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Abstract

Given a vector field F € C'(R), where R is simply connected domain in IR". We
give conditions for the existence of a potential function ¥ € C*(R), such that
VW =F, forall x € R. Based on this result, we define the concept of exactness for
a class of a nonlinear ordinary differential equations. Using this concept, a higher
order nonlinear differential equations can be solved.
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1. Introduction

The concept of exactness for a class of a second order nonlinear differential equations
was presented [1] with a well-defined method of solution. The notion of integrating
factor were introduced to convert differential equation that is not exact into an exact one.

Higher order nonlinear differential equations play an important role in Applied Math-
ematics, Physics, and Engineering [2, 3, 4, 5, 6]. To find the general solution of such
equations is not an easy problem. In this paper, a class of higher order nonlinear differ-
ential equations will be solved.

The outline of the paper: we give mathematical formulation for the exactness of a
class of higher order nonlinear differential equations. Also, we present a technique to
solve the exact equations by reducing their order.
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2. The Main Result

Let e;, e, e3,..., e, be the standard basis of IR", and let R be a simply connected
domain in IR". Define a function F : R — IR" to be

n
F(xp, X0, x3, ..., %) = Y Fi(x1, X2, X3, ..., Xp)e;
i=1

- (Fl(xl’x2’ x3’ "'9xn)’ FZ(xl’x29x37 "'9xn)’ AR

Fn(-x19-x27-x3’ "'7xl’l))'

Then

n
Z oV

V\IJ: a_xi('xl9x2’x39"'9xn)ei
i=1

ov av
= _(xl,x2,x3,~~~,xn), _(xl’x23x3’~~~’x}’l)’---’
0Xx1 0x2
ow

('xl’-x29x3’ o 7-xl’l)) .

Xn

The following result gives the conditions for which a function W € C?(R) exists with
(VU)(x) = F(x), forall x € R.

Theorem 2.1. Assume that

F.
1) Fi(x1,x2,x3,...,%x,) anda—l(xl,xz,x3,...,xn)onR,foralli,j =1,2,3,...,n
Xj
are continuous in a simply connected domain R C IR", and
.. 0F; OF; . ) .
) — = ,foralli =1,2,3,...,nand j =1,2,...,i — 1.

8Xj 3)(,‘

Then there exists a function ¥ € C 2(R) satisfies that (VW) (x) = F(x), for all x € R.
The opposite direction is also correct.
0F; oF; ) ) ,
Proof. Assume that — = — foralli =1,2,3,...,nand j =1,2,...,i — 1. To
Xj Xi
construct a function W such that VW = F, we fix (11, 12, ..., t;) € R, and we define

X1 X2

Fl(g’x29x3a""xn)ds+/ Fz(t1s59x3""axn)ds

5]

X3
+/ F(t,0,&, ..., x,)déE + - --
13

\Ij('xl’x29---’xl’l) - /

1

+/ Fn(tl’t27t3’---’tn—l’g)dg-
In
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Clearly,
ow
P Fl(x19x27 -x39 cee xn)‘
8x1
dF] 0F;
By differentiating W with respect to x,, and by using the assumption e = axs we
X2 X1
get

oV 19 F]
(xlax2,x3’ o ’-x}’l) = (%- x2,x3, e ,xn)dé + FZ(tlaxzvx?)’ s ’xi’l)
0x7 n 0x2

19 F,
:/ g(g x27x39~~~axn)d$+F1(t1’x2ax3’---9xn)
3]

= F2(-x13x2’x3’ o s-xl’l) - Fz(tlax2’x3a o ’-xn)
+ FZ(Z],XZ,X}}, o 7~xl’l)
= Fa(x1, X2, X3, ..., Xp).

) ) ) . 0F; oF;
In general, differentiate W with respect to x;, and use the assumption 5 L= 5 o
X; X;
J i
j=12,...,i—1,weget
ow
_(xl’x2,x3’---7xn)
Xi
—\ (% OF;
Z 12,...,tj_l,f,x]’_H,...,xn)dg
+Fi(11,f2,---,ti—l,xi,xi+1,---,xn)
i~y F;
:Z/ P 12y o1, E X1, ey Xy )dE
j=1714
+ Fi(t1,t2, ... i1, Xiy X1y oo Xp). 2.1)
Since
Xj aE
s, o, 6 X, e, X)dE
i 0§
J
:Fi(tl,tz,...,tj_l,xj,xj+1,...,Xn)_E(tl,tz,...,tj_l,tj,xj+],...,Xn)~
Then

Y 0F;
Zf _(t17t27"'9tj—]’S7-xj+]7""xl’l)ds
.l

i—1

= Z{Fi(tlatZ’---’tj—laxjaxj—f—la---,xn) — Fi(t1, 12, oo 11, 1, XLy oy Xn)

= E(-x17-x27°~~5~xn) - E(t17t2’ --'7ti—1’xi’xi+13 ---’xn)-
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Substitute this in Eq. (2.1), we get

AV
T(xl, X2, X3, ..., Xp) = Fi(xy, x2,x3, ..., x,).
l

Therefore

0w
(VW) (x1, X2, X3, ..., Xp) = Zg(mwz,xs, ces Xn)€

i=1

n
=Y Fi(x,x2, %3, ..., x)e = F(x1, x2, %3, xn).
i=1

The proof of the opposite direction is easy. In fact, If there exists function ¥ € C 2(R),
so that
Vv =F.

