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Abstract

The classification of hyperspectral remote sensing images is a tricky job,
owing to numerous points of view, for instance, grouping of various pixels of
present data; merely limited information is presented a priori, data dimension
is substantial for conventional classification approaches; characteristically
more than a few hundreds of spectral bands are obtained for every image.
With the intention of solving all of these complications, in this paper
formulated a novel classification method with a novel Radial Basis Function-
Principal Component Analysis (RBF-PCA)-based prior model for
dimensionality reduction of hyperspectral images. A prior prospect of the PCA
is planned depending on the energy lying exterior to the span of principal
components recognized in a higher-dimensional hyperspectral image feature
space. This approach makes use of both mixed spatial and spectral information
of the image which leads to more and enhanced class separability and
consequently to improved classification accuracy. To advance the gradient
level of spatial information, Improved Empirical Mode Decomposition
(IEMD) with ABC (IEMD-ABC) is employed to increase the mixed pixel
wise Support Vector Machine (SVM)-Fuzzy Sigmoid Kernel (FSK)
classification accuracy. In EMD method the identifiable of Intrinsic Mode
Functions (IMFs) of spectral band, weight values of IMFs are computed with
the help of Artificial Bee Colony (ABC). The obtained both spectral and
spatial information learning probability value from SVM -FSK are estimated
by using HSMM. The proposed SVM-FSK is performed with hyperspectral
AVIRIS Indian Pine dataset. It shows that the proposed dimensionality
reduction with SVM-FSK classification shows improved classification
accuracy in terms of parameters like overall accuracy, standard deviation and
mean value.
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MNC - Maximum number of the cycles
cycle=1 - Termination condition
RHIB - The updated weight values of IMFs
R - Total number of IMFs used in the reconstruction,
gAnd r - Be the number of the different states in HSMM with
classes
SGFSI|, - Spectral gradient reduced feature space input sample
SGFSP - Spectral gradient pixel
SGFSOI - Spectral gradient reduced feature space output
SGFSOl,, ={+1-1middleclas} - Number of the classes for input sample
svmb - SVM Bias values for pixels
B - Regularization parameters
& - Error values of feature vectors
m - Constant value representing the effectiveness of the

sigmoid tract

y —iwherey +§ Fuzzy membership limits

K(SGFSII;, SGFSII;) Fuzzy sigmoid (fuzzytanh) kernel
I - labeled training samples

SGFSOI,, ={+1-1,mc}- Spectral gradient output image pixels classes
7, - Initial probabilities for HSMM
D, (u) - sojourn of the unobserved SVM-FSK objective function,
SGFSS, - Semi-Markov chain spectral gradient feature space state at
atimet
L. (sgfsg ™, sgfsif | ) - Complete-date likelihood results for SVM-FSK result
L(O) - Completed state sequence complicates the likelihood
function
MmN - Possible sequences results
M - Hidden Semi Markov Model (HSMM) states
N - Number of input spectral information data

Introduction

The introduction of high spectral resolution airborne and satellite sensors enhances
the capability for gathering of ground targets in fields as varied as farming, geology,
geography or defense [1]. The technological development of optical sensors over the
previous few decades has offered remote sensing analysts with wealthy spatial,
spectral, and temporal data. Especially, the development in spectral resolution of
hyperspectral images (HSIs) and infrared sounders unlocks the doors to new
application fields and creates new methodological confronts in data investigation.
HSIs permit the categorization of objects of attention with unprecedented accuracy,
and maintain inventories the latest. HSI images comprise both spectral and spatial
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information data with high dimensional data space for characteristics and certain
spatial information not straightforwardly noticeable by humans. These HSI methods
and its applications have been concerned in extensive-ranging of research attempts
[2].

The classification of hyperspectral remote sensing images is a demanding job,
because of numerous complications, for instance, the mixed pixel wise categorization,
dimensionality reduction, data dimension is substantial for conventional classification
approaches; characteristically numerous hundreds of spectral bands are obtained for
each image. These spectral bands can offer extremely rich spectral information of
each pixel with the intention of recognizing the material of the objects. On the other
hand, the spectral information alone occasionally does not permit the parting of
structures. Consequently, contextual information, geometrical characteristics for
instance, is essential for classification task of hyper spectral images.

The major complexity to compute the contextual information of hyper spectral
images is the high dimension of the data. To diminish the data dimension, both
supervised and non supervised approaches are formulated. The supervised
approaches, for instance, band selection [3], decision boundary feature extraction and
non-weighted feature extraction [3], convert the data in proportion to the training set
with the aim of improving the separability of the data. On the other hand, the
supervised approaches depend on the superiority of training set. The unsupervised
approaches, for instance, PCA (Principle Component Analysis) or ICA (Independent
Component Analysis), optimize certain statistical criterion (for example, the most
uncorrelated elements or the mainly independent elements) to project the data onto a
sub space with inferior dimension. The application of these approaches on
hyperspectral data can be found in [4-5]. On the other hand, the elements obtained by
optimizing the statistical condition do not essentially have physical meanings.
Numerous numbers of the dimensionality reduction researches have been carried out
in the previous works without any concern of the mixed pixel wise characterization
classification construction.

