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Abstract 

 

In this paper, some fixed point theorems of commuting operators defined on a 

complete 2-metric space are established. These theorems are generalizations 

to non-expansive self-map of fixed point theorems that were proved by 

authors like Rhoades, Lal and Singh. 
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Introduction: 

In 1906, Frechet ( )[1],[2]  introduced the notion of metric as an abstract generalization 

of length concept. In 1963, Gahler [3] introduced the notion of 2-metric as an abstract 

generalization of the notion of area function for Euclidean triangles. Many fixed point 

theorems appeared in 2-metric spaces in later years analogous to the fixed point 

theorems in metric spaces proved by various authors like Iseki [4], Lal and Singh [6], 

Rhoades [8] etc. 

In this present work, we establish some fixed point theorems of commuting operators 

that are defined on a 2-metric space. In what follows X and ℝ  stand for a non-empty 

set and the real line respectively. 
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1. Preliminaries 

In this section, we present some basic definitions which are needed for the further 

study of this paper. 

 

1.1 Definition: 

A point x X∈  is said to be a fixed point of a self-map :f X X→  if ( )f x x= . 

 

1.2 Definition: 

Let X  be a non-empty set and :d X X X× × →ℝ . For all , ,x y z  and u  in X , if d  

satisfies the following conditions 

(a) ( ), , 0d x y z =  if at least two of , ,x y z  are equal 

(b) ( ) ( ) ( ), , , , , , ...d x y z d x z y d y z x= = =  

(c) ( ) ( ) ( ) ( ), , , , , , , ,d x y z d x y u d x u z d u y z≤ + +  

 

Then d  is called a 2-metric on X  and the pair ( ),X d  is called a 2-metric space. 

 

1.3 Definition: 

Let ( , )X d  be a 2-metric space. A sequence { }nx  in X  is called a Cauchy sequence, 

if ( , , ) 0
m n

d x x a →  as ,m n → ∞  for all a X∈ . 

 

1.4 Definition: 

Let ( , )X d  be a 2-metric space. A sequence { }nx  is said to converge to a point x  in 

X  if ( )lim , , 0n
n

d x x a
→∞

=  for every a  in X . 

 

1.5 Definition: 

A 2-metric space ( , )X d  is said to be a complete 2-metric space if every Cauchy 

sequence in X converges in X . 

 

1.6 Definition: 

Let ( ),X d  be a 2-metric space. A mapping :T X X→  is called a non-expansive 

mapping if ( )( ), ( ), ( , , )d T x T y a d x y a≤  for every , ,x y a X∈ . 

 

1.7 Definition: 

Two operators 1T  and 2T  defined on a 2-metric space X  into itself are said to 

commute if 1 2 2 1TT T T= . 

 

 

2. Some fixed point theorems for commuting Operators 

This section is devoted to some fixed point theorems of commuting operators in a 
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complete 2-metric space. We establish these fixed point theorems as generalizations 

of some fixed point theorems that are already proved by authors like Rhoades, Lal and 

Singh. 

 

2.1 Theorem[6]: 

Let ( ),X d  be a complete 2-metric space and 1T  and 2T  two self-maps on X  such 

that for all , ,x y a  in X and positive integers ,p q , 

( ) ( ) ( )1 2 1 1 2 2
( ), ( ), , ( ), , ( ),p q p qd T x T y a d x T x a d y T y aα α≤ +  

( ) ( ) ( )3 2 4 1 5
, ( ), , ( ), , ,q pd x T y a d y T x a d x y aα α α+ + + , where 1 2 3 4

, , ,α α α α  and 5
α  are 

non-negative constants such that 

5

1

1
i

i

α
=

<∑  and ( )( )1 2 3 4 0α α α α− − ≥ . Then 1
T  and 2

T  

have a unique common fixed point in X . 

The following theorem 2.2 is an extension and generalization of the above theorem 

2.1 to non-expansive self-map T  which commutes with the self-maps 1
T  and 2

T . 

