
Global Journal of Pure and Applied Mathematics. 

ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1351-1362 

© Research India Publications 

http://www.ripublication.com 

 

 

 

Direct Permutation Graphs 
 

 

R.SathishKumar 

 

Department of Mathematics 

K L N College of Information Technology Pottapalayam-630 611, 

SivagangaiDistrict,Tamilnadu,India rsk22@yahoo.co.in 

 

V.Dhanasekaran 
 

Department of Mathematics 

K L N College of Information Technology Pottapalayam-630 611, 

SivagangaiDistrict,Tamilnadu,India dhana_akila@yahoo.com 

 

K.T.Nagalakshmi 
 

Department of Mathematics 

K L N College of Information Technology Pottapalayam-630 611, 

SivagangaiDistrict,Tamilnadu,India gloryratna@yahoo.co.in 

 

 

Abstract 

 

Using Permutations of a finite set, a new graph was constructed by Koh and 

Ree (see [1]). In this new paper, a variation of this graph is constructed by the 

author which is called ‘Direct Permutation Graph’. It is explained in this 

paper that these two graphs are indeed different. Also some basic, interesting 

properties are being obtained. 
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Introduction: 
Permutation graphs are well studied in the past decade or so. This study perhaps 

originated from the study of 'perfect graphs' (chromatic numbers and clique numbers 

coincide for the graph and all its induced sub graphs). They have, for example, 

several applications in air traffic control. We have invented a new graph based on 
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similar construction of permutation graphs, which can be termed a "Direct 

Permutation Graph". Some interesting fundamental properties of the direct 

permutation graphs are studied in this paper. 

 

 

2. Permutation graphs 
First, we describe permutation graphs, highlighting some results (without proofs, but 

with references) which have the platform for Direct Permutation Graphs in the next 

section. 

 

2.1 Definition:  

For any positive integer n, we denote by [n] the set {l, 2,..., n}. Let  be a permutation 

of the set [n], which is thus an element of the symmetric group Sn which contains n! 

elements. 

We sometimes write = (1) ( 2) . . . (n) (the image integers are put in an 

ordered sequence even though this is not the best notation) or in terms of the 

(unique) cycle decomposition of  (which is standard). 

The permutation graph G  = (V,E) corresponding to  is defined as follows : 

V = [n] and E = { (i) (j) | if and only if i and j satisfy the conditions i < j => (i) 

> (j) } 

This is equivalent to : ij  E (i - j) (  (i)
-1 

- (j)
-1

) < 0 

But  we prefer to  follow the first  formulation. Clearly G    is  a finite, 

simple, undirected graph. 

Koh and Ree in [1] found some interesting properties of the graph G  .We 

shall recall some of them, without proof, in order to compare similar situations in our 

new graph. 

 

2.2 Proposition 

i)  G  is the null graph if and only if and only if  = identity 

ii)  G  is the complete graph Kn if and only if  = n ( n - 1 ) . . . 2 . 1 . 

 

2.3 An example : 

n = 5 and = 23154. 

 

Then G  is the following graph. 
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2.4 Proposition 

 
 

 

3. Connected permutation graphs G

3.1  Proposition:  

Let Sn such that n comes ahead of 1 in the arrangement 

(l), ( 2 ) , ... , (n). Then G is connected. 

 

3.2  Remark:  

The above condition is not necessary for the connectivity of G

For instance,  = 31524. (It is to be noted that 5 comes after 1) The graph G  

is drawn below which is connected. 

 

 
 

 

3.3Proposition: 

Let = (1)  (2) ...  (n) Sn. Then G is disconnected if and only if there exists i < n 

such that { (l), ( 2 ) , . . . , (i) } = {l,2,...,i} and { (i+l), ( i+2), ... , (n) } = {i+1, 

i+2,...,n}. 

 

 

4. Partitions vis-a-vis G . 

4.1 Definition:  

A partition  of n is a set of position numbers whose sum is n; in notation  n. 
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We usually write  = (  1 ,  2 , . . . ,  r ) with  1   2  . . .   r   = 1
w1   2

w 2 

...n
Wn

where wi is the number of occurrences of part i in  . 

A composition of a number n is an ordered partition of positive numbers 

whose sum is n, denoted by      n. One can easily check that the number of 

partitions and compositions of 4 are respectively 5 and 8. 

Let w   be the number of different compositions by rearrangement of the 

parts i  ’s of a partition  =   (  1 ,  2 , . . . ,   r ) . 

 
 

4.2. Theorem 

 
 

wherecn and dn denote respectively the set of connected G s and disconnected G s as 

 runs through Sn. 

 

 

5. Direct  Permutation Graphs. 
We now introduce our new concept of  Direct  Permutation Graphs. 

 

5.1Definition:  

The direct  permutation graph B  = (V,E) for any permutation  has V = {l,2,...,n} 

and ij  E if and only if  i + j = (i)+ (j). Since the definition depends directly on the 

permutations we call the graph the Direct Permutation graph which should be the 

forerunner to the permutation graph in [1]. we remark that the original definition in 

[1] involves the inverse permutation in some form where as our definition involves 

the permutations directly and hence the name. 

