

Weak Equations In The Algebra of New Generalized Functions Space $A(S(R))$

Ramadan Sabra

*Department of Mathematics, Faculty of Science, Jazan University,
 P.O. Box 2097, Jazan- KSA ,
 e-mail : rmsabra@jazanu.edu.sa*

Abstract

In this paper we will define the weak equations in the algebra of new generalized functions $A(S(R))$ as well we will prove some important results and equalities which play role in applications.

Key Words: Fourier transform , new generalized function , distribution , algebra,

Introduction

In [1] we defined the algebra of new generalized functions space $A(E)$ as a factor algebra $A(E) = G_{\theta_1}(E) \setminus G_{\theta_2}(E)$, where E - be separated complete locally convex algebra with topology defined by a family of semi norms $(p_\alpha)_{\alpha \in I}$ such that for each $\alpha \in I$ there exists $\beta \in I$ and a constant $c_\alpha > 0$ for which

$$p_\alpha(xy) \leq c_\alpha p_\beta(x)p_\beta(y) \text{ for each } x, y \in E \quad (1)$$

As a special case we defined the algebra $A(S(R))$, where $S(R)$ - be the space of functions of rapid decay with topology defined by the family of semi norms

$$p_\alpha(f) = p_{n,l}(f) = \sup_{\substack{k \leq n \\ m \leq l}} q_{k,m}(f), \text{ where } q_{k,m}(f) = \sup_{x \in R} |x^k f^{(m)}(x)|$$

The topology $p_\alpha(f) = p_{n,l}(f) = \sup_{\substack{k \leq n \\ m \leq l}} q_{k,m}(f)$ satisfies (1) [2-3].

The embedding of the space $S(R)$ and its dual space $S^*(R)$ in to the algebra $A(S(R))$ defined by the following way:

If $D(R)$ the space of tests functions with compact support , then define
 $M = \{\varphi \in D(R) : 0 \leq \varphi(x) \leq 1, \varphi(x) = 0, |x| \geq 0, \varphi(x) = 1, |x| \leq 1\}$,

then define $\varphi_k = \varphi\left(\frac{x}{k}\right)$, and let $g_k = F(\varphi_k(x)) = kF(\varphi(kx))$, where F is the Fourier transform.

Define the embeddings

$$J: f \in S(R) \rightarrow (f_k) + G_{\theta_2}(S(R)) \in A(S(R))$$

$$J_\varphi: u \in S^*(R) \rightarrow R_\varphi = (2\pi)^{-1}(\varphi_k \cdot u * g_k) + G_{\theta_2}(S(R)) \in A(S(R))$$

As φ runs through the set M we obtain different $R_\varphi u$ in $A(S(R))$ but they are all equal in the weak sense.

On the space $A(S(R))$ the linear and bilinear operations are defined [1] in particular the Extended Operations differentiation \tilde{D} , multiplication \otimes , Fourier transform \tilde{F} , and convolution $\tilde{*}$ are defined in the following way:

Since differentiation D and the Fourier transformation F are continuous linear operators in $S(R)$ [4] and the multiplication (\cdot) and convolution $*$ are continuous bilinear maps on $S(R)$ [5], then they are lifted coordinate wise to operations in $A(S(R))$, which we denote by $\tilde{D}, \tilde{F}, \otimes, \tilde{*}$ and defined in the following way:

$$\tilde{D} : f \in A(S(R)) \rightarrow (D(f_k)) + G_{\theta_2}(S(R));$$

$$\tilde{F} : f \in A(S(R)) \rightarrow (F(f_k)) + G_{\theta_2}(S(R));$$

$$\otimes : (f, g) \in A(S(R)) \times A(S(R)) \rightarrow ((f_k \cdot g_k)) + G_{\theta_2}(S(R));$$

$$\tilde{*} : (f, g) \in A(S(R)) \times A(S(R)) \rightarrow ((f_k * g_k)) + G_{\theta_2}(S(R))$$

These operations possess many good properties in $S(R)$ and are very convenient for applications. These properties are also preserved in the space $A(S(R))$.

Weak Equations in the Algebra $A(S(R))$

Our aim is to study the relationship between the standard operations $D, F, \cdot, *$ and their extensions $\tilde{D}, \tilde{F}, \otimes, \tilde{*}$.

Definition Let $f, g \in A(S(R))$ then the elements f and g are called weakly equal ($f \approx g$) if and only if $f_k - g_k \rightarrow 0$ in the space $S^*(R)$, where f_k and g_k are any representatives of f and g respectively.

Lemma 2.1

for each $\psi \in S(R)$ the sequence $\varphi_k \psi$ converges to ψ in $S(R)$

Proof

let $\xi(x) = \varphi(x) - 1$, and $\xi_k(x) = \varphi_k(x) - 1$. It is enough to show that

$$\begin{aligned} \xi_k &\rightarrow 0 \text{ in } S(R). \text{ Consider } \sup_{x \in R} \left| x^i (\xi_k \psi)^{(n)}(x) \right| = \sup_{|x| > k} \left| x^i \sum_{j=0}^n C_n^j \xi_k^{(j)}(x) \varphi^{(n-j)}(x) \right| \leq \\ &\leq 2^n \sup_{|x| > k} \left| x^i \sum_{j=0}^n \left(\frac{1}{k^j} \right) \xi_k^{(j)}(x) \varphi^{(n-j)}(x) \right| \leq \frac{1}{k} 2^n M \sup_{|x| > k} \left| x^i \sum_{j=0}^n \varphi^{(n-j)}(x) \right| \end{aligned}$$

where $M = \sup_{x \in R} \left| \xi_k^{(j)}(x) \right| \quad j = \overline{1, n}$.