Even though numerous schemes have been introduced in the area of hyperspectral
image classification methods, such as, and Support Vector Machines (SVMs) [3],
Bayesian schemes like Relevance Vector Machines [6] and Gaussian processes
classification [7]. However, the SVM has certainly turned out to be the most
extensively employed method in HSI classification study [8]. One of the foremost
objectives in investigative studies in HSI image classification is to classify pixels into
diverse classes by considering thousands and hundreds of hyperspectral cluster
information and the human labeling is enormously exclusive. The foremost
complication take place in HSI images classification is to manage little number of
training samples with huge data dimensionality. The entire existing HSI image
classification approaches majorly concentrate on either feature selection or
dimensionality reduction. With the intention of solving all of these complications and
lessen the dimensionality of the features space with varied pixel wise spectral and
spatial data pixel, in this research presented a novel classification framework.

This paper concentrates on the challenging setback of hyperspectral mixed
pixelwise characterization framework together with dimensionality reduction
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complication in classification, which has lately achieved in recognition and drawn the
attention of other scientific disciplines such as machine learning, image processing
and computer vision [9]. In case of remote sensing research, the term classification is
employed to indicate the process that allocates mixed pixels to a collection of classes
and then allocated to a class. Introducing novel RBF-PCA based dimensionality
reduction field for hyperspectral imaging for hyperspectral images with the intention
of increasing the classification accuracy with a reduced amount of volume of data.
Following the dimensional are reduced to amplify the spectral gradient value, this
paper employs Empirical Mode Decomposition (EMD) which is formulated by Amir
Eftekhar et al [10] to examine nonlinear and nonstationary data. EMD decomposes a
signal into a fixed amount of Intrinsic Mode Functions (IMFs) and a residue.

In this paper, IEMD is implemented to each spectral band to acquire a fixed
number of IMFs. Subsequently, ABC, with a spectral gradient objective function, is
employed to decide the optimum weights of the obtained IMFs for rebuilding. The
IMFs are summed by means of these weights to rebuild the characteristics that are
employed in classification with SVM-FSK. Consequently, the proposed approach
integrates spatial and spectral processing. Mixed pixel wise characterization approach
based on a probabilistic HSMM framework for SVM-FSK. It is employed as a pointer
to locally discover the overall number of mixed components that play a part in each
pixel. It is also revealed that the proposed approach offers a significant increase in
accuracy for hyperspectral image classification.

Related Work

In recent past, several approaches and schemes have been formulated to achieve
enhanced hyperspectral image categorization accuracy. Numerous amounts of the
dimensionality reduction approaches also carried out to lessen the dimensionality of
the feature space. Hyperspectral data dimensionality reduction and end member
extraction has been carried out by Muhammad et al [11]. This author formulated a
novel approach to overcome the computational complexity of hyperspectral (HS)
image data to discover multiple targets/end members precisely and competently by
reducing time and complexity. With the intention of overcoming the computational
complexity, standard deviation and chi square distance metric approaches are taken
into account. The quantity of end members is approximated by unbiased iterative
correlation scheme. In order to provide an algorithm for surpassing the computational
complexities of hyperspectral data to discover the multiple targets and end members
efficiently with fewer computational times was the main objective. The end member
judgment was carried out by unbiased iterative correlation technique.

Bruce et al [12] dyadic discrete wavelet transform is developed for feature
extraction from a high-dimensional data space. The wavelet's inbuilt multi
resolutional characteristics are discussed based on multispectral and hyperspectral
remote sensing. In addition, several wavelet-based features are employed to the
complication of automatic classification of precise ground vegetations from
hyperspectral signatures. The wavelet transform features are assessed by means of an
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automated statistical classifier. The classification is examined using hyperspectral
data for several agricultural applications.

Burgers et al [13] have done a comparative investigation of dimensionality
reduction approaches aiming to assess the performance of the dimensionality
reduction schemes. Eight dissimilar approaches namely, Principal Component
Analysis, Laplacian Eigen maps, Isomap, Kernel Principal Component Analysis,
Independent Component Analysis, LMVU, Diffusion maps and LTSA have been
assessed for their performance on the dimensionality reduction and determination of
the inherent dimensionality of the hyperspectral images. Nonlinear approaches had
provided comparably enhanced results however had a foremost complication of taking
extremely long runtimes. Several hyperspectral data sets were employed in the
experiment and the performance evaluation has been carried out by comparing both
the classification accuracy and runtime of the algorithm. In this progression, PCA was
detected to be best in running and provide the most precise results. Subsequent to
investigation has been carried out, of all the odds PCA had surpassed and has been
found as the most excellent dimensionality reduction approach providing the best
results. Target detection was contentedly carried out by PCA, KPCA and ICA. PCA
had the slightest error rates in the processes and surpassed in all the tasks evaluated to
other approaches.

Investigation of hyper dimensional feature spaces, to assess their efficiency in
categorizes complex forest regions in a multisource framework. The initial technique
is a parametric regularized Gaussian Maximum Likelihood (GML) [14] classifier.
Especially, in case of the number of training samples is lesser than the quantity of
features, the covariance matrix employed in the decision rule become singular, and as
a result, the GML cannot be exploited. With the intention of solving this complication
that employs the Mixed- Leave One- Out-Covariance (LOOC) [15] to avoiding
extreme covariance estimator error. Mixed-LOOC2 has improvements over LOOC
and BLOOC and requires less computation than those two. Depending on Mixed-
LOOC2, new DAFE and mixture classifier approaches are formulated. Current feature
extraction algorithms, at the same time effective in certain circumstances, have
noteworthy limitations. Discriminate Analysis Feature Extraction (DAFE) is quick
however does not execute well with classes whose mean values are alike, and it
creates only N-1 consistent features where N represents the number of classes.