 

5.2. Remark: 

The two graphs G  and B  are distinct in general. 

Take n = 4 for example and  = 2413. 

Then G  and B  are drawn below. 
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5.3.Proposition:  

If n > 2, B is complete if and only if  = identity. 

 

Proof: 

First assume that  = identity. 

Then for any pair of vertices i and j, i+j = (i) + (j). Hence ij is an edge for all 

i j proving B  is complete. 

For the converse, assume B  is complete and let that  identity 

 

Case 1 : 

In the unique cycle decomposition of , assume that there is atleast one cycle 

(i1,i2,...,ir), r  3. Since B  is complete, i1i2 E. Hence i1+ i2 = (i1) + (i2). But 

Since  (i1) = i2 and (i2) = i3, the above gives i1 + i2 = i2 + i3 , forcing i1 = i3, not 

correct since r >2. 

 

Case 2 : 

is  a  disjoint  product  of  transpositions.  Since  disjoint  transpositions commute, 

we can write  = (ij) (ik) ... (rs). 

Clearly 1< j and we can take i < k. Since n > 2, i, j, k are distinct. 

Now 1+i < j + i < j +k =  (l) + (i). 

 

This clearly shows that 1i is not an edge, contrary to the assumption that B is 

complete.

Therefore     must   be  the  identity.  Compare  this  result  with  the 

corresponding one for G . 

Let l( ) denote the length of the smallest cycle in the (unique) cycle 

decomposition of . 

 

5.4 Proposition:  

Let n > 2. Then, if B  is the null graph, l( ) > 2. 

 

Proof: 

Assume that B  has no edges. 
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Suppose l( ) = 1. If there are two or more vertices i and j such that  (i) = i and 

(j) = j, which clearly means i + j = (i) + (j). 

This shows that ij is an edge, violating our assumption that B  is null. Next 

suppose there is a unique vertex i such that (i) = i. 

Let jk be a transposition in . 

Then j + k = k + j = (j) + (k), proving that jk is an edge, again contrary to the 

assumption. 

Thus l( )  2. ifl( )= 2, then  is a distinct product of transpositions, and as 

before, any transposition (jk) will give an edge, contradiction. 

Hence l( ) > 2, proves the result. 

 

5.5 Remark:  

That l( ) > 2 need not imply that B  is null and has been seen already in our example 

given earlier : = 2413 : 1 + 4 = (l) + (4). 

 

 

6. Connectedness properties of B

6.1 Proposition:  

Suppose B  is connected and (i) = i for some i, then B  must be complete. 

 

Proof: 

Let B is connected. First, let (i) = i for exactly one i. Now ij is an edge for some j( i), 

due to connectivity. 

Then i + j = (i) + (j) = i + (j) gives (j) = j, contrary to the assumption. 

Next suppose exactly two vertices are fixed by . 

Then for k i,j , i + k = (i) + (k) = i + (k), forcing (k) = k, contrary to the 

assumption. 

Next if exactly three vertices, say, i, j, k are fixed by , then we get a triangle 

with vertices i, j and k in B , which is clearly a connected component, destroying 

connectivity of B . We continue this procedure until we arrive at (i) = i for every i, 

which means that  is the identity. 

By proposition (5.3), B is complete. 

Before seeing further connectivity properties, let us see the following simple 

examples. 

 

6.2 Some examples. Assume n = 4. 

i)    = (12) (34). B  is the following graph. 
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B is connected 

ii)   = (14)(23), the graph B is drawn below, which is disconnected. 

 

 
 

 

B  is disconnected 

The occurrence of 4 in the transposition is not accidental. We have the 

following powerful result. 

 

6.3Theorem  

Suppose  is a product of m transpositions where m > 2. Then, if (l m) is a part of , 

then B is disconnected. 

 

Proof: 

Let B  be connected. 

Write n = 2m and take (lm) as the first transposition occurring in . 

We can write  = (la1)(2a2)(3a3)...(m+l,am) (taking a1= m). 

Then we get the following edges in B  : 
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Clearly ai  m+2 for all i = 2, 3 ,  . . m . 

Without loss of generality, we can assume that 1 is adjacent to some vertex vj  

m (due to connectivity) we prove that vj cannot be any vertex in the top row. In fact, 

suppose vj = j for some j such that 2 vj  m+1 (vj  m). 

Then 1 +vj  = (1) + (Vj) = m + wj with wj= one of the aj s and is hence  

m+2. 

This is clearly not possible (as 1 < m and vj<w j ) . Hence 1 is adjacent to 

some aj in the bottom row. 

