P(Uny,> An) + D(Yn, s An) — P(An, An) — p(An;, An;)
< [p(Any, An) +p(An, An)] + [p(An;, An) = p(An,, An,)]
< [H(Any, An) + H(Ap, An)] + [H(Any, An) = p(Any, Anj)]

<€

It follow that (y,, ) is a Cauchy sequence for which y,, € A,, for all k. By Lemma
2.1.14 guarantees that there exists a Cauchy sequence (z,) in X such that x,, € A,
for all n and x,, = yp, . Therefore z € A, so A is closed.

Now, we show A is bounded set. For each x € A there exists x,, € A, such
that p(x,,x) < € + p(z,z), for all ¢ > 0 and n < N. Suppose zg € X and K =
max{p(zo, z1),p(zo,z2), - ,p(xo;xNn-1),€ + p(z,z)}. Forn =1,2,--- (N — 1), we
have

p(xo, ) < p(xo, xn) + p(Tn, ) — p(Tn, ) < K + e+ p(x,x) = M + p(x, x).

Definition 2.1.16 A partial metric space (c¢b(X), H) is said a complete if every
Cauchy sequence properly converges in cb(X).

Proposition 2.1.17 If (X, p) is a complete partial metric space, then (cb(X), H)
18 a complete partial metric space

Proof.Let (4,) be a Cauchy sequence in ¢b(X) and A = {x € X : Fz,);2, €
An;n € Nyz, — x}. We must prove that A € ¢b(X) and (A,) converges to A. By
Lemma 2.1.15, the set A is nonempty, closed and bounded, so that A € ¢b(X). Now,
we will prove that (4,,) converges to A. Let ¢ > 0. We need to show that there exists
N € N such that H(A,,A) — H(A,A) < e for all n > N. To do this, Proposition
2.1.9 tells us that to show two conditions, that An C (A+¢) and A C (A,, +¢€). Since
(A,) is Cauchy sequence, by Theorem 2.1.13 we have

H(An, An) — H(Am, Ap) < ¢ (12)

for all n,m > N.
Since p(An, Am) < H(A,, Apn) we obtain

p(An, Am) — (A, Ap) < e (13)
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for all n,m > N.
Let x,, € A,. Since p(xn, Tm) < p(An, Am). From (13), we have
p(l‘n, 337”) - p(xma -rnb) <e (14)

for all n,m > N.

It follows that, (z,,) is Cauchy sequence in X. By completeness of X, (x,,) properly
converges to © € X and of course, sequence (x,) converges to x € X, that for all
€ > 0 there exists N € N such that

p(l‘n,l') _p(xnuxn) <e (15)

for every n > N.
If x € A, then

p(Tn, A) — (T, 2n) < €

By definition of the set (A + €),x, € (A + €). Therefore
An C(A+e), (16)

for every n > N.
Furthermore to prove A C (An +¢€). Let € > 0. Since (4,) is a Cauchy sequence,
there exists N € N such that

H(Ap, Ap) — H(Ap, An) < €, (17)

for all n,m > N.

By Proposition 2.1.9, A,, C (4,, +¢) for all n,m > N. Let a € A. By definition
of the set A, there exists a sequence (z,,) such that z, € A, for all n € N and (z,,)
converges to a, that for all € > 0 there exists NV € N such that

p(a, An) —pla,a) < p(a, zn) —pla,a) <e, (18)

for every n > N.
From (18) and by definition of the set (A, + €),a € (A, + €). Therefore

AC (An+e), (19)

for every n > N. From (16),(19) and by Proposistion 2.1.9, then that H(A4,,A) —
H(A,A) < e and thus (A,) converges to A. Therefore if (X,p) is complete, then
(eb(X), H) is complete.

]
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2.2. Fixed Point Theorem. In this subsection, we focus our attention on the fixed

point theory for set-valued maps.

Let X is a partial metric space and P(X) the collection of all non-empty subsets
of X . The mapping F : X — P(X) is called set-valued maps. The points z € X is
called a fixed point of F' if x € F(z).

Definition 2.2.1Let (X,p) be a partial metric space. The mapping F : X —

¢b(X) is called contraction mapping if there exists real number k € [0,1) such that
H(F(x), F(y))) = H(F(x), F(2)) < k[p(z,y) — p(z, )], (20)

for all z,y € X.