The second approach is a distribution-free machine learning classifier depending
on the SVM [16-17]. SVM have been extensively employed in previous investigations
on classification of hyperspectral data (e.g., [16-17]), establishing their efficiency in
hyper dimensional feature spaces; 2) both approaches are basically capable of solving
ill-posed classification complications, where the ratio among the amount of available
training samples and the amount of features is comparatively small (this is a
characteristic condition with hyperspectral data). The SVM classifier is a distribution
free complex classifier, which depends on machine learning and, therefore, on an
entirely different theoretical background concerning GML-LOOC. SVM established
to be extremely efficient for classification of hyperspectral data (e.g., [16] and [17]).

An assessment of SVM in remote sensing was provided by Mountrakis et al [18].
An investigation was made on SVM and its significance in remote sensing. SVM has
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an ability to simplify the data with extremely less training samples and provide
enhanced accuracies compared against other training techniques. Since SVM is non-
parametric, for classification it does not presume a statistical distribution. It requires
and constantly bonds to global minima since it takes care of quadratic setbacks. At the
same time, the remote sensing data have unidentified distributions, this property of
SVM is extremely much helpful permitting to outperform than the other type for
classification approaches.

SVM has been employed as a tool for mapping mineral potentially by Renzuang
[19]. The research confirmed that SVM is the most excellent geo-computational tool
for spatial investigation. SVM was subjected to many variables for mineral
prospective mapping. SVM approach with dissimilar kernel functions was assessed
with the mineral region. The results obtained were satisfactory and pointed out that it
is a helpful tool for integrating several evidence layers in mineral wealth mapping.
These results promoted the practice of SVM since the study area is occupied with
several mineral mines.

A Recursive Support Vector Machine (RSVM) for dimensionality reduction was
formulated by Tao et al [20]. A multidimensional maximum margin feature extraction
scheme was discussed broadly which is employed for building an orthogonal
dependent dimensionality reduction. The analysis demonstrates that as the number of
recursive constituents raises, the objective function of the SVM decreases. RSVM
confirms improved accuracy than the standard SVM and Linear Discriminant
Analysis (LDA) and have no singularity complications. The examination was
performed on standard benchmark non-spatial data sets. The major idea of taking this
literature is to analyze the same on the spatial high dimensional hyperspectral dataset.

Proposed Methodology

In this work, largely concentrated on HSI images and demonstrates the most
significant uniqueness of pixel for spatial and spectral domain. Having narrow band
intervals allows the extension of discovery and classification actions to targets earlier
not noticeable in multispectral images. For several applications, dimensionality
reduction is an essential preprocessing phase to acquire a smaller set of characteristics
that summarize the information in the hyperspectral image cube without losing any
significant information and as a result circumvent ‘the curse of dimensionality’. In
this paper, at first carry out dimensionality reduction approaches with the help of
Radial Basis Function (RBF)-Principal Component Analysis (RBF-PCA) scheme.
This method maps the entire hyperspectral data from the original feature space and
plots the efficient features accompanied by helpful information to a lower-
dimensional subspace.

RBF-PCA is a nonlinear extension of conventional PCA for obtaining higher-order
correlations in a hyperspectral data. Subsequently, Improved Empirical Mode
Decomposition (IEMD) method is employed to improve gradient level of spatial data
to separately specialize of Intrinsic Mode Functions (IMFs) of every one of band. In
EMD approach, IMFs weight values are decided by means of Artificial Bee Colony
(ABC) optimization algorithm. Quantity of IMFs is exploited as feature data vector
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for Support Vector Machine-Fuzzy Sigmoid Kernel (SVM-FSK) classification
framework. Subsequently obtained results are implemented to mixed pixel wise
probabilistic classification framework, in which SVM-FSK is employed as classifier.
The fuzzy sigmoid function is exploited as a kernel function in an SVM classification
framework to categorize mixed pixels HSI images. The objective function results of
the FSK-SVM are approximated depending on the Hidden Semi Markov Model
(HSMM). Proposed work representation of the complete system is given in Fig.1.

Input HSI images Dimensionality reduction using RBF-PCA

A 4

A 4
Spectral gradient enhancement

| Improved EMD with ABC |

v

Classification

|Spectra| pixel| | Spatial pixel |

' SVM-FSK
Objective function estimation

__________________________

\ 4
Mixed pixel characterization results

Figure 1: Entire Architecture of Proposed Work

Dimensionality Reduction Using Radial Basis Function-Principal Component
Analysis (RBF-PCA)

PCA is one of the most extensively utilized dimensionality reduction approaches. It is
a commonly accepted approach for eradicating redundancy in the data which depends
on decorrelation. Even though it accomplishes redundancy reduction by removal of
low variance constituents, this rotational transform is time-consuming as a result of its
global nature. Furthermore, since it is a global transformation, it does not maintain
local spectral signatures and consequently might not maintain all information required
to obtain a better classification [21]. Principal component analysis is described as a
transform of a given set of n input feature samples with the same size formed in the n-

X = (X,

dimensional vector %) into a vector ¥ according to,

y=A(x-m,) (1)
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This point of view enables to form a simple formula (1) ,each row of the feature
vector x of hyperspectral image contains of K values belonging to one input. The

vector M

relation,

x is the vector of mean values for hyperspectral image samples defined by

= )

