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Abstract

With a view to generalizing the Banach Contraction Principle, Matkowski
extended the concept of Banach contraction to a system of equations on a
finite product of metric spaces and obtain a fixed point theorem for such
system of transformations. Many authors Singh, Gairola, Arora etc is used the
results of Matkowski and proved some fixed point theorems. The concept of
Matkowski type maps on product of fuzzy metric space and obtain a fixed
point theorem for such system of transformation is introduced by Arora and
Kumar. The main purpose of this paper is to obtain a common fixed point
theorem for two systems of Matkowski type maps on fuzzy metric space.
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Introduction

Zadeh [5] introduced the concept of fuzzy sets in 1965 and in the next decade
Kramosil and Michalek [2] introduced the concept of fuzzy metric space in 1975,
which opened an avenue for further development of analysis in such spaces.
Consequently in due course of time some metric fixed point results were generalized
to fuzzy metric spaces by various authorsviz [1], [6], [10] and others. The concepts of
fuzzy metric spaces have been introduced in different ways by many authors. With a
view to generalizing the Banach Contraction Principle, Matkowski extended the
concept of Banach contraction to a system of equations on a finite product of metric
gpaces and obtain a fixed point theorem for such system of transformations [3], [4],
[7], [11], [12] etc. Arora and Kumar [9] introduced the concept of Matkowski type
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maps on product of fuzzy metric space and obtain a fixed point theorem for such
system of transformation. Matkowski type fixed point theorems are applicable in
solving abstract equation on product spaces to convex solution of a system of
functional equations and other abstract equation.

In this paper we obtained a common fixed point theorem for two systems of
Matkowski type' s transformation on product of fuzzy metric space.

Preliminaries

Definition 2.1
(Schweizer and Sklar [14]) A binary operation*:[0,1)x[0,1] —[0,1] is a continuous t-
normif * satisfies the following conditions

[B.1] * iscommutative and associative

[B.2] * iscontinuous

[B.3] a*l1=a Vae[0]]

[B.4] a*b<c*d whenevera<c,b<dand a,b,c,de[0,1].

Definition 2.2
(A. George and P. Veeramani [1]) The 3—tuple (X,M,*) is called a fuzzy metric

gpace if X isan arbitrary non —empty set, *is a continuous t-norm and M is afuzzy
metric in X?x[0,»] »[0,1], satisfying the following conditions: for all x,y,ze x, and
t,s>0.

[FM.1] M(x,y,00=0

[FM.2] M(xy,t)=1V t>0 if and only if x=y.

[FM.3] M(x,yt)=M(y,xt)

[FM.4] M(x,y,t)* M (y,z5) <M (X zt+9)

[FM.5] M (x y[):[0,ec] =[0,1], isleft continuous

[FM.6] LLTM(X’ y,t) =1

Definition 2.3
(A. George and P. Veeramani [1]) Let (X,M,*) be a fuzzy metric space and let a

sequence {x.} in X issaidto beconvergeto xe X if limM(x,, x,t) =1, for eacht >0.

Definition 2.4
(A. George and P. Veeramani [1]) A sequence {X.} inX iscalled Cauchy sequence if

limM (x, %, ,,t)=1,foreach t>0,and p=1,2,3,-
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Definition 2.5
(A. George and P. Veeramani [1]) A fuzzy metric space (X,M,*) is said to be
complete if every Cauchy sequencein X isconvergent in X.

A fuzzy metric space in which every Cauchy sequence is convergent is called
complete. It is caled compact if every sequence contains a convergent subsequence.

Definition 2.6
(A. George and P. Veeramani [1]) A self mappingT: X — X iscalled fuzzy contractive
mapping if M (Tx, Ty,t) >M(x,y,t) for each x=ye X and t>0.

In al, we generally follow the following notation and definition introduced in
Matkowski and Singh et . [3], [4], [7], [11].

Let &, be non- negative numbers i,k =1.---,n, and ¢’ be square matrices defined in
the following recursive manner

O _J&0 TEk
Cle _{1—aik,i=k ik=1-,n, @7

And c{ are defined recursively by

1k A0 0 M ik 1.2

A N :
(4 _ oy C|(+)1,k+l - q(+)1,101(,|2+1 =k
G Gk T 63118 ke

i,k=1--,n-1-11=01--,n-2.1f n=1,we define ¢ =a, evidently, ¢’ is a
(n—I)x(n-1) square matrix.

Lemmal
Let ¢? >0for i,k=1---,n, n>2the system of inequalities

> 6, >0 i=1-n (L3)
k=1
ki

has a positive solution r,,...,r., if and only if

>0, i=1-,n-1,1=0,--,n-1. 1.4)

Pr oof
Suppose thatn=2. Since in the casec =c{? =0, the proof of lemma is trivial, we

© 0
assumethat ¢¥ and ¢ are numbers which are different from0 and% > % :
G Cx
Note that the last inequality is fulfilled if and only if there exist positive numbers

(0) ©

r, and r, such thal%>r—1>% :

i 2 ¢y

= dPn2ddn, cPn>cPn,
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Weget (1.3) forn=2. Thusthelemmaistruefor n=2.
Now suppose that the lemmaisvalid for n-1,n>3, and consider system (1.3) which
isformed of n inequalities. Thefirst of these inequalities can be written in the form

