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Abstract
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to non-expansive self-map of fixed point theorems that were proved by
authors like Rhoades, Lal and Singh.

AMS Subject Classification: 37C25, 47H10, 54H25, 54E50

Key Words: Fixed point, 2-metric space, Complete 2-metric space, Self-map,
Non-Expansive map.

Introduction:
In 1906, Frechet ([1],[2]) introduced the notion of metric as an abstract generalization

of length concept. In 1963, Gahler [3] introduced the notion of 2-metric as an abstract
generalization of the notion of area function for Euclidean triangles. Many fixed point
theorems appeared in 2-metric spaces in later years analogous to the fixed point
theorems in metric spaces proved by various authors like Iseki [4], Lal and Singh [6],
Rhoades [8] etc.

In this present work, we establish some fixed point theorems of commuting operators
that are defined on a 2-metric space. In what follows X and R stand for a non-empty
set and the real line respectively.
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1. Preliminaries
In this section, we present some basic definitions which are needed for the further
study of this paper.

1.1 Definition:
A point xe X is said to be a fixed point of a self-map [ : X — X if f(x)=x.

1.2 Definition:
Let X be a non-empty set and d: X XX XX —R. For all x,y,z and u in X, if d

satisfies the following conditions

(a) d (x, y, z) =0 if at least two of x, y, z are equal
(b) d(x,y,z)=d(x,z,y)=d(y,z,x)=...

©  d(xy.z)<d(xyu)+d(xu,z)+d(uy,z)

Then d is called a 2-metric on X and the pair (X,d) is called a 2-metric space.

1.3 Definition:
Let (X,d) be a 2-metric space. A sequence {x,} in X is called a Cauchy sequence,

if d(x

m?

x,,a)—0 as m,n — o forall ae X .

1.4  Definition:
Let (X,d) be a 2-metric space. A sequence {x,} is said to converge to a point x in

X if limd(x,,x,a)=0 forevery ain X .

n—oo

1.5  Definition:
A 2-metric space (X,d) is said to be a complete 2-metric space if every Cauchy

sequence in X convergesin X .

1.6  Definition:
Let (X,d) be a 2-metric space. A mapping T:X — X is called a non-expansive

mapping if d (T(x),T(y),a)<d(x,y,a) forevery x,y,ae X .

1.7  Definition:
Two operators 7, and 7, defined on a 2-metric space X into itself are said to

commute if T.T, =TT, .

2. Some fixed point theorems for commuting Operators
This section is devoted to some fixed point theorems of commuting operators in a
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complete 2-metric space. We establish these fixed point theorems as generalizations
of some fixed point theorems that are already proved by authors like Rhoades, Lal and
Singh.

2.1 Theorem|6]:
Let (X.d) be a complete 2-metric space and 7; and T> two self-maps on X such

that for all X,y.a in X and positive integers P-4,
d (T, (x).T (y).a) S apd (%, T (x),a) + ot,d (3. T{ (). a)

+a'3d(X,T2q(y),a)+054d(yaTlp(x),a)‘i‘a'sd(X,y,a), where a17a2’a3’a4 and as are

5
non-negative constants such that Y& <1 and (&% —@,)(®% —,)>0_ Then T, and T,
i=1

have a unique common fixed point in X .
The following theorem 2.2 is an extension and generalization of the above theorem

2.1 to non-expansive self-map 7' which commutes with the self-maps 7, and 7, .

2.2 Theorem:
Let P and ¢ be any two positive integers. Let -7, and 7, be three operators on a

complete 2-metric space (X .d ) into itself. If

@ A’ @.1(a) < e d (T0).T7 (T().a)+& d (T().T(T(y).a) +
o d(x,y.a) + &, d(T(x),T,(T().a) +0d (T(y).T,"(T(x)).a)

For every x,y,ae X , foreach &, 20 and z;ai <1, (g-a,)(,—,) 20

(b) d (T(x),T(y),a) <d(x,y,a) forevery x,y,ac X .

(c) TT =TT fori=1,2

Then there is a unique common fixed point of 7, 7] and 7,in X .

