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1. Introduction

In the mathematical description of many phenomena relative to scientific research, dif-
ferential equations arise as an important tool to achieve a more adequate explanation and
a faithful adjustment to the behavior of the particular magnitude of interest. It is well-
known that determinism is not able, in general, to provide a complete and definite model
for the analysis of a dynamical system [16, 17] due to the imperfections and vagueness of
our perception of the system itself. To give an example, uncertainty is present in the study
of intelligent systems from different points of view, such as soft computing or granular
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computing [20]. Thus, fuzziness constitutes an adequate mechanism to introduce the
subjective factors which might influence the phenomena into the system. Fuzziness is
a basic type of subjective uncertainty initiated by Zadeh [31] via membership function
in 1965. It is a powerful tool for modeling of uncertainty and for processing vague or
subjective information in mathematical models.

Fuzzy differential equation is a useful tool to model a dynamical system when in-
formation about its behavior is inadequate. It has been studied thoroughly in the last
years as adequate models to predict the behavior of continuous processes susceptible
to imprecision based on subjective choices. However, the meaning of a fuzzy differen-
tial equation strongly depends on the selection of the concept of fuzzy derivative [8].
Kandel and Byatt [10] introduced the concept of fuzzy differential equations. Several
authors have studied the fuzzy differential equations by using the H-Differentiability for
the fuzzy valued mappings of a real variable whose values are normal, convex, upper
semicontinuous and compactly supported fuzzy sets in Rn.

Seikkala [28] defined the fuzzy derivative which is a generalization of the Hukuhara
derivative in [22]. The existence theorem under compactness type conditions are in-
vestigated in [29] when the fuzzy valued mappings are satisfied with Lipschitz condi-
tion. Park et al [19] studied the fuzzy differential equation with nonlocal condition.
Nieto [18] proved an existence theorem for fuzzy differentiable equation on the met-
ric space(En, D). Balasubramaniam and Muralisankar [7] proved the existence and
uniqueness of fuzzy solutions for the semilinear fuzzy integro differential equation with
nonlocal conditions. There are several approaches to define a solution for fuzzy dif-
ferential equation: Hukuhara approach [9], Differential inclusions [6], Quasiflows and
differential equations in metric spaces [13]. For more on Fuzzy differential equation, we
can refer [3], [9], [11], [21], [23], [25], [30].

Differential equations with impulses are a basic tool to study evolutionary processes
that are subject to abstract changes in their state. Such equation arises naturally from a
wide variety of applications, such as spacecraft control, inspection processes in operation
research, drug administration, and threshold theory in biology. For the monographs of
the theory of impulsive differential equations, we can refer the books of Bainov and
Simenov [2], Lakshmikantham et al. [14], Samoilenko and Perestyuk [27].

The introduction of impulses in the equation is the key point in our procedure. This
approach, far enough from representing a restriction in the field of applications, is clearly
appropriate to analyze the evolution of real phenomena which depend on external factors,
and, of course, it perfectly fits with control processes in many fields. This way, we
illustrate the possibility to stabilize the solutions by using impulses, which allows to
keep the solutions of the equation in a certain region or even provides the existence of
periodic solutions.

The richness of the impulsive fuzzy differential equations even allows to extract con-
tinuous real solutions as (approximate) representations of discontinuous fuzzy solutions.
Impulses allow to analyze the properties of the system during a certain period of time and
change its behavior in order to, for instance, adjust the results in a previously established
region. Besides, the way in which the system is impulsed possesses great interest and
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physical meaning, since it might be closely related to the mechanism of defuzzification
selected, with the aim of ‘translating’ the conclusions obtained to the ordinary case.

Lakshmikantham and McRae [15] initiated the study of fuzzy impulsive differential
equations. Some works on fuzzy impulsive differential equations were investigated in [4],
[5] and [12]. Recently, Ramesh and Vengataasalam [24] analyzed the solutions of fuzzy
impulsive delay integrodifferential equations with nonlocal condition. Vengataasalam
and Ramesh [26] studied the fuzzy solutions for impulsive semilinear differential equa-
tions.

