Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1399-1412
© Research India Publications

http://www.ripublication.com

Brinkman Flow Past An Impervious Spheroid Under
Stokesian Assumption

!D. Satish Kumar and ?Dr.S.Kalesha Vali

'K.L. University, Vaddeswaram, India 522502
Email: satishkumar2999@kluniversity.in
2 Jawaharlal Nehru Technological University College of Engineering,
Vizianagaram, India - 535003
Email: valijntuv@gmail.com

ABSTRACT

In this paper, we study the Brinkman flow, under Stokesian assumption, past
an impervious prolate spheroid and obtain the expressions for the velocity and
pressure fields in terms of Legendre functions, Associated Legendre
functions, prolate radial and angular spheroidal wave functions. We further
obtain an expression for the drag experienced by the spheroid and numerically
study its variation with respect to the flow parameters and display the results
through graphs.
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INTRODUCTION

The study of the isothermal flow of an incompressible viscous fluid about an
impermeable body immersed there in has been a matter of concern for researches ever
since Stokes initiated the discussion for the steady motion of a sphere in an
incompressible viscous fluid [1]. The determination of the flow variables requires the
solution of the Navier-Stokes equations and the equation of continuity subject to the
appropriate boundary conditions and the regularity conditions in the flow regime.
However, this job is not easy as the Navier-Stokes equations are nonlinear. In view of
this, researches tried to study the related problems by linearizing the equations of
motion under some simplifying assumptions. For some more details the reader can
look into [2]. When the body dimension / characteristic flow velocity is suitably small
or kinematic viscosity is suitably large, there will be negligible effect on the non
linear terms in the Navier-Stokes equations near the body in comparison with the
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linear terms. In view of this, in such a case, the non-linear terms in the equations may
be neglected and this results in a linearized version of the Navier-Stokes equations.
Sir George Stokes seems to be the first to have proposed this argument [1]. With this
argument he treated the motion of a sphere in a viscous liquid by omitting the non
linear terms in the Navier-Stokes equations ever since, any problem of fluid flow
studied under this assumption with the omission of nonlinear terms in comparison
with the viscous terms is referred to a Stokes flow problem.

Payne and Pell in their highly significant paper [2] discussed the Stokes flow
in a viscous liquid past a class of axially symmetric bodies with a uniform streaming
at infinity parallel to the axis of symmetry. Several researches have worked the
problem of Stokes flow past axisymmetric bodies taking the fluid to be a viscous fluid
or a Non-Newtonian fluid. The problems, in general, are confined to an infinite
regime of the fluid where in a body like sphere or spheroid or approximate sphere or a
pair of spheres is immersed. To the extent the authors have surveyed, there seems to
be no work related to a solid body immersed in a porous medium where there is flow
past the body with uniform streaming at infinity.

In this paper we propose to study the flow of a viscous liquid past an
impervious prolate spheroid immersed in a porous medium. One famous model
describing such a flow situation is the so called Brinkmann model. For further details
the reader is referred to the classic book “Convection in porous media” by Nield and
Bejan [3]. We assume that a prolate spheroid is immersed in a porous medium where
the viscous flow field is governed by Brinkmann equation and obtain the expression
for the velocity and pressure fields and the drag experienced by the spheroid. The
flow field variables are obtained in terms of Legendre functions, Associated Legendre
functions, prolate radial and angular spheroidal wave functions. We have studied the
variation in drag numerically and presented the variation through graphs.

MATHEMATICAL FORMULATION:

Consider an infinite expanse of a porous medium around an impervious prolate
spheroid. Let there be a uniform viscous fluid flow in the porous region past the
spheroid with velocity U far away from the body, along of the axis of symmetry of the
spheroid. We assume that the flow is governed by Brinkman equations. Let us choose
the centre of the spheroid as the origin of an orthogonal Prolate spheroidal coordinate

hl’ h2’ hs)

system ($.77.9) with and (6z.€1,€9) as the unit base vectors. Let ( be the

scale factors of the system. Let the spheroid be given byézgo, In view of the axial
symmetry of the flow field, the flow variables will all be independent of the azimuthal
coordinate .
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Fig-1. Schematic diagram of the flow
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Let the velocity at any point of the flow be given by

Ignoring the body force and the dispersion effects, the flow is assumed to be
governed by the Brinkman equations:

Vvp+ ucurlcurlg+ 2 q=0
K )

and the usual continuity equation

where # s the coefficient of viscosity, k is the permeability of the porous medium,
and P(S:77) s the fluid pressure.