Then
ow
g(xl, X2, X3, ..., Xn) = Fi(x1, X2, X3, ..., Xn),
l

which implies that
OF, 3%V W OF,

= = = , fori=1,2,...,n,and j=1,2,...,i — 1.
ax]' 8Xjaxi axiax]' ax,-

|
Now, we consider the following nonlinear ordinary differential equation of order n:
Fn <[9 y’ y/’ y//’ LB 9y(n_1)> y(n) + Fn—l (tv y’ y/9 y//a ceey y(n_l)) y(n_l) + c
+Fi (1 3y OT0) Y Ry (13,0 T) =0 2.2)
Let R be a simply connected domain in IR™!. Assume there exists a function
W, y, v,y ..., y" D)y e C3(R) such that
ow
My (1)
o1 o\ Y, y,Yy y
ow _
— = F (t, v,y vy 1))
dy
ow _
— = B (t, v,y oy ])>
dy
ow A/ (n—1)
m — F}’l(tvy’y’y ey ) (23)
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Then, Eq. (2.2) becomes

By applying the chain role to this equation, we get
dv
-0
dt
Hence, W <t, v, v,y y("_l)) = ¢ reduces Eq. (2.2) into a nonlinear ordinary
differential equation of order n — 1.
Definition 2.2. A nonlinear differential equation (2.2) is called exact if there exists a

function W (t, A A y("_l)) € C%(R), where R is a simply connected domain
in IR™*!, such that (2.3) are satisfied.

remark 2.3. By using the above definition and Theorem 2.1, Eq. (2.2) is exact equation
if

i) Fo, Fy, F», ..., F, are continuous with their first partial derivatives with respect
tot,y,y,..., y("_l), on a simply connected domain R in R"! and

. 0F; oF; _ . ) )

11) foralli =1,2,3,...,nand j =1, 2,...,i—1 (asanotation

ayU—D ~ gyG-1"

dF; dFy
0 _ L

foralli =1,2,3,...,n.

Remark 2.4. Consider the following third order differential equation
F5(t, ., Y, Y)Y " +Fa(t, y, v, Y)Y '+ Fit, y, ¥, vy + Folt, y, v, ") = 0. (2.4)
Then, this equation is exact if

i) Fy, Fy, F> and F3 are continuous with their first partial derivatives with respect to
t,y,y, and y” on a simply connected domain R in IR*, and

i1) the following equalities are satisfied:

Oy Fo = 0; F3, 0y Fy = 0y F3, 0y = 0y F3, 0y Fp = 0, F>,
8y/F1 = 8yF2, and 8yF() = 3,F1, (2.5)
oF

where 0, F = —.
an
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In this case, the function W (¢, y, y', y") that reduces Eq. (2.4) into a second order
differential equation is given by

t y
\Il(t9y’y/’y//) = / FO(S’y’y/’y//)ds_’_/ F (to’g:vy/’y//)dg
1o Yo

/

y
+ [ P20 g.0)de
Yo

y
+/ F3 (10, yo. yy. §) dE. (2.6)
y

(/)/
Example 2.5. Consider the following nonlinear third order differential equation:

{ Y+ B2+ y2)y" + 2yy 4+ 60y + 61y 4 6y =0,

y(0) =3, y'(0) = =9, y"(0) = 8. (2.7)

Then
F5(t,y,y, Yy =1, Fa(t, y,y,y") =32+ %, Fi(t,y,y,y") =2yy +6t,

and
Fo(t,y,y,y") =6ty + 6y.
Itis easy to see that the conditions in (2.5) are satisfied. Hence, the third order differential
equation (2.7) is exact. Using the formula (2.6), we get that
W (l‘, y, y/’ y//) — y// + y2y/ + 3l2y, + 6ty
= '+ (*+3t%)y +6ry.
Hence,
Wy, y.y") =y"+ (0 +30)y +6ry =c,
reduces Eq. (2.7) into the following nonlinear second order differential equation
Y+ (430 + 6ty =,
By applying the initial conditions, we get ¢ = 0. Therefore, the above equation becomes
Y+ (y* 43ty + 6ty = 0.

Following the same argument in [1], the above nonlinear second order differential equa-
tion is exact, and hence, it is reduced to the following first order differential equation:

y3
y/+3t2y+? =0.

This equation is Bernoulli equation and its solution is given by

_ 43
() = 3exp{—t’} N

t 2
(1 + 6/ exp{—2§3}d€)
0
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3. Conclusions and Remarks

In this paper, we imposed conditions on the following nonlinear differential equation of
order n:

Fn <t7 yv y/, y//7 ,y(n_1)> y(n) + Fn—] (tv ya y/, y//9 ---7y(n_1)) y(n_l) + te

+ F (t, vy, v y(”_1)> v + Fy (t, v, v,y ..., y("_1)> =0, (3.1)

so that it is exact. In addition, we introduced a technique to reduce the order of this
equation into an equation of order n — 1. We also presented an example to solve a
nonlinear third order differential equation. For further studies, if Eq. (3.1) is not exact,
then it is reasonable to look for integrating factors that could transform it to an exact one.
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