 

2.2 Theorem: 

Let p  and q  be any two positive integers. Let 1,T T  and 2T  be three operators on a 

complete 2-metric space ( ),X d  into itself. If 

(a) ( )1 2
( ), ( ),p qd T x T y a ≤  1 dα ( )( )1

( ), ( ) ,pT x T T x a + 2 dα ( )( )2
( ), ( ) ,qT y T T y a + 

3 dα ( ), ,x y a  + 4α ( )( )2
( ), ( ) ,qd T x T T y a  + 5 dα ( )( )1

( ), ( ) ,pT y T T x a  

For every , ,x y a X∈ , for each 0
i

α ≥  and 
5

1
1ii

α
=

<∑ , ( )( )1 2 3 4 0α α α α− − ≥  

(b)  ( )( ), ( ), ( , , )d T x T y a d x y a≤  for every , ,x y a X∈ . 

(c)  i i
T T T T=  for 1,2i =  

Then there is a unique common fixed point of 1,T T  and 2T in X . 

Proof: 

Using conditions (b) and (c), we have 

( )1 2
( ), ( ),p qd T x T y a ≤  1 dα ( )( )1

( ), ( ) ,pT x T T x a + 2 dα ( )( )2
( ), ( ) ,qT y T T y a  

+ 3 dα ( ), ,x y a  + 4α ( )( )2
( ), ( ) ,qd T x T T y a  

+ 5 dα ( )( )1
( ), ( ) ,pT y T T x a  

= 1 dα ( )( )1
( ), ( ) ,

p
T x T T x a + 2 dα ( )( )2

( ), ( ) ,
q

T y T T y a  

+ 3 dα ( ), ,x y a + ( )( )4 2
( ), ( ) ,

q
d T x T T y aα  

+ ( )( )5 1
( ), ( ) ,

p
d T y T T x aα  

≤  ( ) ( )1 1 2 2
, ( ), , ( ),p qd x T x a d y T y aα α+ + 3 dα ( ), ,x y a  
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( )4 2
, ( ),qd x T y aα+ ( )5 1

, ( ),pd y T x aα+  

Then by theorem-2.1, there exist a point 0x  in X , which is a unique common fixed 

point of 1T  and 2T . 

Now we prove that 
0

x  is a unique common fixed point of T ,
1

T  and 
2

T . 

We have ( )( )0 0, ,d x T x a  = ( )( )1 0 2 0
( ), ( ) ,

p q
d T x T T x a  

= ( ) ( )( )1 0 2 0
, ( ) ,p qd T x T T x a  

≤  ( ) ( )( )1 0 1 0
, ( ) ,pd T x T T x aα + ( )( )2 2

2 0 2 0
( ), ( ) ,

q
d T x T T x aα  

+ 3α ( )( )0 0, ,d x T x a + ( ) ( )( )2

4 0 2 0
, ( ) ,

q
d T x T T x aα + 

( )( )2

5 0 1 0
( ), ( ) ,pd T x T T x aα  

= ( ) ( )( )1 0 0, ,d T x T x aα  + ( ) ( )( )2 2

2 0 0
, ,d T x T x aα + 

( )( )3 0 0, ,d x T x aα  + ( )( )2

4 0 0
, ( ),d T x T x aα  + 

( )( )2

5 0 0
( ), ,d T x T x aα  

= ( )( )3 0 0, ,d x T x aα  + ( ) ( )( )2

4 0 0
, ,d T x T x aα + 

( )( )2

5 0 0
( ), ,d T x T x aα  

= ( )( )3 0 0, ,d x T x aα ( )2

4 5 0 0
( ) ( ), ( ),d T x T x aα α+ +  

≤ ( )( )3 0 0, ,d x T x aα ( )4 5 0 0( ) ( ), ,d T x x aα α+ +  

( ) ( )3 4 5 0 0, ( ),d x T x aα α α= + +  

( ) ( )3 4 5 0 01 , ( ), 0d x T x aα α α⇒ − − − ≤  for every a  in X  

( )0 0, ( ), 0d x T x a⇒ =  for every a  in X  

0 0
( )x T x⇒ = . 

Hence 
0

x  is a common fixed point of 
1

,T T  and 
2

T . 

Let 
0

y  be another common fixed point of 
1

,T T  and 
2

T  in X . 

Then ( ) ( )0 0 1 0 2 0
, , ( ), ( ),p qd x y a d T x T y a= . 