C

Matrix A in Equation (1) is determined by the covariance matrix ~*. Rows in the

A matrix are formed from the eigenvectors e of Cx ordered according to

corresponding eigenvalues in descending order. The evaluation of the ©x matrix is
possible according to relation

K
Cx = E{(x~m)(x~m) } == > ] —m,m]
“ia ®3)
As the vector x of input variables is n-dimensional it is obvious that the size of Cx

is n x n. The elements ©x (-1 lying in its main diagonal are the variances

Cy (i,i) = E(x; —m;)? (4)

of x and the other values ©x (:1) determine the covariance between input variables

Cx (i, 1) = B{0G —my)(x; —m;)} (5)

between input feature vectors Xi’xj, . The rows of A in Equation (1) are
orthonormal so the inversion ofPCA is possible according to relation

T
X=A y+m, (6)

Extend PCA to consider higher order correlations among the spectral and spatial
hyperspectral data pixels for accomplishing improved super-resolution potential.
Depending on the schemes from [22], characterize a nonlinear function® on the
hyperspectral image data sample with feature space R as @:R" >R which
typically characterize the hyperspectral spectral and spatial features as SSF>>NF |
R*" s called as the spectral and spatial feature space. The function® is typically
selected in order that %°°" includes higher-order product terms from number of

hyperspectral features training samples %' . Employing PCA on®>" will then
acquire higher-order correlations from number of hyperspectral features training

samplesfRN . On the other hand, openly computing the nonlinear map @ is
computationally expensive, particularly when the space is high-dimensional. With the
intention of surpassing these complications in PCA, this paper employed RBF —PCA
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approach for each number of the hyperspectral data with non linear function.
Characterize a kernel function k in order that,

— || ®(fs) - D(fs))ll3
202

K(fs, fs) = exp(
(7

Provided hyperspectral image samples feature vectors in the dimensional space;

! 2
the RBF kernel function computes their ~ I P(f8) = ®($ )12 gyclidean square distance
among two different hyperspectral feature space vectors in the feature space.o
represents a free parameter, selectk suitably to stimulate a desired @ . In the last step,

required to carry out the PCA to each hyperspectral feature space, fine-tune the R

parameters. For that function, required to transform the ® and K to obtain ©-K values
to each hyperspectral feature space in the following approach,

( fs) = D( fs) —iidb(l'fsi)
Mia ®)

~ 13 13 :
K(fs, fs) = (fs, fs) = k(fs, fs) —— Y K(fs,TFS;) —— Y k(TFS,,
(fs, fs) = d(fs, fs) = k(fs, fs) MZ; s,TFS) MEU.S)
1 M M
+Wzizlzj:1k(TFS,,TFSJ) 9)

In order to work out the covariance matrix for each hyperspectral feature data

space fs is computed as AAT where

—— {D(TFS,),...d(TFS,)}

A :(AAT)iJ_:ﬁE)(TFSi)TED(TFSj):ﬁl:(TFSi,TFSJ-) (1)

Subsequently, fragment the covariance matrix results into Eigen-decompose ATA

to obtain the Eigen-values {4} and normalized Eigen-vectors {e;}. Depending on the

values of 4} select the initial m eigen-vectors as the principal components. For
particular new hyperspectral feature sample dataspace FSN | compute the projection of

®(FSN) g Eigen-vectorVi as

~ ~ M ~
®(FSN)'V = ®(FSN)" Ae;= Y, k (FSN,TFS))
=1’

(12)
Characterize the projection of FS on the principal subspace as given below,
M ~
=Y ®(FS,)" V,V,
Ves, & (FSp) VM (13)

Execute a Gibb’s earlier than deriving the PCA term to each feature dimensional
space term as given below,
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1

T 2
P(FS):(CjeXp{—nwFso ~EES)I

3 (14)
FS =argmin{|| FSO — HFS |2
Fs

+ Tegy W, — (FS) |17} (15)

D(FS,)"V,; : - : :
o/ Viis computed in equation (12). From (15) the expression for the gradient
_ = 2
of|| Pes, ~2(FS) with regard to FS can be computed as,

Vs ”LPFSO _&)(FS)HZZVFSK(FS, FSo)

m ~ M ~
= 2% (DP(FSy)'V; Y€, Vesk(FS,TFS)
i=1 j=1 !

(16)
Vesk (FS,TFS ) =2n(L+ FsTFS)"*FS -
2 3 n@+ FsTTFS, )" TFS,
mi=1 (17)
VFSE(FS,Tst):n(u Fs'TFS;)""TFS, -
~ L S n@ FsTTRS, )T,
miz (18)

P(FS)increases as FS meets results to Trs and get maximum feature space for
hyperspectral data for preliminary feature input space FS,
FS,=argmin|| FSO-HFS || +7 | FS ||?