Proof:
Using conditions (b) and (c), we have

d(T7 (0.1, (y).a) < 0y d (T, T (T(x)),a) +, d (T(), T, (T()),a)
+a,d(x.y.a) + & d(T(x).T,°(T(y)).a)

+ 0 d (T().T7 (T(x)).a)

=0, d (T().T (T (0)).a)+ & d (T().T(L(1)).a)

v d (x.y.a) 40, d(T(x).T(T,(1)).a)

+ & d(T(y.T(1(v)).a)

< ad (x, T, (x),a) + 2,d (. T (y).a) + & d (x,y.a)
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+a,d (x,Tzq(y),a) +a.d (y,Tlp(x),a)
Then by theorem-2.1, there exist a point X, in X , which is a unique common fixed
point of 7, and T, .

Now we prove that x, is a unique common fixed point of 7,7, and T, .
We have d(xO,T(xo),a) = d(Tl”(xO),T(TZ”(xO)),a)
=d(17 (%), 1 (T(xy)).a)

< ad (T (x,). 17 (T(x,).a) +@d (T (x,). T, (T*(x,)) .a)
+ & d(x,.T(x,).a) +2,d (T (x,).T,0 (T*(x)).a) +

ad (T (x).T;" (T(x,)).a)

= d(T(xO),T(xo),a) + a, d(T2 (x,).T? (xo),a)+

a, d(x,.T(x,).a) + a,d(T(x,).T°(x,).a) +

as d(T%(x).T(x,).a)

= a, d(xO,T(xo),a) +Q, d(T()cO),T2 (xo),a)+

o, d(Tz(xO),T(xO),a)

=a, d(xO,T(xo),a) +a, + o) d(Tz(xo),T(xo),a)

<a, d(xO,T(xo),a) +a, +o5)d(T(x,), xy,a)
=(a+a,+a,)d(x,,T(x,),a)
=(1-a—a,-a5)d(x,,T(x,),a) <0 for everya in X
:>d(xO,T(x0),a):O for everya in X

=x,=T(x,).

Hence x, is a common fixed point of 7,7, and T, .

Let y, be another common fixed point of 7,7, and 7, in X .
Then d (x,, y,.a) =d (T," (x,). T (y,).a).

<ad (T(x). T, (T(x,)).a)+2d (T (). T, (T (3,)).a)
+a’3d(xo,yo,a)+0{4d(T(x0),Tzq (T(yo)),a)

+05d (T(3,), T (T(xy)) @)

=(a,+a,+a,)d(x,,y,.a)

=>(l-a—a,—a,)d(x,, y,,a) <0

:>d(x0,yo,a) =0 foreverya in X

= Xy = Yo -
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Thus x, is a unique common fixed point for 7,7, and 7,.
Hence 7,7, and 7, have a unique common fixed pointin X .

The second condition means 7T is non-expansive. This by itself would not ensure a
fixed point for T .

2.3 Theorem|[8]&[9]:
Let (X ,d) be complete 2-metric space. Let p and gbe any two positive integers and

O<h<l. If T, and 7T, are any two self-maps on X such that
d (T, ()T, (y),a) < hmax

{d(x,y,a),d(x,Tl”<x>,a),d(y,T;’<y>,a), (d(x,Tf<y>,a)+d(y,Tf<x>,a))}

N | =

for every x,y,ae X then there exists a unique common fixed point for 7, and 7, in

X .
The following theorem 2.4 is an extension and generalization of the above theorem

2.3 to non-expansive self-map 7' which commutes with the self-maps 7, and 7, .