≤ ( )( ) ( )( )1 0 1 0 2 0 2 0
( ), ( ) , ( ), ( ) ,p qd T x T T x a d T y T T y aα α+  

( ) ( )( )3 0 0 4 0 2 0
, , ( ), ( ) ,qd x y a d T x T T y aα α+ +  

( )( )5 0 1 0
( ), ( ) ,pd T y T T x aα+  

( ) ( )3 4 5 0 0, ,d x y aα α α= + +  

( ) ( )3 4 5 0 01 , ,d x y aα α α⇒ − − − 0≤  

( )0 0, , 0d x y a⇒ =  for every a  in X  

0 0
x y⇒ = . 
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Thus 
0

x  is a unique common fixed point for 
1

,T T  and 
2

T . 

Hence 
1

,T T  and 
2

T  have a unique common fixed point in X . 

The second condition means T  is non-expansive. This by itself would not ensure a 

fixed point for T . 

 

2.3 Theorem[8]&[9]: 

Let ( ),X d be complete 2-metric space. Let p and qbe any two positive integers and 

0 1h< < . If 
1

T  and 
2

T  are any two self-maps on X such that 

( )1 2
( ) ( ), maxp qd T x T y a h≤  

 

( ) ( ) ( ) ( ) ( )( )1 2 2 1

1
, , , , ( ), , , ( ), , , ( ), , ( ),

2

p q q pd x y a d x T x a d y T y a d x T y a d y T x a
 

+ 
 

 

 

for every , ,x y a X∈ then there exists a unique common fixed point for 
1

T  and 
2

T  in 

X . 

The following theorem 2.4 is an extension and generalization of the above theorem 

2.3 to non-expansive self-map T  which commutes with the self-maps 1
T  and 2

T . 

 

2.4 Theorem: 

Let p and qbe any two positive integers and 0 1h< < . Let 1,T T  and 2T  be three 

operators on a complete 2-metric space ( ),X d into itself. If 

(a) ( )1 2
( ), ( ),p qd T x T y a ≤ maxh ( )( ) ( )( ){ 1 2

( ), ( ) , , ( ), ( ) ,
p q

d T x T T x a d T y T T y a , 

( )( ), ( ),d T x T y a , ( )( )(1
2 1

( ), ( ) ,
p

d T y T T x a + 

( )( ))}2( ), ( ) ,qd T x T T y a for every , ,x y a X∈  

(b) ( )( ), ( ),d T x T y a ≤  ( ), ,d x y a  for every , ,x y a X∈  

( ) 1, 2
i i

c TT TT and i= =  

Then there is a unique common fixed point for 1
,T T  and 

2
T  in X . 

Proof: 

Using conditions (b) and (c), we have 

( )1 2
( ), ( ),p qd T x T y a ≤ maxh ( )( ) ( )( ){ 1 2

( ), ( ) , , ( ), ( ) ,
p q

d T x T T x a d T y T T y a , 

( )( ), ( ),d T x T y a , ( )( )(1
2 1

( ), ( ) ,
p

d T y T T x a + 

( )( ))}2( ), ( ) ,qd T x T T y a for every , ,x y a X∈  

= maxh ( )( ) ( )( ){ 1 2( ), ( ) , , ( ), ( ) ,p qd T x T T x a d T y T T y a  
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( )( ), ( ),d T x T y a , ( )( )(1
2 1( ), ( ) ,pd T y T T x a + 

( )( ))}2
( ), ( ) ,qd T x T T y a  

≤ maxh ( ) ( ){ 1 2
( ), ( ), , ( ), ( ),

p q
d T x T x a d T y T y a , 

( )( ), ( ),d T x T y a , ( )(1
2 1

( ), ( ),
p

d T y T x a + ( ))}2( ), ( ),qd T x T y a  

Then by theorem-2.3, there exists a point 
0

x X∈  which is a unique common fixed 

point for 1T  and 2T . 