In 1969, Nadler [6] established the following analogue of Banach contraction theo-

rem for set-valued maps.

Theorem 2.2.2 [6] Let (X, d) be a complete metric space and let F': X — ¢b(X)
be a set-valued map. Assume that there exists k € [0,1) such that

h(F(z), F(y))) < kd(z,y), (21)

for all x,y € X. Then F has a fixed point.
Note that the above notation A is called Hausdorff metric induced by d.

The following, our similarly introduce fixed point theorem for set-valued maps
based on partial metric space. Before, we present, the weak formulation of Ekeland’s

variational principle on partial metric space version.

Lemma 2.2.3 [5] Let (X, p) be a complete partial metric space and ¢ : X — [0,1)

be lower semicontinuous function. Then for any € > 0, there exists x* € X such that

*) <3
p(a”) < ;g( p(x) + €

and
p(2") < p(z) + e(p(z, ") — p(z™, z7))
for all z € X with z # z*

The continuity of the self-maps in the partial metric spaces is, in fact, the sequential

continuity.
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Definition 2.2.4 Let (X, p) be a partial metric space. The mapping f : X — X
is called continuous at the point z¢ € X if, for any sequence (z,) in X converges to

xg, then a sequence (f(z,) converges to f(z)

Lemma 2.2.5 [7] Let (X, p) be a partial metric space and the function f : X — X.
Then for each x € X, the function ¢ : X — [0,1) given by ¢.(y) = p(z, f(y)) is
lower semicontinuous on (X, dp).

Proof. Assume that a sequence (y,) converges to the point y € X, then
limy,, 00 dp(f(yn), f(y)) = 0. Futhermore that

e (y) = p(=, f(y))
< p(@, f(yn)) +p(f(Yn), £(y) — p(f (Yn), f(yn))
=p(@, f(yn)) + dp(f(n), f(y)) — ((f(yn), f () — P(f(y), f())
p(@, f(yn)) = Pa(yn)

This yields iminf, oo 0o(yn) > ¢u(y) because p(f(yn), f(y)) > p(f(y), f(y)

Lemma 2.2.6 Let (X,p) be a partial metric space and F : X — cb(X) be
set-valued map. For each x € X, the function v, : X — [0,1) given by v (y)

p(x, F(y)). If F contraction, then the function p, is continuous on X.}
Proof. Assume that a sequence y, converges toy in X, then lim, oo p(yn,y) —
p(y,y) =0. By (P4), for each x € X , we have

02 (yn) — 2()] = Ip(z, F(yn)) — p(z, F(y))|
< p(F(y), Fyn)) — p(F(y), F(y))|
—p(F( ), F(yn)) = p(F(y), F(y))
H(F(y), F(yn)) — H(F(y), F(y))
<k( (Ynsy) —p(y,9))

This yields liminf, oo 0z(yn) = @2(y) because lim, oo p(yn,y) — p(y,y) = 0.
n

Theorem 2.2.7 Let (X,p) be a complete partial metric space. If set-valued map
F: X — cb(X) is contractive, then F has a fized point.
Proof. Consider the function ¢ : X — [0,1) defined by

p(x) = p(z, F(z))

forallx € X.
By Lemma 2.2.6, ¢ is a continuous on X. Choose € > 0 such that 0 < e < 1—Fk,
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where k € (0,1). By Lemma 2.2.3, there exists xx € X such that
p(z*) < p(x) + e(p(x, z7) — p(z*, z7))
for all x € X with x # x*. Putting x € F(z*) and H((F(z*), F(x*)) =0 , we have
p(a”, F(z%) < p(x, F(x)) + e(p(z, 27) — p(z7), z7)
<p(F(z"), F(z)) + e(p(z, z7) — p(z"), 27))
< H(F(2"), F(x)) — H(F(z"), F(27)) + €(p(x, 27) — p(z"),27))
< (k+€¢)(p(z,27) — p(a”,z7))

< inf (k+ ,
< wean@*)( e)p(z,z”)

= (k+ e)p(z™, F(z*).

If p(x*, F(x*)) # 0, then we obtain 1 < (k + €), which contradict to our assumption
that 1 > (k + €). Therefore, we have p(z*, F(z*)) = 0. Since F(x*) is closed set, by

Proposition 2.1.4 part (iii), x* € F(x*). We conclude that F has fizxed point z* € X.
[ |
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