24 Theorem:
Let pand gbe any two positive integers and O0<h<1. Let 7,7, and 7, be three

operators on a complete 2-metric space (X,d)into itself. If

@  d(T7@).10(y).a) Shmax { d(T).17 (T(x)).a).d(T().T (T().a),
d(T(x).T(y).a), /(d(T().T7 (T(x).a)+

d(T(0), T (T()).a))} for every x.y.a€ X

(b) d(T(x),T(y),a) < d(x,y,a) forevery x,y,ae X

(¢) TT, =TT and i=1,2

Then there is a unique common fixed point for 7,7, and 7, in X .
Proof:
Using conditions (b) and (c), we have

d(17 (0.1, (y).a) h max { d (TC0.TY (T().a). d (TO). T (T(3)). a)
d(T().T(y).a) J(d(T().T7 (T(0)).a)+
d (T(x), I (T()’))’a))} for every X,y,a€ X

=hmax { d(T).T(T(0),a),d(T().T (T (1).a)

1323
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d(TC.T(y)a) 4(d(T().T (T (). a)+

d(T0).7(1(7)a))}

<hmax { d(T(x),T7 (x),a),d(T(3), 1,7 (y),a),

d(T(0).T(y),a), 4(d(T).T (x).a) +d (T, T (v).a))}

Then by theorem-2.3, there exists a point x,€ X which is a unique common fixed

point for 7} and T, .

Now we prove that x, is a unique common fixed point of 7,7, and T, . Now we have
d(x,,T(x)).a)=d (T} (x,).T (T} (x,)).a)

=d (T (%), T (T (%)) a)

<hmax {d (T(x,). T (T(x)).a). d(T* (x).T¢ (T*(x))..a),
d(T(x). T (x,)a), (d (T (). (T(xy)).a) +

d(T )T (T2(x). a)

=hmax {d (TCo).T (17 (). a), d (17 (). 7 (T (). a),
d(T(xq).T2(x,).a), A(d (T2 ). T (17 (). a) +

d(T )T (T2 (). a)

=hmax {d (T(x)).T(x,).a), d (T*(x,).T*(x,).a),
d(T(x).T?(x,).a). J5(d(T°(x,).T(x,).a) +
d(T(x).T*(x,).a))]

=hd(T(x).T*(x,).a)

<hd(x,,T(x,).a)

= (1-h)d(x,,T(x,),a) <0

= d(x,.T(x,).a)=0 forevery ain X = T(x,)=x,

Hence x, is a common fixed of 7,7} and T, .

Let y, be another common fixed point of 7,7, and 7, in X .
Then we have

d (%, yo:@)= d (T" (x,), T (), )
<hmax { d(T(x,).1;" (T(x,)).a).d(T(3).T, (T(3,)).a),
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d(T(xO),T(yO),a),%(d(T(yo),Tlp (T(xo)),a)+

d(T(xo)’Tzq (T()’o))’a))}

= max { d (3,50,0). d (Yo 3020), d (33, 3352), S(d (30 3300)
d(xo’)’o’a)}

=hd(x,,yy.a)

= d(x,,y,a)=0 forevery ain X = x,=y,

Thus x, is a unique common fixed of 7,7} and 7, in X .

2.5 Remark:
If we define T: X — X by T(x)=x for every x in X, then 7 has infinitely many

fixed points in X . But according to theorems 2.2 and 2.4, the self maps 7,7, and 7,
on X have a unique common fixed point in X together.

2.6  Theorem:
Let (X,d) be a complete 2-metric space and let 7;,T,,T, and T, be four self-maps

from X into itself satisfying the following conditions.
(a) [d (I,T,(x),TT, (y),a)]2 <q, [d(x, y,a)]2

+ a,[d(x.TT,(x),a) d(y.T,T,().a)
+ o, d(x.TT,(x).a) d(x.T,T,(y).a)]
+ Q, I:d(x IT,(x), a)]2

+ o, d(y.T,T,(y).a) d (x.TT,(y).a)]
+ [d(y T,T,(y), a)]2

+ a,[d(x.TT,(y).a) d(y.TT,(x).a)]
+ o[ d(x.y.a)d(x.TT,(x).a)]
+a,[d(x,y,a)d(y,TT,(y)a) ]
+a,[d(x y,a)d (T, (y).a) ]

for every x,y,a in X and &, 20.
10

b  Da<l
i=1

©  TT,=TT and T,T, =TT,

Then T,,T,,T; and T, have a unique common fixed pointin X .

1325
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Proof:
Let x, be an arbitrary pointin X .