Now we prove that 
0

x  is a unique common fixed point of T ,
1

T  and 
2

T . Now we have 

( ) ( )( )0 0 1 0 2 0
, ( ), ( ), ( ) ,

p q
d x T x a d T x T T x a=  

( )( )1 0 2 0
( ), ( ) ,p qd T x T T x a=  

maxh≤ ( )( ){ 0 1 0
( ), ( ) , ,

p
d T x T T x a ( )( )2 2

0 2 0
( ), ( ) ,

q
d T x T T x a , 

( )2

0 0
( ), ( ), ,d T x T x a ( )( )( 21

2 0 1 0
( ), ( ) ,

p
d T x T T x a  + 

( )( ))}2

0 2 0
( ), ( ) ,qd T x T T x a  

= maxh ( )( ){ 0 1 0( ), ( ) , ,pd T x T T x a ( )( )2 2

0 2 0
( ), ( ) ,

q
d T x T T x a , 

( )2

0 0
( ), ( ), ,d T x T x a ( )( )( 21

2 0 1 0( ), ( ) ,pd T x T T x a + 

( )( ))}2

0 2 0
( ), ( ) ,qd T x T T x a  

= maxh ( ){ 0 0( ), ( ), ,d T x T x a ( )2 2

0 0
( ), ( ),d T x T x a , 

( )2

0 0
( ), ( ), ,d T x T x a ( )( 21

2 0 0
( ), ( ),d T x T x a + 

( ))}2

0 0( ), ( ),d T x T x a  

= ( )2

0 0
( ), ( ),h d T x T x a  

( )0 0, ( ),h d x T x a≤  

( ) ( )0 01 , ( ), 0h d x T x a⇒ − ≤  

( )0 0, ( ), 0d x T x a⇒ =  for every a in X  
0 0

( )T x x⇒ =  

Hence 
0

x  is a common fixed of 1,T T  and 2T . 

Let 
0

y  be another common fixed point of 
1

,T T  and 
2

T  in X . 

Then we have 

( )0 0, ,d x y a = ( )1 0 2 0
( ), ( ),p qd T x T y a  

≤ maxh ( )( ) ( )( ){ 0 1 0 0 2 0
( ), ( ) , , ( ), ( ) ,

p q
d T x T T x a d T y T T y a , 
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( )0 0( ), ( ),d T x T y a , ( )( )(1
2 0 1 0

( ), ( ) ,
p

d T y T T x a + 

( )( ))}0 2 0( ), ( ) ,qd T x T T y a  

= maxh ( ) ( ){ 0 0 0 0, , , , ,d x x a d y y a , ( )0 0, ,d x y a , ( )(1
2 0 0, ,d y x a + 

( )}0 0, ,d x y a  

= ( )0 0, ,h d x y a  

( )0 0, , 0d x y a⇒ =  for every a in X  
0 0

x y⇒ =  

Thus 
0

x  is a unique common fixed of 1,T T  and 2T  in X . 

 

2.5 Remark: 

If we define :T X X→ by ( )T x x=  for every x  in X , then T  has infinitely many 

fixed points in X . But according to theorems 2.2 and 2.4, the self maps 1,T T  and 2T  

on X  have a unique common fixed point in X together. 

 

2.6 Theorem: 

Let ( ),X d  be a complete 2-metric space and let 
1 2 3
, ,T T T  and 

4
T  be four self-maps 

from X  into itself satisfying the following conditions. 

(a) ( )
2

1 2 3 4
( ), ( ),d T T x T T y a    ( )

2

1
, ,d x y aα≤     

+ ( ) ( )2 1 2 3 4
, ( ), , ( ),d x TT x a d y T T y aα     

+ ( ) ( )3 1 2 3 4
, ( ), , ( ),d x TT x a d x T T y aα     

+ ( )
2

4 1 2
, ( ),d x T T x aα     

+ ( ) ( )5 3 4 3 4
, ( ), , ( ),d y T T y a d x T T y aα     

+ ( )
2

6 3 4
, ( ),d y T T y aα     

+ ( ) ( )7 3 4 1 2
, ( ), , ( ),d x T T y a d y TT x aα     

+ ( ) ( )8 1 2
, , , ( ),d x y a d x TT x aα     

+ ( ) ( )9 3 4
, , , ( ),d x y a d y T T y aα     

+ ( ) ( )10 3 4
, , , ( ),d x y a d x T T y aα     

 

for every , ,x y a  in X  and 0
i

α ≥ . 

(b) 
10

1

1
i

i

α
=

<∑  

(c) 1 2 2 1TT T T=  and 3 4 4 3T T T T= . 

 

Then 
1 2 3
, ,T T T  and 

4
T  have a unique common fixed point in X . 
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Proof: 

Let 0x  be an arbitrary point in X . 