Fs (19)

Improved EMD for Spectral Gradient

Subsequent to feature dimensional space results from the RBF-PCA approach, carries
out mixed pixel wise characterization probabilistic classification framework to
enhance the classification rate of HSI images. For that function, initially required to
approximate gradient level of the HSI images in inside lessens feature space
hyperspectral data for both spectral and spatial data. The gradient level of spectral
data is approximated by means of Empirical Mode Decomposition (EMD) methods
and spectral information data are reorganized with the help of IMFs. In this paper,
IMFs takes part considerable role to enhance the gradient level of spatial data, as a
result the computation of weight values for IMF becomes also significant. The weight
values of the IMF IMFSOW, are computed using Artificial Bee Colony (ABC)
algorithm, it enhances the classification accuracy rate for mixed pixel wise SVM-FSK
hyperspectral data. As a result, the mean value of restructuring spectral gradient data
is employed as the target purpose of the ABC.
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f (IMFSOW ,) = specgrad
OFSO(m, n, b) (20)
ob

1 A B S

)IPIPD

- Ax B xS m=n=1p21

Where FSO indicates the hyperspectral reduced feature dimensional space image
sample, A and B

represents the spatial dimensions, and S represents the number of spectral bands.
The weight values of the IMFs match to some of the ABC with bee initial population.
IMFs weight values are computed through the searching manner of the honey with
dancing manner with arbitrarily selection of the IMFSOW; weight value and updated

by considering previous maximum probability values P to each IMFs weight values
up to now found by honey bee. The weight values of IMF are revised in accordance
with food searching manner of bee in every searching space dimensional space D with
some absolute spectral gradient values in every spectral band of the hyperspectral
data. The present weight values of the IMFs for local HSI images and complete HSI
image samples weight values (IMFs) are compared against each others to choose best
IMFs weight values to the overall gradient process. The current location for each one
of the bee to compute the weight values of hyperspectral reduced feature dimensional
space IMF is given as

IMFSOW, = (imfsow,,....ImfSOWs ) i, \which D represents the dimension of IMFs

weight values for investigation search space to hyperspectral image sample.
ABC imitates the foraging manner of honey bees. When bee looks for best

IMFSOW, they typically deposit a unique dancing manner of the bees. ABC has been
productively employed for numerous optimization complications [23] since it is
simple to build up and solve several optimization complications with only a few
controls of parameters [24]. In ABC optimization, employed IMFSOW pees visit the
food source location. In ABC each one of the employee bee collects information
regarding weight values of the diminished feature dimensional space results from
RBF-PCA. Employed bees carry out the local examination to discover the best
IMFSOW' and attempt to use the nearest best IMFSOW  nejghboring locations results
for each one of reduced feature dimensional space. The bees waiting in the nest region
to discover most excellent IMFSOW for hyperspectral feature space are regarded as
onlooker bees. Onlooker bees carry out the global examination to discover the most
excellent IMFSOW  and revise global optimum IMFSOW regyits in position update
phase.

Scout bees determine arbitrarily select new IMFSOW weight value of the
diminished hyperspectral feature dimensional space which is not looked by the
employed bees, these three phases are continued until a highest number of the

iterations termination criterion is met. The fitness value f (IMFSOW:) g computed

depending on the equation (20). An artificial onlooker bee chooses the IMFSOW, i,
accordance with the calculation of the probability value Pa by using expression given

below,
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f (IMFSOW, )

SN (21)
3 f (IMFSOW,)
w=1

a—

Where T (IMFSOW:)jndicates the fitness value IMF weight to every employee i in

the location and SN represents the size of the population. The chosen IMF weight
position is revised by using the following equation (22)

V., = IMFSOW,, +6,, (IMFSO,, — 7.,) (22)

Where¢ andbare arbitrarily chosen IMFs weight valuesce{]*""SN}&bE{L""D},

¢an <[=11] pased on this result, the parameter value of ™MFSOabgurpasses its threshold
value, the result of the bees for IMFs weight value is satisfactory otherwise it is not
satisfactory, it is also substituted by the scouts bees, In case of ABC, when a bee
present IMFs weight value position does not enhance the result within a pre-specified
number of iterations, subsequently the current IMFs weight values to be assumed as
abandoned and it is updates as given below,

IMFSOW.” = IMFSOW._ ... + rand(0,1)
(IMFSO?_ — IMFSO?. )

max

(23)

All the above discussed steps majorly based on following parameters which limits
the operation SN | maximum number of the cycles (MCN) |

Algorithm 1: Weight estimation using ABC

Input: SN size of bees that is number of weight values in IMF

D dimensions of search space for weight values

Output: Update weight values for hyperspectral images

Method

1. Initialize bee’s weight values in IMF with arbitrary positions and velocities
VIMFW; in the search space D, and then select the most excellent IMF weight values

2. Fixcycle=1

3. Repeat

4. For the entire weight values for IMF in IMFW, in bee do

5. Estimate the objective function of each IMF weight values by means of fitness
function from f(IMFSOW,) (20)

6. Construct new IMF weight value calculation for each bee positionv,, with the
help of (22)

7. Execute the greedy selection process for the employed bees

8. Compute the probability values p, for chosen IMFSOW, with the help of (21)

9. Construct current weight values position solutions v, for the onlookers bees
depending on P;and assess them
10. Implement the greedy selection method for the onlookers
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11. Decide the discarded tasks results in the scout, when exists, and substitute it
with a new arbitrarily produced solution IMFSOW,” by (23)

12. Remember the best solution accomplished to this point

13. cycle=cycle+1

14. Until cycle= MCN is satisfied (typically an adequately better IMF weight value
fitness)

15. Return the best weight values for IMF and its fitness value IMFSOW, .

16. The updated weight values of IMFs by means of their corresponding weights

to acquire the new hyperspectral data representation that will be employed for
classification
R
RHIB = 3 IMFSOw, x IMFSO, (24)
d=1
Where IMFSOw, shows the equivalent weight of the IMF,Ris the overall number
of IMFs employed in the reconstruction, and RHIBindicates the reconstructed
hyperspectral image band.
17. Execute classification using following 3.3 and 3.4 sections.