This work is focused on the study of fuzzy solutions for impulsive delay differential
evolution equations, which makes sense following an impulsive formulation approach
and has a very important meaning in the field of applications, being even natural in every
control mechanism. Here in this paper, we prove the existence of solutions of fuzzy
delay impulsive differential evolution equations with nonlocal conditions of the form

x′(t) = A(t)x(t) + f
(
t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))

)
, t ∈ J = [0, a] (1.1)

x(0) = x0 + g(t1, t2, · · · , tp, x(.)), (1.2)

�x(tk) = Ik(x(tk)), k = 1, 2, 3, · · · , m (1.3)

where σi : J → J , i = 1, 2 · · · , n are continuous functions and f : J × En2 → En is
levelwise continuous function and σi(t) ≤ t for all t ∈ J , g : Jp × En → En satisfies
the Lipschitz condition. The symbol g(t1, t2, . . . , tp, x(.)) is used in the sense that in
the place of ‘.’, we can substitute only elements of the set {t1, t2, . . . , tp}. For example
g(t1, t2, . . . , tp, x(.)) can be defined by the formula

g(t1, t2, · · · , tp, x(.)) = c1x(t1) + c2x(t2) + · · · + cpx(tp),

where ci(i = 1, 2 · · · , p) are given constants and �x(tk) = x(t+k )−x(t−k ), where x(t−k )

and x(t+k ) represent the left and right limits of x(t) at t = tk respectively.

2. Preliminaries

Let PK(Rn) denote the family of all non empty, compact, convex subsets of Rn. Addition
and scalar multiplication in PK(Rn) are defined as usual. Let A nd B be two non empty
bounded subsets of Rn. The distance betweenA and B be two nonempty bounded subsets
of Rn. The distance between A and B is defined by the Hausdorff metric

d(A, B) = max
{

sup
a∈A

inf
b∈B

‖a − b‖ , sup
b∈B

inf
a∈A

‖a − b‖
}
,

where ‖.‖ denote the usual Euclidean norm in Rn. Then it is clear that
(
PK(Rn), d

)
becomes a metric space. Let I = [t0, t0 + a] ⊂ R(a > 0) be a compact interval and let
En be the set of all u : Rn → [0, 1] such that u satisfies the following conditions:

(i) u is normal i.e., there exists an x0 ∈ Rn such that u(x0) = 1,
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(ii) u is fuzzy convex, that is,

u(λx + (1 − λ)y) ≥ min{u(x), u(y)} where x, y ∈ Rn and 0 ≤ λ ≤ 1,

(iii) u is upper semicontinuous

(iv) [u]0 = cl{x ∈ Rn : u(x) > 0} is compact.

If u ∈ En, then u is called a fuzzy number, and En is said to be a fuzzy number
space. For 0 < α ≤ 1, denote [u]α = {x ∈ Rn : u(x) ≥ 0}. Then from (i)–(iv), it
follows that the α-level set [u]α ∈ PK(Rn) for all 0 ≤ α ≤ 1.

If g : Rn × Rn → Rn is a function, then by using Zadeh’s extension principle we
can extend g to En × En → En by the equation

g̃(u, v)(z) = sup
z=g(x,y)

min {u(x), v(y)} .

It is well known that [g̃(u, v)]α = g([u]α, [v]α) for all u, v ∈ En, 0 ≤ α ≤ 1 and
continuous function g. Further, we have [u + v]α = [u]α + [v]α, [ku]α = k[u]α, where
k ∈ R.
Define D : En × En → [0, ∞) by the relation

D(u, v) = sup
0≤α≤1

d([u]α, [v]α),

where d is the Hausdorff metric defined in PK(Rn). Then D is a metric in En.
Further we know that [22]

(i) (En, D) is a complete metric space,

(ii) D(u + w, v + w) = D(u, v) for all u, v, w ∈ En,

(iii) D(λu, λv) = |λ| D(u, v) for all u, v ∈ En and λ ∈ R.

It can be proved that D(u + v, w + z) ≤ D(u, w) + D(v, z) for u, v, w and z ∈ En

Definition 2.1. [9] A mapping F : I → En is strongly measurable if for all α ∈
[0, 1] the set-valued map Fα : I → PK(Rn) defined by Fα(t) = [F(t)]α is Lebesgue
measurable when PK(Rn) has the topology induced by the Hausdorff metric d.

Definition 2.2. [9] A mapping F : I → En is said to be integrably bounded if there is
an integrable function h(t) such that ‖x(t)‖ ≤ h(t) for every x(t) ∈ F0(t).