Then by adjacency condition, 1 + aj = m+j                        (1) Also m+1 must 

be adjacent to some other a t , due to connectivity. Hence m +1 + at = am + t                                                               

(2) Already we have the following inequalities: aj> m+1 for all i and am> at 

 

Case 1:  

The bottom row numbers strictly increase from m to am. We then claim that 1 and m 

are not adjacent to any other vertex, that is, the edge lm is isolated, breaking the 

connectivity assumption. 

Let  m = a1< a2< ... <aj< ...< at<.. .< am 

 

This means that the last entry in the top row is m+1 and the last entry, am in the 

bottom row is 2m. 

Hence l+2m = m + m  +  1 = (l) + (2m), meaning that 1 and 2m are 

adjacent. Also by the same argument, m is adjacent to m+1. Hence we get the 

following subgraph in B . 

 

 
 

 

To ensure connectivity, 1 (and hence m) must also be adjacent to some other 

vertex (since m > 2): 

1 to a bottom row vertex m+y and m to the corresponding top row vertex y. But 

since the bottom row vertices steadily increase, 

1 + m + y = (l) + (m + y) = m + y 

whichis absurd. Hence in this case B must be disconnected. The final graph 

B  looks like the following figure 

 



Direct Permutation Graphs 1359 

 

 
 

 

Redrawing, we get B  as 

 

 
 

 

Clearly B  is disconnected with several components, contrary to our 

original assumption that B  is connected. 

 

Case 2 : 

There exist entries a i , aj with bottom row and i, j in the top row such that ai>aj, i < 

j. In this case we get a component in B  of the type 

 

 
 

 

In the case j+ai = aj+i and i+aj = ai+j (in which there cannot be k different 

from i,j such that (k) =ak = ai or aj) otherwise we will simply have disconnected 

edges (i ai) and (j aj) only 

After renumbering (if necessary) we can write B  as 

 

 
 

which is clearly disconnected contradicting the original assumption. Thus we have 
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proved finally that B   must be disconnected. 

As an example we take n = 10 and  = (15)(27)(38)(49)(6 10) Then B  is the 

following graph. 

 

 
 

 

The above is a 'degenerate' case of our argument in case 1, but still B  is 

disconnected. Similar degenerate case with single isolated edges can also occur. 

As another example take n = 8 and  = (14)(27)(36)(58) 

 

 
 

 

B  is another degenerate case, but is disconnected nevertheless. 

 

 

7. Number of connected components of B

We  shall  give  an  algorithm  to  work  out  the  number  of  connected 

components of B , through partitions. 

 

7.1 Definition  

If we write n = n1+n2+...+nr with n1  n2  ...  nr> 0, then we say = (n1. n2, ..., nr) 

is a partition of n and we write this as   n. 

 is the unique disjoint cycle 

decompositions of , then the partition n1+n2+...+nr = n corresponds to .. 

The number of connected components of the graph B  is given by the 

following interesting algorithm. 

Let  denote the standard partition  = (l,2,...,n1)(n1 +l,...,n2)(n2 

+l,..,n3)...(nr-1 +l,…,nr) We simply denote this as  = (n1, n2, ..., nr), ni= n . 

 

7.2. Theorem :  

The number of connected components of B  is exactly equal to the number a+1, where  

a is the number of components arising from the adjacencies of vertices in the top rows 

of in the young diagram of  such that l( i) 2. 
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Proof: 
Let a denote the number of components arising out of these parts. Let the Young 

diagram corresponding to  be as given below. 

 

 
 

 

Suppose k of the top rows have length  2. 

These k rows will account for n1+n2+...+nk vertices. We can draw the edges 

among these vertices according to our rule :ij is an edge if and only if  i + j = (i) + 

(j). 

Then the rows k + 1 ,  . . r have just one vertex in each row. 

Let b denote the number of components arising out of adjacencies between 

these vertices. This just means that whatever k, these isolated vertices will form one 

more connected component, i.e., b = 1. 

Hence  the  total number  of  connected  components  equals  a+1,  which 

proves our theorem. 

 

7.4 Example 

= (123) (45)(67)(8) 

 

 
 

 

The number of components = 2 + 1  =  3 

 

7.5 Remark  

The above arguments open the gateway to character theory of the symmetric group 

Sn. It is well known that the number of (complex) irreducible characters = number 

of conjugacy classes = number of partitions of n. 

The above algorithm therefore would have established a nice connection 
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between the class of irreducible characters of Sn and the class of Direct Permutation 

Graphs corresponding to the standard partition n. But such a neat connection is not so 

easy to obtain as yet, for the simple reason that B   is not invariant  under  

conjugacy in  general.  In  other  words,  , Sn   then  B    and B   1  need not be 

the same. This can be easily seen by the following example 

 
 

 

Conclusion :  

The above difficulty may be circumverted by a ‘trick’ which we found was more 

or less the one used by R.C.Orellana in her recent work on ‘Centralizer     

Algebras     and     Kronecker     Products’     (Conference     on Non-Commutative 

Rings and Representation Theory, Pondicherry, India – 2010) work is in progress. 
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