Spectral and Spatial Characterization
In Soon after the gradient level of spectral and spatial information for HSI images are
determined from improved EMD approaches, and then execute probabilistic mixed
pixel-wise SVM-FSK classification framework. The objective function outcome of
SVM-FSK is estimated by means of HSMM. In order to learn mixed pixel-wise
SVM-FSK based classification results, approximate the HSMM probability value to
every spectral gradient information from improved EMD to enhance the classification
outcome. Fuzzy sigmoid kernel function is employed as kernel function to SVM
classification approaches with the intention of enhancing classification outcome of
HSI images. SVM-FSK approach competently recognizes appropriate and
inappropriate features vectors through maximization of margin size among feature
vectors. The exploitation of Fuzzy sigmoid kernel function discovers the
maximization of margin hyperplane is converted in spatial domain version. In view of
the fact that maximum margin classifiers are well standardized techniques and it
doesn’t corrupts the performance of classification for infinite dimensional data.
Shorten the operation of mixed pixel wise SVM-FSK classification structure and
determining the similarity between variables, it employs inner product as metric.

In these classification approaches, when any dependent variables exist, those
variables information might be lodged through supplementary dimensions, and
consequently can identify by a mapping [25]. In this paper, let

SGFSII; ={SGFSlI; ..., SGFSII, } represent the spectral gradient outcome from IEMD
based ABC approach with diminished feature dimensional space. Also let

— T - -
SGFSIl; ={SGFSl,...., SGFSIa}  \yhich represents the spectral gradient outcomes

that related with reduced feature dimensional images pierSGFSIIi €SGFSP e

SGFSP s characterized as a spectral gradient pixel SCFSPEL-- \ith indexing of N
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pixels of SGFSII; & SGFSBjy \yhich SGFSB indicates the amount of spectral gradient

— T - g -
feature space bands SCFSOli ={SGFSOL,,..., SGFSOI; } represent the classification

results of SVM-FSK, in whichC indicates the quantity of classes
SGFSOI,, ={+1,-1, middleclas} forC:l,...C and e SGFSO|iC =1 ¢() is indicated as non
linear mapping function of gradient function, it is carried out in accordance with the
Cover’s theorem [26], which promises elevated classification accuracy rate for

linearly separated feature vector samples and it is commonly higher dimensional

feature space 5.

min b{%u w? +ﬁ;§i} (25)

W2, svm
Constrained to the,

SGFSOI; (4" (j)w+svmb)>1- &, Vi=1.n (26)
& >0,Vi=1,.n (27)

WhereW & svmb represents a linear classifier for spectral gradient hyperspectral
images. Classification outcome of SVM approaches are managed by regularization
constraint 2 and it is automatically selected by user, the error values of feature

vectors are indicated by the parameter &,. The result of mixed pixel wise SVM-FSK
classification framework is approximated depending on probabilistic method HSMM
is given below,

1ifp(SGFSOl,, =1| SGFSTR) > p(SGFSOL, =1| SGFSTR) (27)

SGFSOI,, = .
Ootherwise

In order to enhance the classification accuracy, in this attempt employs a kernel
functionk

K (SGFSOI;, SGFSOI, ) = ¢(SGFSOI, )4(SGFSOI, ) (28)

This kernel function result not enhances classification accuracy rate for certain
data, to overcome these complication, in this paper kernel function are approximated
depending on fuzzy sigmiod function is defined in equation (28) given below,

f (SGFSOI) =sgn ' SGFSOI,SGFSOl 0;a (29)

i,j=1

K(SGFSOl;,SGFSOlI; ) +svmb

Where the SVM biases value (SVMb) of fuzzy kernel can be effortlessly computed

from the %o it happens to be neither 0 nor C. This paper extends the fundamental
ideas of hyberbolic tangent function from [27] and it is given as follows (30)
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—~1SGFSII,.SGFSIIislow
+1SGFSII,.SGFSII,ishigh (30)
m.SGFSOI;.SGFSOI,.

SGFSII; .SGFSIIismedium

K(SGFsIl;, SGFSII ;) =

WhereM represents a constant value indicating the effectiveness of the sigmoid
tract. In the statement of fuzzy logic idea, the sigmoid kernel function is defined as
collection of fuzzy membership functions. Several fuzzy membership functions
presents; however in this paper only concentrated on three triangular function, owing
to their straightforwardness as illustrated in Fig.2. The fuzzy sigmoid kernel function

be continuous, the membership limits are specified by , ,ltoy L1
a a

L(x) Ws(x)

v-1/a v yt+i/a X

Figure 2: Schematic of The Three Membership Functions

Subsequent to fuzzy sigmoid kernel function be continuous, as a result the
expression (30) can be readily re-written as a function of 2 and” as follows:

—1SGFSII;.SGFSII; < y—é
(31)

1
K(SGFS“,,SGFSHJ) = -*-:I.SGFS“,.SGFS“J 2 ;/—;

2.(SGFSOI,.SGFSOI, - 7) -~ a%(SGFSOI,.SGFSOI, - 7)
| (SGFSIL,.SGFSII; - 7) |

which is the absolute form of the proposed fuzzy sigmoid (fuzzy tanh) kernel. The
major benefits of this function are (1) it carries out quicker than, since the final results
of classification purpose are conveyed in a series of saturated samples (Eq. (30)), (2)
it allows to select diverse levels of non-linearity by choosing the quantity and
authority of the membership functions. In addition, measure the outcome of fuzzy
sigmoid kernel function through objective function for ! labeled training samples that
is 151 =(SGFSII;, SGFSOL,)...(SGFSH;, SGFSOL ) gaseq on the above discussed steps is

referred from [28], the major function is to approximate the probabilistic value for

mixed pixels SGIi with class label vector SCFSOk  This vector results can be obtained

from Hidden Semi Markov Model (HSMM) through the computing probability
function.