Definition 2.3. The integral of a fuzzy mapping F : I → En is defined levelwise by

[
∫

I

F (t)dt]α =
∫

I

Fα(t)dt = The set of all
∫

I

f (t)dt such that f : I → Rn is a

measurable selection for Fα for all α ∈ [0, 1].
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Definition 2.4. [1] A strongly measurable and integrably bounded mapping F : I → En

is said to be integrable over I if [
∫

I

F (t)dt] ∈ En.

Note that if F : I → En is strongly measurable and integrably bounded, then F is
integrable. Further if F : I → En is continuous, then it is integrable.

Proposition 2.5. Let F, G : I → En be integrable and c ∈ I, λ ∈ R. Then

(i)
∫ t0+a

t0
F(t)dt = ∫ c

t0
F(t)dt + ∫ t0+a

c
F (t)dt ,

(ii)
∫

I

(F (t) + G(t))dt =
∫

I

F (t)dt +
∫

I

G(t)dt ,

(iii)
∫

I

λF (t)dt = λ

∫
I

F (t)dt ,

(iv) D(F, G) is integrable,

(v) D

(∫
I

F (t)dt,

∫
I

G(t)dt

)
≤

∫
I

D(F (t), G(t))dt.

Definition 2.6. A mapping F : I → En is Hukuhara differentiable at t0 ∈ I , if for some
h0 > 0 the Hukuhara differences

F(t0 + �t) −h F (t0), F (t0) −h F (t0 − �t)

exist in En for all 0 < �t < h0 and there exists an F ′(t0) ∈ En such that

lim
�t→0+ D((F (t0 + �t) −h F (t0))/�t, F ′(t0)) = 0

and
lim

�t→0+ D((F (t0) −h F (t0 − �t)/�t, F ′(t0)) = 0.

Here F ′(t) is called the Hukuhara derivative of F at t0.

Definition 2.7. A mapping F : I → En is called differentiable at a t0 ∈ I , if for any
α ∈ [0, 1], the set-valued mapping Fα(t) = [F(t)]α is Hukuhara differentiable at point t0
with DFα(t0) and the family {DFα(t0) : α ∈ [0, 1]} define a fuzzy number F(t0) ∈ En.

If F : I → En is differentiable at t0 ∈ I , then we say that F ′(t0) is the fuzzy
derivative of F(t) at the point t0.

Theorem 2.8. Let F : I → En be differentiable. Denote Fα(t) = [fα(t), gα(t)]. Then
fα and gα are differentiable and [F ′(t)]α = [f ′

α(t), g′
α(t)].

Theorem 2.9. Let F : I → En be differentiable and assume that the derivative F ′ is
integrable over I . Then, for each s ∈ I , we have

F(s) = F(a) +
∫ s

a

F ′(t)dt.
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Definition 2.10. A mapping f : I × En → En is called levelwise continuous at a point
(t0, x0) ∈ I × En provided, for any fixed α ∈ [0, 1] and arbitrary ε > 0, there exists a
δ(ε, α) > 0 such that

d([f (t, x)]α, [f (t0, x0)]α) < ε

whenever |t − t0| < δ(ε, α) and d([x]α, [x0]α) < δ(ε, α) for all t ∈ I, x ∈ En.

Corollary 2.11. [9] Suppose that F : I → En is continuous. Then the function

G(t) =
∫ t

a

F (s)ds, t ∈ I

is differentiable and G′(t) = F(t).
Now, if F is continuously differentiable on I , then we have the following mean value

theorem
D(F(b), F (a)) ≤ (b − a).sup{D(F ′(t), 0̂), t ∈ I }.

As a consequence, we have that

D(G(b), G(a)) ≤ (b − a).sup{D(F ′(t), 0̂), t ∈ I }.
Theorem 2.12. Let X be a compact metric space and Y any metric space. A subset � of
the space C(X, Y ) of continuous mappings of X into Y is totally bounded in the metric
of uniform convergence if and only if � is equicontinuous on X, and �(x) = {φ(x) :
φ ∈ �} is totally bounded subset of Y for each x ∈ X.

3. Existence Results

Now, we concern with the existence of fuzzy solutions for the problem (1.1) − (1.3).