We define x,,,, =TT, (x,,),n=0,1,2... and x,,

Then we have

[ (o 00@) ] =[d (TT () T, (5, 0,0)
<, [d(x,.%,..a)]
+a, [d(xZW,TT (x,,).a)d (x2n_1,T371(x2n_1),a)]
+a’3[d(x2n,TT (x,,),a)d (x2n,T3T4(x2n_1),a)]
+a,[d(x,,.TT,(x,,), at)]2

+Q [d(x2n I T,(x,, ),a)d (xzn,T3T4(x2n71),a)]
+ O [d(x2n LT (x,, ), a)]

+@,[d (%, LT, (%,1),0) d (%5, T T (3s,), )
[ d(x,,%,,0)d (3, T, (x,,),) |

+a, [a’(xzn,XZn a)d(x, \TT,(x,, l),a)]

+a, [d Xy,5 %y, 150 ) (x2n,TT (x5,.1)s a)]
=q, [d Xy, Xy, 50 ]2

(x2n1’x2n’ ):'
(%05 X054) ]

( )
+0, | d (%, %,,,,a) d
+a,[d(x,,.%,,,.a)d
v, [d(x,.x,,,.0) ]

( a)d(x,,,x,,.a)]
+ [d JCZH,)CZH,Ut)]2
+a'7[a’(x2n,x2n,a) Xy g5 Xy igs @ ]
d (xy,.2,,..4) |
d(x,.%,,.a) |
+ [ d (5,3, 00 ) (%25 %,,)]
=0{1[d(x2n,x2nl, )]2
+0,[d (2,0 %,0:a) d (2,1, %,,.0) |

)

2
+@, [d (EE N :'

+ s [d Xon-10%2y5 @

+ 0 [d(XZn’XZn 1 a

+& I:d(x2n’x2n 1 a

Dr. V. Srinivasa kumar et al

=TT, (x,,,),n=12..
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+ & I:d (x2n—1’ Xon a)]2

+ 0 [d (x2n’x2n—1’a)d (x2n’x2n+l’a):|

+ &, I:d(xzn’leﬂ’a)]z
< (al T+ )[d(XZn’XZn—l’a)]z +%{|:d(x2n’x2n+l’a):|2 +|:d(x2n—1’x2n’a)]2}
+Q, [d(XZn,x2n+1,a):|2

+%{[d (xzn,xz,H,a)]2 +[d (x2n’x2n+l’a):|2}

= (al + aé + 6¥9 +%+%J[d (x2n’x2n—1’a):|2

+(6;2 +C; +a jl:d x2n’x2n+l’a):|2

= {1—(%+%+oaﬂ[d(m,xw )] [04+0%+0@+ +—j[d 5 %0) |

a, O 2
(al +o,+a, +22+8j[d (xZn,xZn_l,a):l

2
= [d(XZn’XZnH’a):I < o a
P ( + 8+aj}
2 2

= [d (x2n+l’x2n’a):|2 <k? [d (XZH,XZIH,G):'Z

Where

aZ aS
Oy Ol + Oy + =2 +=0

(%% )|

= d(x2n+l’x2n’a)Skd('x2n’x2n—l’a)
Similarly, d (%%, ,a) <k d(x,..%,,.a)
d(x2n+1’x2n’a)Skzd(xn—l’xzn—z’a)

d (xzm,xz”,a) <k™d (xl,xo,a) -

k* =

Then we get
Continuing in this process, we get

a, o a, o
O+ + @+ O+ 0y Ol + 0y + Qg + O + =2+ 0
2

Si k™= < 2
mce
1(a+%+aj 1(a+%+aj
2 2 2 2

50 n—>oo
as

<1

We have

1327
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Hence from (1), it follows that {xn}is a Cauchy Sequence in X . Since X is a

complete 2-metric space, there exists ze X such that limx, = z.

n—oo

Now we prove that z is a common fixed point of 7[T, and T:T, .
Now

[d(TT,(2), x,.0) | =[d(TT(2).TT, (x,,).a) |

<q, [d(z,(xz,H),a)]2

+ a,[d(2.TT,(2).a) d (x,, . ,T,(x,,_).a) |

+ o, d(2.17,(2).a) d (2. 1T, (x,,,).a)]
+o,[d(2TT,(2).a)]