—1p(Csgrs = k| SGFSOL, 0) > (32)
SGFSOl;, =1 p(Ctggrs, = k| SGFSOI, 6)
Ootherwise

Probability Estimation Using HSMM
A Hidden Semi Markov Models with markov chain is initiated in [29], it includes

SGFSOI;, ={+1-1,middleclas}¢,.c=1..C

quantity of classes with several number of
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spectral gradient reduced feature space input  sample states
SGFsll, :{SGFsul""’SGFS“”}. The observed processSG':S”t is connected to the

hidden, is described for each one of the states SGFSI with classes.
Initial probabilities
I1; = P(SGFSS, = j),XIT; =1 (33)

The transition probabilities for the state r . For each " *4
P, = P(SGFSS,, = j | SGFSS,,; #1,SGFSS, =i) (34)

2Py =1& p; =0 (39)
j#i
- d;(u)
The occupancy of definite classes ™
to each of the states by,
d;(u) = P(SGFSS, ., # J | SGFSS,,,, = ],

v=0,.u—2|SGFS,, = j,SGFS, # j

together with the entity has to be allocated

(35)

for uefl,...M,}. Sojourn time is described as occupancy of each and every state in

SHMM to finish the estimation of the SVM-FSK abjective function development with
several number of the classes SGFSOI,. ={+1-1 middleclas}. The sojourn of the

unobserved SVM-FSK aobjective function result is indicated as D, (u) .It is between the

boundariest +1tot+u in the stater. Before and following the sojourn time, each
SGFSOI,, stater with several classes is indicated as

D;(u):=3d;(u) (36)

When the SGFSOI  estimation results for hyper spectral reduced feature space
results in state r at timet =0, the subsequent relation can be confirmed,

P(SGFSS, # j |SGFSS,_, = j,v=1.t)=d,()IT,) (37)

The last observed estimation results for mixed pixel wise characterization of
SGFSII, is associated to the Semi-Markov chain SGFSS, by the observation

probabilities,
b, (SGFSII,) = P(SGFSII, =x,| SGFSS, = j) & Tb, (SGFSII,) =1 (38)
The observation of the particular estimated SVM-FSK objective function is
exemplified by the conditional independence property,

P(SGFSII, = sgfsii | SGFSII; ™ = sgfsif )
— P(SGFSII, = sgfsij | SGFSS, = sgfss) (39)
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Complete-date likelihood,

Lo (sofss ™, sgfsif ™| 0) = P(SGFSS; ™ = sgfsg ™, SGFSS,_,,, =sgfss (40)
=1..u-1SGFSS, ,,, #sgfss _;, SGFSII;™" = sgfsif (0)

The completed state sequence cause difficulties to the likelihood function by a
supplementary sum over all probable prolongations of the overload detection
sequence s,,..., s, ;.It is specified as,

L@)= T TL(sgfss™, sgfsig™[0) (41)
S0 S7—1 Uz,

The major inspiration for the Hidden Semi Markov Model (HSMM) work is to
build up a proficient probabilistic method to compute the probability values
of SGFSOI;. Consider there isM -state Markov chain of length N happens to be the
number of input spectral information data from spectral gradient IEMD-ABC, and

there are M ™ probable sequences results are employed to acquire complete SGFSOI,,
spectral gradient output image class. On the other hand, it is obvious that, when the
state space of HSMM is huge, numerous of other sequences might be also interested
to carry out mixed pixel wise probabilistic estimation.

Experimental Results

In this paper, for the purpose of assessing the results of proposed approach and
existing work, experimentation results are done with a single data set specifically, the
Indian Pine data in Table .1that belongs to hyperspectral data. It is one of the
primarily significant dataset generally used at present. Since certain spectral data
classes are extremely comparable and some pixels in the images include combined
pixel data values. The Indian Pine data set, which was formulated in 1992, it includes
pixel range of image that corresponds to 145 by 145 pixels and totally there are 220
spectral bands. However in the spectral band data there are certain noises exist and
water absorption also exist, in order to surpass these complications, noises and water
absorption are eradicated, the absolute 220 spectral bands are reduced to 200 spectral
bands data is 4-2.5 um, and the spatial resolution is 20 m. Although the original
hyperspectral data from Indian pine dataset includes 16 classes. From the complete
training samples when certain classes include only little data samples those classes are
generally not considered, and the remaining classes training samples is taken as input
to training process.

Table 1: Indian Pine Data

CLASS NUMBER OF SAMPLES
CORN-NO TILL 1434

CORN-MIN TILL 834

GRASS/PASTURE 497

GRASS/TREES 747

HAY-WINDROWED 489
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SOYBEAN-NO TILL 968
SOYBEAN-MIN TILL 2468
SOYBEAN-CLEAN 614
WOODS 1294
ALFALFA 54
BUILDING 380
/IGRASS/TREES/DRIVES
CORN 234
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Table.2shows the results of overall accuracy for the original data representation as
well as the EMD-GA, EMD with spectral enhancement (denoted as IEMD-PSO), and
the dimensionality reduced features RBF-PCA method for IEMD-ABC, it can be
found that the overall accuracy results of the proposed RBF-PCA IEMD-ABC have
higher accuracy than the existing methods since it reduces the dimensionality of the
features by using the RBF-PCA methods.