Now let $f(x) = \sum_{j=0}^n \varphi^{(n-j)}(x) \in S(R)$, then there is a constant c such that

$$\left| x^{i+1} f(x) \right| \leq c, \text{ that is } \left| x^i f(x) \right| \leq \frac{c}{x}. \text{ Now } \sup_{x \in R} \left| x^i (\xi_k \psi)^{(n)}(x) \right| \leq 2^n M c \frac{1}{k} \rightarrow 0$$

That is $\xi_k \psi \rightarrow 0$ in $S(R)$.

Lemma 2.2

Let $v \in S^*(R)$, then the sequence $\varphi_k v$ converges to v in $S^*(R)$.

Proof

for each $\psi \in S(R)$ we have $\langle \varphi_k v, \psi \rangle = \langle v, \varphi_k \psi \rangle \rightarrow \langle v, \psi \rangle$,

that is $\varphi_k v \rightarrow v$ in $S^*(R)$.

Theorem 2.1

For each $u \in S^*(R)$ the sequence $R_\varphi = ((2\pi)^{-1} (\varphi_k \cdot u * g_k))$

converges to u in $S^*(R)$.

Proof

By using lemma 2.1 and lemma 2.2 we have $F[\varphi_k \cdot u] \rightarrow F[u]$ in $S^*(R)$, and $\varphi_k \psi \rightarrow \psi$ in $S(R)$.

Now it is known that if $f_k \rightarrow f$ in $S^*(R)$ and $\varphi_k \rightarrow \varphi$ in $S(R)$, then $\langle f_k, \varphi_k \rangle = \langle f, \varphi \rangle$. So $\langle F[\varphi_k u], \varphi_k u \rangle \rightarrow \langle F[u], \psi \rangle$ or $\langle F[\varphi_k u], \psi \rangle \rightarrow \langle F[u], \psi \rangle$. That is $F[\varphi_k u] \varphi_k \rightarrow F[u] \varphi$ in $S^*(R)$ from which implies that $F[F[\varphi_k u] \varphi_k] \rightarrow F[F[u]]$, that is $((2\pi)^{-1} (\varphi_k \cdot u * g_k)) \rightarrow u$ in $S^*(R)$

Theorem 2.2

Let $u \in S^*(R)$, then a) $R_\varphi[Du] \approx D^*[R_\varphi u]$; b) $R_\varphi[Fu] \approx F^*[R_\varphi u]$

Proof

a) Let $u \in S^*(R)$, then $Du \in S^*(R)$ and from theorem 2.1 we have $R_\varphi[Du] \approx Du$ and $(\varphi_k \cdot u * g_k) \rightarrow u$ in $S^*(R)$. That is $D^*(\varphi_k \cdot u * g_k) \rightarrow Du$ in $S^*(R)$, then $R_\varphi[Du] \approx D^*[R_\varphi u]$.

The proof of b) is similar.

Theorem 2.3

Let $u, v \in S^*(R)$ and let $u * v \in S^*(R)$ then $R_\varphi[u * v] \approx R_\varphi[u] \otimes R_\varphi[v]$

Proof

the convolution $* : S^*(R) \times S^*(R) \rightarrow S^*(R)$ is bilinear continuous operator , then

$$R_\varphi[u * v] \approx u * v \quad (2.1)$$

Now let $u \in S^*(R)$ be fixed ,then $u * . : S^*(R) \rightarrow S^*(R)$ be continuous operator , that is $u * R_\varphi v \approx u * v$,but $u * R_\varphi v \approx R_\varphi[u] \otimes R_\varphi[v]$,then

$$u * v \approx R_\varphi[u] \otimes R_\varphi[v] \quad (2.2)$$

Now from (2.1) and (2.2) we receive $R_\varphi[u * v] \approx R_\varphi[u] \otimes R_\varphi[v]$.

Acknowledgment

We would like to express our thanks to sponsor the Deanship of Scientific Research in Jazan University.

References

- [1] Ramadan Sabra, Saleem Al-Ashhab , Extended Operations and New Generalized Numbers Corresponding to the Algebra A(S(R)) ,International Journal of Contemporary Mathematical Sciences, , Vol. 10, 2015, no. 4, 179-183 2015
- [2] Ramadan Sabra , Mohamed Hasan. Further New Generalized Functions Spaces and Extended Linear Transformations, Journal of Nonlinear Functional Analysis . 2013. pp.(1-8).
- [3] Ramadan Sabra, Ultra Linear Continuous Functionals and Ultra generalized Complex Numbers In The Ultra generalized Function Spaces,

International Journal of Open Problems in Computer Science and Mathematics . Vol.5, No.2, 2012. pp. 156-162

- [4] A.B Antonevich and Ya.V. Radyno. Functional Analysis and Integral Equations. Minsk BSU 2006 ISBN 985-485-835-0.
- [5] Gelfand Y. M., G. E. Shilov. The space of test and Generalized Functions Moscow. 1958.