+a, [d x,, s T T,(x,, ),a)d (z,]}T4(x2n_1),a):|

+ o[ d(x,, . TT,(x,,.), a)]

+ o, d(2.TT,(x,,).a) d(x,, . TT,(2).a) ]

+ o[ d(z.x,,_.a)d(z.TT,(2).a)]

+ o, d(z.x,_.a)d (z.T,T,(x,_).a)
+a,,[d(z.%,_.a)d (2. TT,(x,,_,).a) ]

=, [d(z.x,,.a ] +a,[d(z.TT,(2).a)d(x,,.%,,.a) ]
+a,|d(2.TT,(2).a) d(z.x,,.a) |
+a,]d(2.TT,(2), a)]
+0:5[d(x2n 1Xy,,a)d(2,x,,,a ):l

ray[d(x,.0,.a)]

+a, [d(z x,,,a)d(x,, ,TT,(2), a)]

+oy|d(z.x,,_.a)d (2. TT,(2).a)]

+0,]d(z.%,,_.a)d(x,, . %,,.a)]

+0510[d z,xznfl,a)d(z,lei,a)]

Letting n —> o0, we get |:d(T1T2z,z,0t)]2 <a, |:d(T1T2z,Z,a):|2

= |:d(T1T2z,z,at)]2 =0 forevery ain X = TT,z=z Similarly = T,T,z=z.

Hence z is a common fixed point of 7|7, and 7,7, .

Now we prove that z is a fixed point of 7.
We have
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[d(fz.2.0)] =[d (T, (T7,(2)). T, T, (2).a) |

=[d (1, (1.1,()). T, (2).0) |

=[d (17, (1,()). T, (2).0) |

<o [d(T,(2).z.a) | +e, [ d(T,(2).TT, (T,(2)) @) d (2. T,T,(2),a) |
+o,[d(T,(2). 1T, (T,(2)).a) d (T,(2). T,T, (2).a) ]

+a,[d (1,17, (1,(2).a) ]

+ o[ d (2. T,T,(2).a) d (T,(2). T,T,(2).a) |

+ o [d(2TT,(2).a)]

+a,| d(T(2), 1T, (2),a) d (2,17, (T,(2))a) |

+ a, [ (T;(2), z,a)d (T, (). T,T, (T,(2)), )]

+ a, [a’ T,(2),z,a)d (2. T,T,(2), a)]
+a,,[d(T,(2).2.a)d (T,(2). T,T,(2).a) ]
=,[d(T,(2).2.a ] +a,[ d(T,(2).T,(2).a)d (z.2.a) |
+a,| d(T,(2).T,(2).a) d (T,(2). 2.a) |

T.(2).T,(2), a)]

+0 [a’ z,z,a)d(T,(2), z, a)]

(
+a,[d(
(2.2
+a, [d(z )]
+a, I:d(Tl(Z) z,a)d (Z,Tl(z),a)]
+a,[d(T(2).2,0)d (T2 Ty (2),a)
+a,[d(T,(2).z.a)d (z.z.a) ]
+ay,[d(T)(2),z.a)d (T)(2), z.a) |
=(e, +a, +cr10)[d(Tl(z),z,a):|2
= (l-g-a,-a,)[d (Tl(z),z,a)]2 <0 forevery a in X .
= I:d (Tl(z),z,a)]2 =0 forevery a in X .
= T(2)=z
Hence 7 is a fixed point of 7.
Now z=(TT,)(2) =T,T;(2) =T, (T;(2)) = T,(2)

Hence z is a common fixed point of 7, and 7, .

1329
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Similarly z is a common fixed point of 7; and 7, .

Let w be another common fixed point of 7,7, and T:T, .
Now it follows that ,7, (w) =T, T,(w) =w.

Now I:d (z,w,a)]2 = I:d (Tsz(z),T3T4(w),a)]2 <(oq+a, + alo)[d (z,w,a)]

2

= (l-a -, —a,)[d(z,wa)] <0

= d(z,w,a)=0f0revery ain X = z=w

Hence z is a unique common fixed point of 7,,7,,7T, and T, .
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