Definition 3.1. A function x : J → En is a mild solution of the nonlocal impulsive
evolution delay differential equation (1.1)–(1.3) if and only if it is levelwise continuous
and satisfies the integral equation

x(t) = S(t)x0 + S(t)g(t1, t2, · · · , tp, x(.))

+
∫ t

0
S(t − s)f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

+ ∑
0<tk<t

S(t − tk)Ik(x(tk))

for all t ∈ J. Let Y = {ξ ∈ En : H(ξ, x0) ≤ b} be the space of continuous functions
with H(ξ, ψ) = sup

0≤t≤γ

D(ξ(t), ψ(t)) and b is a positive number.

Theorem 3.2. For the forthcoming analysis, we need the following assumptions:
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(H1) The mapping f : J × Y → En is levelwise continuous in t on J and there exists
a constant l0 such that

D(f (t, x1, x2, · · · , xn), f (t, y1, y2, · · · , yn)) ≤ l0

n∑
i=1

D(xi, yi).

(H2) There exists a constant l1 such that for all x, y ∈ Y and σi : J → J , i =
1, 2, · · · , n

D(x(σi(t)), y(σi(t))) ≤ l1D(x(t), y(t)).

(H3) The mapping g : Jp × Y → En is a function and there exists a constant l2 > 0
such that

D(g(t1, t2, · · · , tp, x(.)), g(t1, t2, · · · , tp, y(.))) ≤ l2D(x, y).

(H4) There exists a constant l3 such that

D

(
Ik(x(tk)), Ik(y(tk))

)
≤ l3D(x, y), k = 1, 2, · · · , m.

(H5) Let S(t) is a fuzzy number such that |S(t)| ≤ c, ∀t ∈ J, where c is a constant.
Then there exists a unique solution x(t) of (1.1)–(1.3) defined on the interval
[0, γ ] where

γ = min{a, (b − cl5 − cχ)/l4c, (1 − cl2 + cl3)/cl0l1},
l4 = max D(f (t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))), 0̂))

l5 = D(g(t1, t2, · · · , tp, x(.)), 0̂) and

χ = D

( ∑
0<tk<t

Ik(x(tk)), 0̂

)
, 0̂ ∈ En.

Proof. We show that the operator 
 : Y → Y defined by


x(t) = S(t)x0 + S(t)g(t1, t2, · · · , tp, x(.))

+
∫ t

0
S(t − s)f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(x(tk))

has a fixed point x, which is the mild solution of the system (1.1) − (1.3). First, we
show that 
 : Y → Y is continuous whenever ξ ∈ Y and that H(
ξ, x0) ≤ b. Since f

is levelwise continuous and σ is continuous, we take

l4 = max D(f (t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))), 0̂))



 R. Ramesh and S. Vengataasalam

D(
ξ(t + h), 
ξ(t))

= D
(
S(t + h)x0 + S(t + h)g(t1, t2, · · · , tp, ξ(.))

+
∫ t+h

0
S(t + h − s)f (s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds

+
∑

0<tk<t

S(t + h − tk)Ik(ξ(tk)), S(t)x0 + S(t)g(t1, t2, · · · , tp, ξ(.))

+
∫ t

0
S(t − s)f (s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(ξ(tk))
)

≤ D
(
S(t + h)x0, S(t)x0) + D(S(t + h)g(t1, t2, · · · , tp, ξ(.)),

S(t)g(t1, t2, · · · , tp, ξ(.)))

+ D
( ∫ t

0
S(t + h − s)f (s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds,

∫ t

0
S(t − s)f (s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds

)

+ D

( ∑
0<tk<t

S(t + h − tk)Ik(ξ(tk)),
∑

0<tk<t

S(t − tk)Ik(ξ(tk))

)

The right hand side tends to zero as h → 0. Hence, the map 
 is continuous. Now

D(
ξ(t), x0) = D
(
S(t)x0 + S(t)g(t1, t2, · · · , tp, ξ(.))

+
∫ t

0
S(t − s)f (s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(x(tk)), x0

)

≤ cD(g(t1, t2, · · · , tp, ξ(.)), 0̂)

+
∫ t

0
cD(f (s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s))), 0̂)ds)

+ cD

( ∑
0<tk<t

Ik(ξ(tk)), 0̂

)

= c(l5 + l4t + χ)

Therefore,

H(
ξ, x0) = sup
0≤t≤γ

D(
ξ(t), x0) ≤ c(l5 + l4γ + χ) ≤ b.
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Thus 
 is a mapping from Y into Y . Since C([0, γ ], En) is a complete metric space
with the metric H , we only show that Y is a closed subset of C([0, γ ], En).

