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ABSTRACT 

 

In this paper, we study the Brinkman flow, under Stokesian assumption, past 

an impervious prolate spheroid and obtain the expressions for the velocity and 

pressure fields in terms of Legendre functions, Associated Legendre 

functions, prolate radial and angular spheroidal wave functions. We further 

obtain an expression for the drag experienced by the spheroid and numerically 

study its variation with respect to the flow parameters and display the results 

through graphs. 
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INTRODUCTION 

The study of the isothermal flow of an incompressible viscous fluid about an 

impermeable body immersed there in has been a matter of concern for researches ever 

since Stokes initiated the discussion for the steady motion of a sphere in an 

incompressible viscous fluid [1]. The determination of the flow variables requires the 

solution of the Navier-Stokes equations and the equation of continuity subject to the 

appropriate boundary conditions and the regularity conditions in the flow regime. 

However, this job is not easy as the Navier-Stokes equations are nonlinear. In view of 

this, researches tried to study the related problems by linearizing the equations of 

motion under some simplifying assumptions. For some more details the reader can 

look into [2]. When the body dimension / characteristic flow velocity is suitably small 

or kinematic viscosity is suitably large, there will be negligible effect on the non 

linear terms in the Navier-Stokes equations near the body in comparison with the 
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linear terms. In view of this, in such a case, the non-linear terms in the equations may 

be neglected and this results in a linearized version of the Navier-Stokes equations. 

Sir George Stokes seems to be the first to have proposed this argument [1]. With this 

argument he treated the motion of a sphere in a viscous liquid by omitting the non 

linear terms in the Navier-Stokes equations ever since, any problem of fluid flow 

studied under this assumption with the omission of nonlinear terms in comparison 

with the viscous terms is referred to a Stokes flow problem. 

Payne and Pell in their highly significant paper [2] discussed the Stokes flow 

in a viscous liquid past a class of axially symmetric bodies with a uniform streaming 

at infinity parallel to the axis of symmetry. Several researches have worked the 

problem of Stokes flow past axisymmetric bodies taking the fluid to be a viscous fluid 

or a Non-Newtonian fluid. The problems, in general, are confined to an infinite 

regime of the fluid where in a body like sphere or spheroid or approximate sphere or a 

pair of spheres is immersed. To the extent the authors have surveyed, there seems to 

be no work related to a solid body immersed in a porous medium where there is flow 

past the body with uniform streaming at infinity. 

In this paper we propose to study the flow of a viscous liquid past an 

impervious prolate spheroid immersed in a porous medium. One famous model 

describing such a flow situation is the so called Brinkmann model. For further details 

the reader is referred to the classic book “Convection in porous media” by Nield and 

Bejan [3]. We assume that a prolate spheroid is immersed in a porous medium where 

the viscous flow field is governed by Brinkmann equation and obtain the expression 

for the velocity and pressure fields and the drag experienced by the spheroid. The 

flow field variables are obtained in terms of Legendre functions, Associated Legendre 

functions, prolate radial and angular spheroidal wave functions. We have studied the 

variation in drag numerically and presented the variation through graphs. 

 

 

MATHEMATICAL FORMULATION: 
Consider an infinite expanse of a porous medium around an impervious prolate 

spheroid. Let there be a uniform viscous fluid flow in the porous region past the 

spheroid with velocity U far away from the body, along of the axis of symmetry of the 

spheroid. We assume that the flow is governed by Brinkman equations. Let us choose 

the centre of the spheroid as the origin of an orthogonal Prolate spheroidal coordinate 

system ( , , )   with and 
(e ,e ,e )   as the unit base vectors. Let 1 2 3(h ,h ,h )

 be the 

scale factors of the system. Let the spheroid be given by 0 
. In view of the axial 

symmetry of the flow field, the flow variables will all be independent of the azimuthal 

coordinate φ. 
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Fig-1. Schematic diagram of the flow 

 

 

Let the velocity at any point of the flow be given by 

 

,  ) ,  )( ( eu eq v    
 .    (1) 

 

Ignoring the body force and the dispersion effects, the flow is assumed to be 

governed by the Brinkman equations: 

 

0p curl curl q q
k


   

     (2) 
 

and the usual continuity equation 

 

0q 
        (3) 

 

where   is the coefficient of viscosity, k is the permeability of the porous medium, 

and p( , )   is the fluid pressure. 