1 n

@Zfﬁ(g)fk =y @.5)
1 k=2

If positive numbersr,,...,r,, satisfy inequalities(1.3) then

& " (0 ) :

chlk rk"‘ZQk rkzcii ri’ |=21'“1n- (1.6)

C1 k=2 k=2

ki

n
0)A(0) , ~(0) (0 0a0) _ OO0y,
= Z(Cl(l)q(k) +cPcine = (cPef” -y, i=2,....n.
k=2

ki

Using (1.2) we can write this system of inequalitiesin the form

n-1
1) 1)
Z M 2 6Prg, @7
=)
ki
n-1
= > a2, i=1.,n-11=1- n-1

k=1
k#i

Main Result

Theorem
LetF,G : X — X, i=1...,n,be two sets of transformations. If there exist non-negative
numbersb and a,, i,k =1,...,n,such that

M (5 06+ 5%, G 0%+ ) 2 D 8iMic (R, K )+ EIM, 06, 0,0+, 50,8+ My (%, G (-, %,), )]

k=1

VX, % € X, i=1--,n @
and the numbers ¢{? and ¢ defined by (1.1) and(1.2) fulfils the conditions
c)>0i=1---,n-1,1=01---,n-1.

Where 0<2b<1-v and where v =max(r ™ 1) (2
: k=1

Then the system of equations

M; (Fix,Gx,t) 2 M (%, %), i =1....n. ©)
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= R(%%) =X =G (X, X)

have a unique common solutionx;,---, X, suchthatx e X;, i =1--,n.

Pr oof
First of al we note that in view of the homogeneity of the system of inequalities(1.3),

vdefined in (2) exist and 0<v <1.From Lemma(l) and equation (2) we may choose a
system of positive numbersr,,---,r,,, such that

n?

n
Zaikrk zvr,i=1--,n
k=1

Pick x’e X, and choose a sequence{x™ € X;, i=1...,n, such that

M; O™, 0) = My (R, Fd™, 1) 2 M, (677, X 1)

And

M; (20 = M (G G ) 2 M (T XL, m= 01 4)
without loss of generality, we assume that

M, (¢, t)>r, r <1 i=1..,n

By (2) and(4)

M 06,0 = M; (R OF -0, G 09 6. 1)

> A My (50, %60 +BIM; (7, F O+, X)), 0+ M, (6, 06+, 6,), )]
k=1

2> ayn +bIM, (4, X0, + M, (52 )]
k=1

M; (5,7, 1) =bM; (¢, %7,8) 2 D i +bM; (61,5, 1)
k=1

(L-b)M; (6,7, t) 2 v, +br,

5 (v+Db)
M; (X, X ,t)Zﬂﬁ

M, (¢ 3 ) =ar, i=1-,n

(v+b) _,

Where 0<q= <
1-b)

Also from
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M; O, %%, 1) = M (F 04 .+.6),G (€. %3, 1)

NgE

=

A My 04, X2, 1) +B[M; (X, F O+, 30),0) + M (2, G 04+ %3), D]
1

=7

M O 70 2 3 ah +BIM, (4,1 + M, (7, 7, 1)
k=1

We obtain

M, 02, 1) 2 0% ,i=1,--,n.

Inductively

M; (X7, X, 1) 2 g™ 5
It follows easily from (5) that { X"} be a sequencein X;.

t
kn—l)

for all mandt >0. Thusfor any positive integer p we have

M, (X", %™, kt) = M, (X, X,

M, (X", X7 1) > Mi(&m,&””l’ip)*--~*Mi(xm“"lﬂﬁmw'lp)

t t
>M. (X2, %, cex M (OO, X, ——
(5% pk”)* 05 % pk”)

mM, (X", x"P,t) > 1. .. x1=1.

Therefore{x"} is a Cauchy sequence for eachi=1.-,n, hence convergent. Since
(X;,M;,*) iscomplete. Let{x"} convergestoapoint u € X, such that

lim M; (Fx",Fu,t) > lim M; (x",u,t) =1

Now we show that

U =F (U, Uy) =G (U, up), 1=1---,n.

For each 1<i<n

MY, F U, Ul ) =M U, X% 0+M O™ R (U, U)0)
>M Y XD +MGE™, %™, R, u)0)

>M (u,ﬁ“,t)+n2akl\/lk(w,>§”“,t)+t[l\/li U R ) ) +M O™ GOS™, - ™) )]

>M (uf“,t)+nZakMk(w,>f”‘*l,t)+dMi (U, B W) D+M O™, ™2 )]

Makingm — -, we obtain for each 0<i<n.
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(L-D)M, (U, F (U, ++,u,),) 20
= 4 =F ()

And similarly

u =G (w,,u,)

To prove the uniqueness of U.. Letu,,T be two distinct solutions. Then

u =k, u)=G(u,u)
Andt =F (@, -, T)=G (U, .0,
We can assume that

M; (Y, G, t) 2r,i=1---,n.

M; (U, T, 1) = M (F (g, u), G (T, -+, T ) 1)

Zia‘kMk(uk’Uk’t)+b[Mi(ui’Fi(ul’“"un)!t)—i_Mi(Ui'Gi (Uv""Un)'t)]

2 ) aM(u,b,t)2vr,
P}

Inductively

M; (u,G,t) 2v™r, i=1-,n
Therefore

M; (u,0,t)=1 i=1---,n.
This compl etes the proof.
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