Let define {ψn} be a sequence in Y such that ψn → ψ ∈ C([0, γ ], En) as n → ∞.
Then

D(ψ(t), x0) ≤ D(ψ(t), ψn(t)) + D(ψn(t), x0),

That is,

H(ψ, x0) = sup
0≤t≤γ

D(ψ(t), x0) ≤ H(ψ, ψn) + H(ψn, x0)

≤ ε + b

for sufficiently large n and arbitrary ε > 0. Thus, ψ ∈ Y . This shows that Y is closed
subset of C([0, γ ], En). Therefore Y is a complete metric space.

From hypotheses (H1)− (H5), we will deduce that 
 is a contraction mapping. For
ξ, ψ ∈ Y ,

D(
ξ(t), 
ψ(t))

= D
(
S(t)x0 + S(t)g(t1, t2, · · · , tp, ξ(.))

+
∫ t

0
S(t − s)f (s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(ξ(tk)), S(t)x0 + S(t)g(t1, t2, · · · , tp, ψ(.))

+
∫ t

0
S(t − s)f (s, ψ(σ1(s)), ψ(σ2(s)), · · · , ψ(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(ψ(tk))
)

≤ cD(g(t1, t2, · · · , tp, ξ(.)), g(t1, t2, · · · , tp, ψ(.)))

+
∫ t

0
cD(f (s, ξ(σ1(s)), ξ(σ2(s)), · · · , ξ(σn(s)))ds,

f (s, ψ(σ1(s)), ψ(σ2(s)), · · · , ψ(σn(s)))ds
)

+ cD
(
Ik(ξ(tk)), Ik(ψ(tk))

)
≤ cl2D(ξ(.), ψ(.)) + c

∫ t

0
l0l1D(ξ(s), ψ(s))ds + cl3D(ξ, ψ)

Then we obtain

H(
ξ, 
ψ) ≤ c sup
t∈γ

{
l2D(ξ(.), ψ(.)) +

∫ t

0
l0l1D(ξ(s), ψ(s))ds + l3D(ξ, ψ)

}

≤ cl2D(ξ(.), ψ(.)) + cγ l0l1D(ξ(t), ψ(t)) + cl3D(ξ, ψ)

≤ c(l2 + l0l1γ + l3)H(ξ, ψ).
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Since c(γ l0l1 + l2 + l3) < 1, 
 is a contraction map. Hence, 
 has a unique fixed point
x ∈ C([0, γ ], En) such that 
x = x, that is,

x(t) = S(t)x0 + S(t)g(t1, t2, · · · , tp, x(.))

+
∫ t

0
S(t − s)f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(x(tk)).

�

Theorem 3.3. Let f, σ and g be as in Theorem 3.1. Denote by x(t, x0), y(t, y0) the
solutions of equation (1.1)−(1.3) corresponding to x0, y0 respectively. Then there exists
constant η > o such that

H(x(., x0), y(., y0)) ≤ η [D(x0, y0)]

for any x0, y0 ∈ En and η = c/1 − c(l2 + γ l0l1 + l3).

Proof. Let x(t, x0), y(t, y0) be solutions of equations (1.1) − (1.3) corresponding to
x0, y0 respectively. Then

D(x(t, x0), y(t, y0))

= D
(
S(t)x0 + S(t)g(t1, t2, · · · , tp, x(., x0))

+
∫ t

0
S(t − s)f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(x(tk, x0)), S(t)y0 + S(t)g(t1, t2, · · · , tp, y(., y0))

+
∫ t

0
S(t − s)f (s, y(σ1(s)), y(σ2(s)), · · · , y(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(y(tk, y0)
)

≤ cD(x0, y0) + cD
(
g(t1, t2, · · · , tp, x(., x0)), g(t1, t2, · · · , tp, y(., y0))

)
+

∫ t

0
cD

(
f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s))),

f (s, y(σ1(s)), y(σ2(s)), · · · , y(σn(s)))
)
ds

+ cD
(
Ik(x(tk, x0)), Ik(y(tk, y0))

)
≤ cD(x0, y0) + cl2D(x(.), y(.)) +

∫ t

0
cl0l1D(x(s), y(s))ds + cl3D(x, y)
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Thus,

H(x(., x0), y(., y0)) ≤ cD(x0, y0) + c(l2 + γ l0l1 + l3)H(x(., x0), y(., y0))

that is,

H(x(., x0), y(., y0)) ≤ c/1 − c(l2 + γ l0l1 + l3) [D(x0, y0)] .