We define 
2 1 1 2 2

( ), 0,1, 2...
n n

x TT x n
+

= =  and 
2 3 4 2 1

( ), 1,2...
n n

x T T x n
−

= =  

Then we have 

( )
2

2 1 2
, ,

n n
d x x a

+
   = ( )

2

1 2 2 3 4 2 1
( ), ( ),

n n
d TT x T T x a

−
    

1α≤ ( )
2

2 2 1
, ,

n n
d x x a

−
    

+ ( ) ( )2 2 1 2 2 2 1 3 4 2 1
, ( ), , ( ),

n n n n
d x TT x a d x T T x aα

− −
    

+ ( ) ( )3 2 1 2 2 2 3 4 2 1
, ( ), , ( ),

n n n n
d x TT x a d x T T x aα

−
    

+ ( )
2

4 2 1 2 2
, ( ),

n n
d x TT x aα     

+ ( ) ( )5 2 1 3 4 2 1 2 3 4 2 1
, ( ), , ( ),

n n n n
d x T T x a d x T T x aα

− − −
    

+ ( )
2

6 2 1 3 4 2 1
, ( ),

n n
d x T T x aα

− −
    

+ ( ) ( )7 2 3 4 2 1 2 1 1 2 2
, ( ), , ( ),

n n n n
d x T T x a d x TT x aα

− −
    

+ ( ) ( )8 2 2 1 2 1 2 2
, , , ( ),

n n n n
d x x a d x TT x aα

−
    

+ ( ) ( )9 2 2 1 2 1 3 4 2 1
, , , ( ),

n n n n
d x x a d x T T x aα

− − −
    

+ ( ) ( )10 2 2 1 2 3 4 2 1
, , , ( ),

n n n n
d x x a d x T T x aα

− −
    

= ( )
2

1 2 2 1
, ,

n n
d x x aα

−
    

+ ( ) ( )2 2 2 1 2 1 2
, , , ,

n n n n
d x x a d x x aα

+ −
    

+ ( ) ( )3 2 2 1 2 2
, , , ,

n n n n
d x x a d x x aα

+
    

+ ( )
2

4 2 2 1
, ,

n n
d x x aα

+
    

+ ( ) ( )5 2 1 2 2 2
, , , ,

n n n n
d x x a d x x aα

−
    

+ ( )
2

6 2 1 2
, ,

n n
d x x aα

−
    

+ ( ) ( )7 2 2 2 1 2 1
, , , ,

n n n n
d x x a d x x aα

− +
    

+ ( ) ( )8 2 2 1 2 2 1
, , , ,

n n n n
d x x a d x x aα

− +
    

+ ( ) ( )9 2 2 1 2 1 2
, , , ,

n n n n
d x x a d x x aα

− −
    

+ ( ) ( )10 2 2 1 2 2
, , , ,

n n n n
d x x a d x x aα

−
    

= ( )
2

1 2 2 1
, ,

n n
d x x aα

−
    

+ ( ) ( )2 2 2 1 2 1 2
, , , ,

n n n n
d x x a d x x aα

+ −
    

+ ( )
2

4 2 2 1
, ,

n n
d x x aα

+
    
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+ ( )
2

6 2 1 2
, ,

n n
d x x aα

−
    

+ ( ) ( )8 2 2 1 2 2 1
, , , ,

n n n n
d x x a d x x aα

− +
    

+ ( )
2

9 2 2 1
, ,

n n
d x x aα

−
    

( ) ( ) ( ) ( ){ }
2 2 2

2
1 6 9 2 2 1 2 2 1 2 1 2, , , , , ,

2
n n n n n nd x x a d x x a d x x a

α
α α α

− + −
≤ + + + +            

+ ( )
2

4 2 2 1
, ,

n n
d x x aα

+
    

+ ( ) ( ){ }
2 2

8
2 2 1 2 2 1, , , ,

2
n n n nd x x a d x x a

α
− +

+        

( )
2

82
1 6 9 2 2 1

, ,
2 2

n n
d x x a

αα
α α α

−

 
= + + + +     
 

 

+ ( )
2

82
4 2 2 1

, ,
2 2

n n
d x x a

αα
α

+

 
+ +     

 
 