Equation (3) allows us to introduce the Stokes stream function v ()
through

P L
5 a& @

Taking curl of (2) and using (4) we get

_ M E4z//+ﬁi E%y =0
h, K h, )

where E? is the Stokes stream function operator given by
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RSS2
hh, { &\ hh, 6& on\ h,h,; o7 (6)

The equation (5) leads to

1402

E‘H//—% E?y =0
(7)

which can be written as

2
EZ[EZ —OC‘Z jz//=o
(8)
with
o’ 1
c? k (9)

In view of the linearity and commutative nature of the operators E®and

[ = = j
ez ] ] ] ]
solution of (8) can be obtained by superposing the solutions of

E*y =0 (10)
[Ez—a—:jt//:O
© (11)
Introduce 5= COSh‘f and t= cosn : (12)
We note that
h =h, =cy/(s? —t?), hy=c\(s* —D)(1-1t?)
and
. 1 [ NS 2y O
B = | ("D + (-t )_2j
c(s”—t9) oS ot (13)
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Solution of E¥=0
2 _

General solution of Ey=0 is given by

-1 © . ;

W, = Uc?(s> -1)(1- tz)(7 +Z A ..Q...(9) Pn+1(t)j
n=0 (14)
in view of the uniform flow far away from the body and regularity of solution on the
axis of symmetry. Here R and Qu(s) are Legendre functions of first and second
kind respectively.
2
az jWZ = 0

(=~
Solution of (11) c

The expression of Y2 suitable for our problem is given by

v, =Ucy(s* ~)(L-1%) D c,R¥ (i, 5)S (i x,t)
n=1 (15)

1 . (3) -
Here Swial) and R™n(ia,s) are Prolate angular and radial spheroidal
wave functions as in Lakshmana Rao and lyengar [4] and Abramowitz and Stegun

[5].
The solution ¥ of (8) is given by

where V1 , V2 are given in (14) and (15)
Thus stream function ¥ (S:1) s given by

v = _%UC2 (s*—D(AL—-t*) +Uc?*(s*- 11— tz)i A er1+1(s) Pn'+1(t) +

Uet - DA-15) > C, RO (ia,7) SO (i t)

(17)

Here
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1

R¥a,s :[ Z (r+0)(r+2)d" (i ] [2531} 2(r+1)(r+2)d1"r(ia)K 4(as)

I r+

r=01 9 (18)
SO(ier,t) = > d" (i) PO (1)
r=0,1 (19)

as in [3,4]. In equation (17) {Aﬂ}and {C”} are infinite sequences of arbitrary
constants to be determined using the boundary conditions.

Boundary conditions on s=s, -
The boundary of the spheroid is taken to be given by s = so. Employing the no slip

S=S§

condition on the impervious boundary o we get

Y= O\IIS Oon =S

Let us non dimensionalize the variables ¥ and p using

. _HJ s
w=(Uet)y (PTTP (20)

and later drop "+', we get

=—(s —D)A-t?) + (s* —1)(A— t)ZAM Qna(8) Pya(®)

D) Y CRY (98 ()

(21)
in non dimensional form As ons =sp, v = 0, we get
O AL )P ()+l5 D) Zc R%(i,55i, t)=;(s§—l)(l—t2)
0 (22)

2 2
Dividing by \/(SO ~H-t) , We get
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(s ZAM ME +ZC RV(ia,5))S" (i, t) ==(5,” ~D)(L-t7)

l\)ll—‘

(23)
Further Vs =0 on =5 . This gives after dividing by V-t

0=—5, PO+ A, (N+1(N+2)Q,..(s,) PO () +

o ) d
ch((s _1)d_

R0+ 0109|5200
n=1

5=5o

(24)

(23) And (24) respectively are the consequences of =0y =00ns=5,
We further note that

j PO®)PY (t)dt =0 if m=n

:2n+3(n+1)(n+2) ifm=n

(25)

j PO 0)SY (i ar, ) dt =dI" (ier) 20D +2)
2n+3 (26)