Taking η = c/1 − c(l2 + γ l0l1 + l3), then we get

H(x(., x0), y(., y0)) ≤ η [D(x0, y0)] .

This completes the proof of the theorem.
Now, we generalize the above theorem for the fuzzy delay impulsive differential

equation (1.1)–(1.3) with nonlocal condition. �

Theorem 3.4. If f : J × En2 → En is levelwise continuous and bounded, σi : J →
J i = 1, 2, · · · , n) are continuous and g : Jp × En → En is continuous, then the
initial value problem (1.1)–(1.3) possesses atleast one solution on the interval J.

Proof. Since f is continuous and bounded and g is a continuous function there exists
r ≥ 0 such that

D(f (t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t)), 0̂) ≤ r, t ∈ J, x ∈ En.

Let B be a bounded set in C(J, En). The set 
B = {
x : x ∈ B} is totally bounded if
and only if it is equicontinuous and for every t ∈ J , the set 
B(t) = {
x(t) : t ∈ J } is
a totally bounded subset of En. For every t0, t1 ∈ J with t0 ≤ t1, and x ∈ B we have
that

D(
x(t0), 
x(t1)) = D
(
S(t)x0 + S(t)g(t1, t2, · · · , tp, x(.))

+
∫ t0

0
S(t − s)f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(x(t0)), S(t)x0 + S(t)g(t1, t2, · · · , tp, x(.))

+
∫ t1

0
S(t − s)f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

+
∑

0<tk<t

S(t − tk)Ik(x(t1))
)
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≤ cD
( ∫ t0

0
f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds,

∫ t1

0
f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds

)

+ cl3D(x, y)

≤
∫ t1

t0

cD(f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s))), 0̂)ds

+ cl3D(x, y)

≤ c|t1 − t0|.sup{D(f (t, x(σ1(t)), x(σ2(t)), · · · , x(σn(t))), 0̂)

+ cl3D(x, y)}
≤ c|t1 − t0|.r. + cl3

This shows that 
B is equicontinuous. Now, for t ∈ J fixed. We have

D(
x(t), 
x(t ′)) ≤ c|t − t ′|.r + cl3,

for every t ′ ∈ J, x ∈ B.

Hence, the set {
x(t) : x ∈ B} is totally bounded in En. Thus, we conclude that

B is a relatively compact subset of C(J,En) by Ascoli theorem. Then 
 is compact,
that is, 
 transforms bounded sets in to relatively compacts sets.

We know that x ∈ C(J, En) is a solution of (1.1) − (1.3) if and only if x is a fixed
point of the operator 
. Now, in the metric space (C(J, En), H). Consider the ball

B = {ξ ∈ C(J,En), H(ξ, 0̂) ≤ m}, m = a.r.

Thus, 
B ⊂ B. Indeed, for x ∈ C(J,En),

D(
x(t), 
x(0)) = D
(
S(t)x0 + S(t)g(t1, t2, · · · , tp, x(.))

+
∫ t

0
S(t − s)f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)))ds,

+
∑

0<tk<t

S(t − tk)Ik(x(tk)), S(t)x0 + S(t)g(t1, t2, · · · , tp, x(.))
)

≤
∫ t

0
cD

(
f (s, x(σ1(s)), x(σ2(s)), · · · , x(σn(s)), 0̂

)
ds

+ cD

( ∑
0<tk<t

Ik(x(tk)), 0̂

)

≤ c|t |.r + cχ

≤ c(a.r + χ)
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Therefore, defining 0̂ : J → En, 0̂(t) = 0̂, t ∈ J , we have

H(
x, 
0̂) = sup{D(
x(t), 
0̂(t)) : t ∈ J }
Therefore, 
 is compact and in consequence, it has a fixed point x ∈ B. This fixed point
is a solution of the initial value problem (1.1) − (1.3). �
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