( ) ( )
2 2

8 82 2
4 2 2 1 1 6 9 2 2 11 , , , ,

2 2 2 2
n n n nd x x a d x x a

α αα α
α α α α

+ −

    
⇒ − + + ≤ + + + +          

    
 

( )
( )

2
82

1 6 9 2 2 1
2

2 2 1

82
4

, ,
2 2

, ,

1
2 2

n n

n n

d x x a

d x x a

αα
α α α

αα
α

−

+

 
+ + + +     

 ⇒ ≤     
− + +  
  

 

( ) ( )
2 22

2 1 2 2 2 1
, , , ,

n n n n
d x x a k d x x a

+ −
⇒ ≤        

 

Where 

82
1 6 9

2

82
4

2 2

1
2 2

k

αα
α α α

αα
α

 
+ + + + 

 
=

  
− + +  
    

( ) ( )2 1 2 2 2 1, , , ,
n n n n

d x x a k d x x a
+ −

⇒ ≤

 
Similarly, ( )2 2 1, ,

n n
d x x a

−  k≤  ( )2 1 2 2, ,
n n

d x x a
− −  

Then we get 
( ) ( )2

2 1 2 2 1 2 2, , , ,
n n n n

d x x a k d x x a
+ − −

≤
 

Continuing in this process, we get 
( ) ( )2

2 1 2 1 0, , , ,
n

n n
d x x a k d x x a

+
≤

 
(1)→  

Since 

8 82 2
1 6 9 1 3 6 7 9 10

2

8 82 2
4 4

2 2 2 2
1

1 1
2 2 2 2

k

α αα α
α α α α α α α α α

α αα α
α α

   
+ + + + + + + + + + +   

   
= ≤ <

      
− + + − + +      
      

 

We have 
2 0nk →

 as 
n → ∞
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Hence from (1), it follows that { }n
x is a Cauchy Sequence in X . Since X  is a 

complete 2-metric space, there exists z X∈  such that lim n
n

x z
→∞

= . 

Now we prove that z  is a common fixed point of 
1 2

TT and 
3 4

T T . 

Now 

( ) ( )
2 2

1 2 2 1 2 3 4 2 1
( ), , ( ), ( ),

n n
d TT z x a d TT z T T x a

−
=        

( )
2

1 2 1
, ( ),

n
d z x aα

−
≤     

+ ( ) ( )2 1 2 2 1 3 4 2 1
, ( ), , ( ),

n n
d z TT z a d x T T x aα

− −
    

+ ( ) ( )3 1 2 3 4 2 1
, ( ), , ( ),

n
d z TT z a d z T T x aα

−
    

+ ( )
2

4 1 2
, ( ),d z TT z aα     

+ ( ) ( )5 2 1 3 4 2 1 3 4 2 1
, ( ), , ( ),

n n n
d x T T x a d z T T x aα

− − −
    

+ ( )
2

6 2 1 3 4 2 1
, ( ),

n n
d x T T x aα

− −
    

+ ( ) ( )7 3 4 2 1 2 1 1 2
, ( ), , ( ),

n n
d z T T x a d x TT z aα

− −
    

+ ( ) ( )8 2 1 1 2
, , , ( ),

n
d z x a d z TT z aα

−
    

+ ( ) ( )9 2 1 3 4 2 1
, , , ( ),

n n
d z x a d z T T x aα

− −
    

+ ( ) ( )10 2 1 3 4 2 1
, , , ( ),

n n
d z x a d z T T x aα

− −
    

( ) ( ) ( )
2

1 2 1 2 1 2 2 1 2
, , , ( ), , ,

n n n
d z x a d z TT z a d x x aα α

− −
= +        

+ ( ) ( )3 1 2 2
, ( ), , ,

n
d z TT z a d z x aα     

+ ( )
2

4 1 2
, ( ),d z TT z aα     

+ ( ) ( )5 2 1 2 2
, , , ,

n n n
d x x a d z x aα

−
    

+ ( )
2

6 2 1 2
, ,

n n
d x x aα

−
    

+ ( ) ( )7 2 2 1 1 2
, , , ( ),

n n
d z x a d x TT z aα

−
    

+ ( ) ( )8 2 1 1 2
, , , ( ),

n
d z x a d z TT z aα

−
    

+ ( ) ( )9 2 1 2 1 2
, , , ,

n n n
d z x a d x x aα

− −
    

+ ( ) ( )10 2 1 2
, , , ,

n n
d z x a d z x aα

−
    

Letting n → ∞ , we get ( ) ( )
2 2

1 2 4 1 2
, , , ,d T T z z a d TT z z aα≤        

( )
2

1 2
, , 0d TT z z a⇒ =    for every a in X  

1 2
T T z z⇒ =  Similarly 

3 4
T T z z⇒ = . 