Equation (3) allows us to introduce the Stokes stream function ( , )    

through 
 

     (4) 

 

 

Taking curl of (2) and using (4) we get 
 

4 2

3 3

1
0E E

h k h

 
   

     (5) 
 

where 
2E  is the Stokes stream function operator given by 
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2 3 2 1

1 2 1 3 2 3

h h h
E

h h h h h h   

       
                (6) 

 

The equation (5) leads to 

 

4 21
0E E

k
  

     (7) 
 

which can be written as 

 
2

2 2

2
0E E

c




 
  

       (8) 
with  

 
2

2

1

c k




        (9) 

 

In view of the linearity and commutative nature of the operators 
2E and 

2
2

2
E

c

 
 

  solution of (8) can be obtained by superposing the solutions of 
 

2 0E  
        (10) 

 
2

2

2
0E

c




 
  

         (11) 

 

Introduce 
coshs 

 and 
cost 

.    (12) 
 

We note that  

 

2 2

1 2 ( t ),h h c s  
 

2 2

3 ( 1)(1 t )h c s  
 

 

and 

 
2 2

2 2 2

2 2 2 2 2

1
( 1) (1 )

( )
E s t

c s t s t

  
    

       (13) 



Brinkman Flow Past An Impervious Spheroid 1403 

Solution of 
2 0E    

General solution of 
2 0E  

 is given by 
 

2 2 2 ' '

1 1 1 1

0

1
( 1)(1 ) ( ) ( )

2
n n n

n

Uc s t A Q s P t


  



 
    

 


  (14) 
 

in view of the uniform flow far away from the body and regularity of solution on the 

axis of symmetry. Here 
'( )nP t

 and 
' ( )nQ s

 are Legendre functions of first and second 

kind respectively. 

Solution of (11) 

2
2

22
0E

c




 
  

   

The expression of 2
, suitable for our problem is given by 

 

1 1

2 2 (3) (1)

2

1

( 1)(1 ) (i , ) (i , )
n nn

n

Uc s t c R s S t  




   
 (15) 

 

Here 
1

1 (i , )nS t
 and 

(3)

1 (i , )nR s
are Prolate angular and radial spheroidal 

wave functions as in Lakshmana Rao and Iyengar [4] and Abramowitz and Stegun 

[5]. 
The solution   of (8) is given by 

 

1 2   
      (16) 

 

where 1
, 2

 are given in (14) and (15) 

Thus stream function ( , )s t  is given by 
 

2 2 2 2 2 2 ' '

1 1 1

0

1
(s 1)(1 ) (s 1)(1 ) (s) ( )

2
n n n

n

Uc t Uc t A Q P t


  



       
 

 

2 2 2 (3) (1)

1 1

1

(s 1)(1 ) (i , ) (i , )n n n

n

Uc t C R S t  




  
   (17) 

 

Here 
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1

1
1

' '2 2
(3) 2 1 1

33
0,1 0,1 2

2 1
(i , ) i ( 1)(r 2)d ( ) ( 1)(r 2)d ( ) ( )

n

n n n

r r
r

r r

s
R s r i r i K s

r
   




 




 

   
       

  
 

 (18) 
 

1 1

'
(1) 1 (1)

0,1

(i , t) d ( )P ( )
n r r

n

r

S i t 






 
    (19) 

 

as in [3,4]. In equation (17)  nA
and 

 Cn  are infinite sequences of arbitrary 

constants to be determined using the boundary conditions. 
 

Boundary conditions on s=so : 
The boundary of the spheroid is taken to be given by s = s0. Employing the no slip 

condition on the impervious boundary 0s s
 we get 

 

ψ = 0, ψs = 0 on 0s s  
 

Let us non dimensionalize the variables   and p using 
 

 2 *Uc 
 and 

*U
p p

c




    (20) 
 

and later drop ' ' , we get 
 

2 2 2 2 ' '

1 1 1

0

1
( 1)(1 ) ( 1)(1 ) ( ) ( )

2
n n n

n

s t s t A Q s P t


  




      

 
 

1 1

2 2 (3) (1)

1

( 1)(1 ) (i , ) (i , t)
n nn

n

s t C R s S 




   
     (21) 

 
in non dimensional form As on s = s0 , ψ = 0, we get  

 

1 1 1 1

2 2 ' ' 2 2 (3) (1) 2 2

0 1 0 0

0 1

1
( 1)(1 ) ( ) ( ) ( 1)(1 ) (i , ) (i , t) ( 1)(1 )

2n n n nn o n

n n

s t A Q s P t s t C R s S s t 
 

 



 

        
 (22) 

 

Dividing by 
2 2

0( 1)(1 )s t 
, we get 
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1 1

2 ' (1) (3) (1) 2 2

0 1 1 1 0 0

0 1

1
( 1) ( ) ( ) (i , ) (i , t) ( 1)(1 )