&)
Multiplying (24) by Pra(t) and integrating with respect to t, from -1 to 1,
after simplification we get

. E _ |
A‘Hl \ S02 _1Qn+1(so) + sz Rl(r?]) (I a, So)drj{ (Ia) = E \ (802 _1) 5n0
m=1

(27)

@
Multiplying (25) with Fra(t) and integrating with respect to t, from -1 to 1,
after simplification, we get

Am(n+1)(n+z)QM(so)+ilcm \/(50217-1)[(5 1):R (0,9 +R (la,s)] 4 ia)

§=5 = 50 5n0 (28)
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Determination of arbitrary constants:-
The equations (27) and (28) can be rewritten as

A8 D Qua(s,) + S CoRE (t,5,)0 (i) = =57 —165,

? (29)
on Vs =0ons=s,
A0+ 20,51 1+ 2, [(sz—1)33Rf;)(ia,sthf;’(ia,s)j 6 e) =5 19,
-t (30)

Multiplying (29) with (n+1) (n+2)@<1(%)  multiplying (30) with Qe2(%0)
and subtracting the second result from the first we get

icm[(n+1><n+2)on+1<s0)R“zm(ia,s0>—Qnﬂ(so)[(sz—1);’8Rf;)(ia,s)+st;)(ia,s>] ]d;f"(ia)

5=5,

:(\/ (So2 _1) Ql(SO) - So\/ (So2 _1) i(so))é‘no

Lt
= (S’o2 - 1)

no

(31)

The system of equations determining {Cm } is now given by

ZAnmCm = 5n
"~ (32)
where
Anm=d%m(ia)[(n+1)(n+2)Qn+1(50)R1($>(ia’50)_QAH(SO) (& —1)*Rf,i)(ia,s)+st;) (ia,s)] ]
S
o (33)
0, = 1 5.,
(So _1) (34)
where % is Kronecker delta i.e. %o =11 N=0



Brinkman Flow Past An Impervious Spheroid 1407
0,0 =0ifn=0

This is an infinite nonhomogeneous system of linear equations in the
unknowns {C,}. It is known from the theory of spheroidal wave functions that the
coefficients d,"™ have to be defined as zero when n+m+1 is a positive odd integer.

In the system (32), we see that the right hand side vector { % } has only one

nonvanishing component % corresponding to n=0. Hence the subsystem of (32)
given by

o0
ZA2n+l 2m

= (35)

is a homogeneous system and this leads to C,=0 for even values of m. From (29) we
conclude that A,’s are all zero for even values of n. Thus for the determination of Cy’s
where n is odd, we get a non homogeneous linear subsystem of (32). The analytical
determination of C,’s is not possible and we have to necessarily resort to numerical
evaluation after suitably truncating the system for specific values of the material
parameters. Herein we have truncated the system to a 5by 5 system in view of the
negligible nature of the coefficients C,.

Pressure distribution:
The equation (2) is seen to represent the following equations:

V=D o _ 2 gy -H 1 o
sttt &5 - 2s? —t2\(s* - 5t K c2ys? —t?/(s*~1) ot (36)

J@-t) @zﬂ -1 Q(Ezy/)_ﬁ 1 dy
cysi-t? Ot c?sP—t?(s*-1) 08 K ¢?ys? -t?/(1-t?) 5 (37)

These are equivalent to

\/7 O (g J‘ J_

c (s —1) ot

(38)

2

£ E’y)-
6’[ / 88 (1 t?) (39)

Using the expression of ¥ from (21) and integrating (38) and (39) we get

Ja-1)
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ZU e
p=*~ (—25t+ Y AL+ (+2)Q,.,4(s) PM(t)j
n=1 +
an arbitrary constant (40)

where the arbitrary constant can be absorbed into the hydrostatic pressure.