Table 2: Accuracy In Indian Pine Data For Spectral Gradient

Images | Accuracy (%)
EMD | EMD-GA | IEMD-PSO | RBF-PCA- IEMD-ABC
1 915 |92.23 95.42 96.8
2 905 |93.84 95.51 97.15
3 90.25 | 93.95 95.64 97.45
4 90.8 |94.12 95.87 97.89
5 90.5 |94.25 96.12 97.98
Spectral Gradient
100 ; .
% EElcvD
3 [ EMD-SEGA
< [ JiEMD-PSO
I RBF-PCA-IEMD-ABC ||
3 4 5

Different Images

Figure 3: Accuracy In Indian Pine Data For Spectral Gradient

Fig.3 shows the overall accuracy of results for the original Indian Pine data
representation as well as the EMD and the proposed EMD with spectral enhancement
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ABC with reduced features results from the RBF-PCA methods with the existing
methods EMD, EMD-GA, it can be compared with existing EMD-GA. It shows that
proposed RBF-PCA-IEMD-ABC achieves higher accuracy than earlier methods.

Mean Accuracy
100 T T

90
80
701

60

I sVV-RBF
[ IsvM-Fsk
I RBF-PCA-SVM-FSK

50

Mean (%)

40

30

20

10
2 3 4 5

Different Images

Figure 4: Mean Value Results For Classification Methods

Fig.4 shows the evaluation of classification methods performance in terms of mean
function. Mean values evaluation is carried out among classification approaches such
as, SVM with RBF kernel and SVM with Fuzzy sigmoid function, feature reduced
dimensionality reduction method (RBF-PCA) with SVM-FSK. In case when the
results of mean values are higher for particular classification approach, similarly the
classification accuracy of those approaches is also higher. When comparing against
SVM-RBF method, SVM-FSK methods the mean value of the proposed RBF-PCA-
SVM-FSK accomplishes higher mean values as shown in Fig.5 and values are
tabulated in Table.3.

Table 3: Mean And Standard Deviation In Indian Pine Data Classification Results

Images | SVM- SVM- RBF-PCA- SVM- SVM- RBF-
RBF FSK SVM-FSK RBF FSK PCA-
SVM-
FSK
Mean (p) Standard deviation (o)
1 92.56 93.24 96.95 0.97 0.78 0.608
2 92.13 94.41 96.89 0.964 0.77 0.61
3 93.56 94.64 96.63 0.958 0.71 0.617
4 93.39 95. 22 97.23 0.95 0.72 0.604
5 91.9 95.8 97.58 0.978 0.74 0.608
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Standard Deviation Accuracy

I sVM-RBF
18r [CIsvmFsk
I RBF-PCA-SVM-FSK

16r

14r

1.2f

SD(%)

Different Images

Figure 5: Standard deviation for classification results

Fig.5 shows the results of standard deviation estimation between classification
methods such as SVM-RBF, SVM-FSK and proposed RBF-PCA-SVM-FSK method.
In case when the results of standard deviation are lesser, it shows better classification
accuracy results. It shows that proposed RBF-PCA-SVM-FSK (Radial Basis
Function- Principal Component Analysis -Support vector machine-Fuzzy Sigmoid
Kernel) have less standard deviation than SVM-RBF, SVM-FSK.

Conclusion and Future Work

In this paper, a novel RBF-PCA based dimensionality reduction method for
hyperspectral data is formulated for IEMD-ABC. This model is employed to
standardize the reconstruction of high values of the feature vector pixels for each
hyperspectral image data samples and both spatial and spectral domain features are
employed for generating helpful features. By nonlinearly mapping the hyperspectral
images to a higher-dimensional feature space and carrying out PCA on the feature
space and obtain higher-order correlations exist in hyperspectral image data.
Improved EMD together with ABC (IEMD-ABC) for the purpose of spectral gradient
enhancement is used to enhance the classification accuracy. In IMED approach, the
hyperspectral bands information are transformed into IMFs and weight values of
IMFs are acquired from ABC approach to optimize the spectral gradient. Here
proposed a mixed pixel-wise characterization (SVM-FSK) method for classification
of spectral-spatial information. SVM-FSK probability values are computed with the
help of the probabilistic HSMM method; it discovers the misclassification results and
a collection of previous resultant classes, in the same way. In addition, classification
is typically enhanced by HSMM. It also permits the capability to design sparse
techniques that are capable of working in applicable feature subspaces, where
compact and computationally well-organized methods can be run. At last, classifiers
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can now integrate mixed spatial and spectral data that separate uncertainties exist in
land-cover classification. The proposed RBF-PCA approach is very effective in noisy
images when less training data and more features are employed. This method provides
considerable performance enhancement in terms of classification accuracy when less
features are utilized compared to other frequency based dimensionality reduction
methods.

Extend the method proposed to hyperspectral images to estimate the characteristic
scales of the structures. In future developments, will further explore the relationship
between the parameters of our method and the spatial resolution, level of noise, and
complexity of the analyzed scenes. Also planning on exploring the applications of the
presented method for the analysis of multitemporal data sets.
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