2n nn n o n n

n n

s A Q s P t C R s S s t 
 

  

 

     
 (23) 

 

Further 
0s 

 on 0s s
. This gives after dividing by 

2(1 )t  
 

1

(1) (1)

0 1 1 1 0

0

0 s ( ) ( 1)( 2) ( ) ( )
nn n

n

P t A n n Q s P t




 



     
 

 

1 1 1

2 (3) (3) (1) 2

1

( 1) (i , ) (i , ) (i , t) / ( 1)
n n n

s so

n o

n

d
c s R s sR s S s

ds
  







 
   

 


 (24) 
 

(23) And (24) respectively are the consequences of 00, 0s on s s   
 

We further note that 

 
1

(1) (1)

1 1

1

( ) ( )dt 0n mP t P t if m n 



 
 

 
2

( 1)( 2) if
2 3

n n m n
n

   
      (25) 

 
1

(1) (1) 1

1 1

1

2( 1)( 2)
( ) (i , t)dt ( )

2 3

m

n m n

n n
P t S d i

n
 



 



   (26) 

 

Multiplying (24) by 
(1)

1( )np t and integrating with respect to t, from -1 to 1, 

after simplification we get 
 

2 ' (3) 1 2

1 0 1 1 0 0 0

1

1
1 ( ) (i , ) ( ) ( 1)

2

m

n n o m m n n

m

A s Q s C R s d i s  


 



   
 (27) 

 

Multiplying (25) with 
(1)

1( )nP t and integrating with respect to t, from -1 to 1, 

after simplification, we get 
 

2 (3) (3) 1

1 1 0 1 12
1

0

1
( 1)( 2) ( ) ( 1) (i , ) (i , ) ( )

( 1)
o

m

n n m m m n

m s s

d
A n n Q s C s R s sR s d i

dss
  



 

 

 
     

 


0 0ns 
 (28) 
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Determination of arbitrary constants:- 

The equations (27) and (28) can be rewritten as 

 

2 ' (3) 1 2

1 0 1 1 0 0 0

1

1
( 1) ( ) (i , ) ( ) 1

2

m

n n o m m n n

m

A s Q s C R s d i s  


 



   
 (29) 

 

On 00s on s s  
 

 

2 2 (3) (3) 1 2

1 1 0 0 1 1 0 0 0

1

( 1)( 2) ( ) 1 ( 1) (i , ) (i , ) ( ) 1

o

m

n n m m m n n

m s s

d
A n n Q s s C s R s sR s d i s s

ds
   



 

 

 
        

 


 (30) 

 

Multiplying (29) with (n+1) (n+2) 1 0( )nQ s  , multiplying (30) with
'

1 0( )nQ s , 

and subtracting the second result from the first we get 
 

(3) ' 2 (3) (3) 1

1 0 1 0 1 1 1

1

( 1)( 2) ( ) ( , ) ( ) ( 1) (i , ) (i , ) ( )

o

m

m n m n o m m n

m s s

d
C n n Q s R i s Q s s R s sR s d i

ds
   



 

 

  
         


 

 

 =
 2 2 '

0 1 0 0 0 1 0 0( 1) ( ) ( 1) ( ) ns Q s s s Q s   
 

 

= 

02

0

1

( 1)
n

s



       (31) 

 

The system of equations determining { mC
} is now given by 

 
'

0

nm m n

n

C 




 
       (32) 

 

where 

 

0

1 (3) ' 2 (3) (3)

1 0 1 0 1 1 1(i ) ( 1)( 2) ( ) (i , ) ( ) ( 1) (i , ) (i , )m

nm n n m n o m m

s s

d
d n n Q s R s Q s s R s sR s

ds
    



  
              (33)  

 

02

0

1

( 1)
n n

s
 


       (34) 

 

where 0n  is Kronecker delta i.e. 0 1 0n if n  
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0 0 0n if n  
 

 

This is an infinite nonhomogeneous system of linear equations in the 

unknowns {Cn}. It is known from the theory of spheroidal wave functions that the 

coefficients dn
1m

 have to be defined as zero when n+m+1 is a positive odd integer. 