Drag on the spheroid
Drag on the spheroid is given by

2%02«/(802 —1)( i(t«/(sz -Dt,. - sy/(L-t?) t., )dtJ

N 5=S% (41)
Here the required components of stress tfé’, by are given by
ty =—P+2ue, = 248, (42)

where

1 ty, (28 —1-t*)y,
. =—— |y + —
&& CS(SZ _1) (Wst (82 _t2) (82 _tZ)(SZ _1)

Using the conditions on the boundary
s=5y,¥ =0, =0y, =0, =0,y =0. we have

(egg)ons:so =0, (tgg)ons:su = _p(SO’t)

(P -Dy-0-Pw)  sisE D, -ty

€y = hhh, - ¢(s? _tz)zJ(l_tz) - ¢¥(s? _tz)z\/(sz_l) @)
_2u(s*-1)
t§77 ons=s, hlh2h3 ( ss )ons:so

ons =s§

To calculate Vs 0. we note that

1 O’y o’y
By =———| (5 ~1) =% - (- t*) =%
v c?(s? —tz)(( v Y s? =1 ot
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and

2 )
ZUe(s)’ ~D-t) Y CoRE (. 5)) (ex5,)
= n=1

s=s,

1 a’ N . .
c2(s,? —t7) (So2 _1)(‘//53 )sto = C_ZUC\/ (502 _1)(1_t2)zcm Rl(r?) (|a130)81(i)(| a,t)
0 n=1

Hence

(44)

(Ve ), :UC—QZ(SO2 —tz)\/(l—tz)iCme?(ia,so)s<1>(ia,t)
=Sy (SOZ _1) ~ im (45)

(), - &0 N D5 e o )5 e
ST o C o N O TR S W= (46)

Drag on the spheroid =

Zﬁcz\/(Sf1)j[t\/(5021)P(so,t) s=1) UCCa\/S s ZC R (ict,5,)" t)}it

-1

ZﬂCZ(SOZ—l)j( tp(s, t)- sUa ZC R (iar,5,)S" (i, ) (1-1") Jdt

= -1

= (47)

Consider

jt P(s,,t)dt = ”UC“Z (—250 jt? dt+3 AL+ +2)Q, .(5) jt Pm(t)dt}

e RN RIS
3 3 (48)

Consider
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1

[ 3C,RO (i s, A1) %, (i, et

—1n=1

Let us simplify

1

[Ja-11)s2, (et =[ > d"p M (1) p&, ()it —gm 2

-1 —1n=0,1 3 (49)
This leads to

1 » w

[ 3RO (i 51— 1)5O(icx, Byt = 3 C,,d, 2" g RO (i s,)

-1n=1 n=1 (50)

Now drag is given by

Drag=27zcz\/(ng—I)[IM[ZSOIZ—i%(n+l)(n+2)Qﬂ1(so)tPﬂ,1(t)]dt—ZSECmR“’lm(ia,so)j\/msmm(ia,t)dt]
1 n=1 n=1 1 (5 l)

] A5 R )

Drag= (52)
The equation (29) with n=0 gives
AV =DQ ) + 3 CuR it 5,)d ™ () = (557 =)

-t (53)

Using this, drag simplifies to

20 (5" -1 3 A5 D (5Q1a(5) - Q)

8zc? , , 1
s,”—1

87c?
A

= 3 (54)
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272 (s,? 1) w(so2 ~Dt,, - s\/(l—tz)tg,,]

Drag on the body=

In dimensional form

_ 8rc?uJc
T A
8zc® U
D=
3k A (55)

Numerical work and discussion:

To understand the variation in drag with respect to permeability parameter « and size
of the spheroid s, we resort to numerical work. Since C,’s are zero when n is even,
we suppress the even suffixed C,’s in system (32). We truncate the system to 5 by 5
system and resort to numerical determination of C;, C3, Cs, C;, and Cq. Then using
these values and a consequence of the equation (29) with n=0, we determine A;
numerically. Thus the formula in (54) allows us to estimate the drag on the spheroid
numerically. For numerical evaluation we have taken

a=0.1,0.2,03,04,05,0.6,0.7,0.8,0.9,1 and
50=12,13,14,1516,17,18,2.0

Fig-2 shows the variation of drag for different values of a. From the Fig-2 we
note that as the permeability parameter « is increasing, for a fixed value of s, the
drag is seen to be increasing

Fig-3 shows the variation of drag for different values of the size s,of the
spheroid. As the size of the spheroid increases the drag is seen to be increasing.
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Fig-3:VARIATION OF DRAG WITH RESPECT TO Sy
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