Hence z  is a common fixed point of 
1 2

TT and 
3 4

T T . 

Now we prove that z  is a fixed point of 
1

T . 

We have 
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( ) ( )( )
22

1 1 1 2 3 4, , ( ) , ( ),d T z z a d T T T z T T z a =      

= ( )( )
2

1 2 1 3 4( ) , ( ),d T T T z T T z a    

= ( )( )
2

1 2 1 3 4( ) , ( ),d T T T z T T z a    

1α≤ ( )
2

1
( ), ,d T z z a   + ( )( ) ( )2 1 1 2 1 3 4

( ), ( ) , , ( ),d T z TT T z a d z T T z aα     

+ ( )( ) ( )3 1 1 2 1 1 3 4
( ), ( ) , ( ), ( ),d T z TT T z a d T z T T z aα     

+ ( )( )
2

4 1 1 2 1( ), ( ) ,d T z T T T z aα     

+ ( ) ( )5 3 4 1 3 4
, ( ), ( ), ( ),d z T T z a d T z T T z aα     

+ ( )
2

6 3 4
, ( ),d z T T z aα     

+ ( ) ( )( )7 1 3 4 1 2 1
( ), ( ), , ( ) ,d T z T T z a d z TT T z aα     

+ ( ) ( )( )8 1 1 1 2 1
( ), , ( ), ( ) ,d T z z a d T z TT T z aα     

+ ( ) ( )9 1 3 4
( ), , , ( ),d T z z a d z T T z aα     

+ ( ) ( )10 1 1 3 4
( ), , ( ), ( ),d T z z a d T z T T z aα     

( )
2

1 1
( ), ,d T z z aα=    ( ) ( )2 1 1

( ), ( ), , ,d T z T z a d z z aα+     

+ ( ) ( )3 1 1 1
( ), ( ), ( ), ,d T z T z a d T z z aα     

+ ( )
2

4 1 1
( ), ( ),d T z T z aα     

+ ( ) ( )5 1
, , ( ), ,d z z a d T z z aα     

+ ( )
2

6
, ,d z z aα     

+ ( ) ( )7 1 1
( ), , , ( ),d T z z a d z T z aα     

+ ( ) ( )8 1 1 1
( ), , ( ), ( ),d T z z a d T z T z aα     

+ ( ) ( )9 1
( ), , , ,d T z z a d z z aα     

+ ( ) ( )10 1 1
( ), , ( ), ,d T z z a d T z z aα     

( ) ( )
2

1 7 10 1
( ), ,d T z z aα α α= + +     

( ) ( )
2

1 7 10 1
1 ( ), , 0d T z z aα α α⇒ − − − ≤    for every a  in X . 

( )
2

1
( ), , 0d T z z a⇒ =    for every a  in X . 

1
( )T z z⇒ =  

Hence z  is a fixed point of 
1

T . 

Now ( ) ( )1 2 2 1 2 1 2( ) ( ) ( ) ( )z TT z T T z T T z T z= = = =  

Hence z  is a common fixed point of 
1

T  and 
2

T . 
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Similarly z  is a common fixed point of 
3

T  and 
4

T . 

Let w  be another common fixed point of 
1 2

TT  and 
3 4

T T . 

Now it follows that 
3 4 4 3

( ) ( )T T w T T w w= = . 

Now ( ) ( )
2 2

1 2 3 4
, , ( ), ( ),d z w a d TT z T T w a=       ( ) ( )

2

1 7 10
, ,d z w aα α α≤ + +     

( ) ( )
2

1 7 10
1 , , 0d z w aα α α⇒ − − − ≤    

( ), , 0d z w a⇒ =  for every a in X  z w⇒ =  

Hence z  is a unique common fixed point of 
1 2 3
, ,T T T  and 

4
T . 
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