In the system
 
(32), we see that the right hand side vector { n } has only one 

nonvanishing component n corresponding to n=0. Hence the subsystem of (32) 
given by 
 

2 1,2 2

1

0n m m

m

C






 
       (35) 

 
is a homogeneous system and this leads to Cm=0 for even values of m. From (29) we 

conclude that An’s are all zero for even values of n. Thus for the determination of Cn’s 

where n is odd, we get a non homogeneous linear subsystem of (32). The analytical 

determination of Cn’s is not possible and we have to necessarily resort to numerical 

evaluation after suitably truncating the system for specific values of the material 

parameters. Herein we have truncated the system to a 5by 5 system in view of the 

negligible nature of the coefficients Cn. 

 

Pressure distribution: 
The equation (2) is seen to represent the following equations: 

 
2

2

2 2 2 2 2 2 2 2 2 2

( 1) 1 1
( )

( 1) ( 1)

s p
E

s t k tc s t c s t s c s t s

 
 

     
 

      
 (36) 

 
2

2

2 2 2 2 2 2 2 2 2 2

(1 ) 1 1
( )

( 1) (1 )

t p
E

t s k sc s t c s t s c s t t

 
 

    
 

      
 (37) 

 
These are equivalent to 

 

2 2

2 2

1
( 1) ( )

( 1) 1

p
s E

s t k tc s c s

  


  
  

   
  (38) 

 

2 2

2 2

1
(1 ) ( )

(1 ) (1 )

p
t E

t s k sc t c t

  


   
  

   
  (39) 

 

Using the expression of  from (21) and integrating (38) and (39) we get 
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2

1 1 1

1

2st ( 1)( 2) ( ) ( )n n n

n

U
p A n n Q s P t

c

 

  



 
     

 


+ 

an arbitrary constant       (40) 
 

where the arbitrary constant can be absorbed into the hydrostatic pressure. 

 

Drag on the spheroid 
Drag on the spheroid is given by 

 

 
0

1

2 2 2 2

0

1

2 ( 1) ( 1) (1 )

S S

c s t s t s t t dt 
 

 
    

 


  (41) 
 

Here the required components of stress 
t , 

t are given by 
 

2t p e   
 , 

2t e 
     (42) 

 

where 

2 2

3 2 2 2 2 2 2

(2 1 t )1

( 1) ( t ) ( t )( 1)

s t
st

t s s
e

c s s s s


 

  

   
       

 

Using the conditions on the boundary 

0 , 0, 0, 0, 0, 0.s t st tts s          
 we have 

 

0 0 0( ) 0, (t ) ( , )on s s on s se p s t    
 

 

 2 2 2 2
0 0

3 2 2 2 2 3 2 2 2 2
1 2 3

( 1) (1 t ) ( 1) (1 t )

( t ) (1 t ) ( t ) (s 1)

ss tt s t
s s s t

e
h h h c s c s



       
  

   
 (43) 

 

 
0 0

2

1 2 3

2 ( 1)
on s s ss on s s

s
t

h h h



 




 
 

To calculate 0ss on s s 
, we note that 

 
2 2

2 2 2

02 2 2 2 2

1
( 1) (1 t )

c ( )
E s

s t s t

 


  
    

     
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= 

2
2 2 (3) (1)

0 1 0 1 02
1

( 1)(1 ) (i , ) (i , )m m m

n

Uc s t C R s S s
c


 





  
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On 0s s
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Hence 
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Drag on the spheroid = 
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Consider 
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Consider  
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1
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Let us simplify 
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This leads to 
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Now drag is given by 
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The equation (29) with n=0 gives 
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Using this, drag simplifies to 
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Drag on the body=

2 2 2 2

0 02 ( 1) ( 1) (1 )c s t s t s t t      
   

 
In dimensional form 
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D A
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       (55) 
 

 

Numerical work and discussion: 
To understand the variation in drag with respect to permeability parameter  and size 

of the spheroid  we resort to numerical work. Since Cn’s are zero when n is even, 

we suppress the even suffixed Cn’s in system (32). We truncate the system to 5 by 5 

system and resort to numerical determination of C1, C3 , C5 , C7, and C9. Then using 

these values and a consequence of the equation (29) with n=0, we determine A1 

numerically. Thus the formula in (54) allows us to estimate the drag on the spheroid 

numerically. For numerical evaluation we have taken 
 

 and 

 

 
 

Fig-2 shows the variation of drag for different values of . From the Fig-2 we 

note that as the permeability parameter is increasing, for a fixed  the 

drag is seen to be increasing 
Fig-3 shows the variation of drag for different values of the size of the 

spheroid. As the size of the spheroid increases the drag is seen to be increasing. 
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Fig-2: VARIATION OF DRAG WITH RESPECT TO ALPHA 

 
Fig-3:VARIATION OF DRAG WITH RESPECT TO S0 
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