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Abstract 

 

A quantum algorithm for the isomorphic graphs problem by a numbering 

method and its example are reported. It is decided whether two graphs are 

isomorphic or not. When the number of graph vertexes is n, a computational 

complexity of a classical computation is n!. The computational complexity 

becomes about n
2
 by the quantum algorithm that uses quantum phase 

inversion gates, quantum inversion about mean gates and the numbering 

method. Therefore, a polynomial time process becomes possible. 

 

AMS subject classification: Primary 81-08; Secondary 68R10, 68W40. 

 

Keywords: Quantum algorithm, isomorphic graphs problem, numbering 

method, computational complexity, polynomial time. 

 

 

1. Introduction 

A quantum computer can move quickly to resolve a problem by doing a parallel 

calculation that uses quantum entangled states. Haroche and Wineland [1] made the 



1186  Toru Fujimura 

 

very first steps towards building the quantum computer. Quantum algorithms that 

have been started by Deutsch-Jozsa’s algorithm for the rapid solution [2−4] are 

expanded the application range by Shor’s algorithm for the factorization [3−5], 

Grover’s algorithms for the database search [3, 6, 7], and so on. A quantum algorithm 

for the 3-SAT problem by a numbering method has recently been reported by 

Fujimura [8]. Its computational complexity becomes a polynomial time. The 

isomorphic graphs problem [9] is examined by the numbering method this time. 

Therefore, its result is reported. 

 

 

2. Isomorphic Graphs Problem 

Two graphs which contain the same number of graph vertexes connected in the same 

way are said to be isomorphic. It is searched whether two graphs are isomorphic or 

not [9]. 

 

 

3. Quantum Algorithm 

It is assumed that vertexes and edges of graphs X and Y are x(i), x(i, j) and y(i), y(i, j) 

= y( j, i) [0 ≤ i ≤ j ≤ n−1. i, j and n are integers.], respectively, where each of x(i, j) and 

y(i, j) is a number of edge i-j, especially, each of x(i, i) and y(i, i) is a number of 

loop.]. 

(1) The number of the repeated permutation of n vertexes is n
n
. 

(2) The number of the permutation of n vertexes is n!. 

 

When n vertexes are y(a0), y(a1), ∙∙∙ , y(an−2) and y(an−1), a0n
n−1

 + a1n
n−2

 + ∙∙∙ + 

an−2n
1
 + an−1n

0
 = U is the numbering datum from 0 to n

n
−1 [The 0-th datum is 0, 0, ∙∙∙ , 

0 and 0. The (n
n
−1)-th datum is (n−1), (n−1), ∙∙∙ , (n−1) and (n−1).] in (1). In (2), it is 

assumed that the first datum is 0, 1, ∙∙∙ , n−1, and the n!-th datum is (n−1), (n−2), ∙∙∙ , 0, 

the V-th datum is obtained from v1(n−1)! + v2(n−2)!+ ∙∙∙ + vn−11!. Each of ti [1 ≤ i ≤ n. 

i is an integer.] is 1 piece of permutation from 0 to n−1. When vi is 0 from i = 1 to i = 

n−2 sequentially, ti is the smallest number in remained numbers. When vi isn’t 0 from 

i = 1 to i = n−2 sequentially, and vi+1, vi+2, ∙∙∙ , vn−2 and vn−1 are 0, ti is the vi-th small 

number in remained numbers, and ti+1 > ti+2 > ∙∙∙ > tn-1> tn is selected in remained 

numbers. When vi isn’t 0 from i = 1 to i = n−2 sequentially, and there are vi+1≠0 or 

vi+2≠0 or ∙∙∙ or vn−2≠0 or vn−1≠0, ti is the (vi+1)-th small number in remained 
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numbers. When vn−1 is 1, tn−1 < tn is selected in remained numbers. Therefore, t1n
n−1 

+ 

t2n
n−2 

+ ∙∙∙ + tn−1n
1
+tnn

0
 is U(V). This method is named the numbering method for this 

problem. g is the minimum integer that follows n!/1 ≤ 4
g
 = 2

2g
, because a number of 

combinations of an answer is at least 1. U(V=1), U(V=(n!/4)−1), U(V=(n!/16)−1), ∙∙∙ , 

U(V=(n!/4
g−1

)−1) and U(V=n!/4
g
) are calculated. Next, a quantum algorithm is shown 

as the following. 

First of all, quantum registers |a0>, |a1>, ··· , |an−1>, |b>, |c0>, |c1>, ··· , |cn−2 >, 

|d0 >, |d1> |e> and | f > are prepared. When P is the minimum integer that is log2 n or 

more, each of |ah > that h is an integer from 0 to n−1 is consisted of P quantum bits [= 

qubits]. States of |a0 >, |a1>, ∙∙∙ , |an−1>, |b>, |c0>, |c1>, ∙∙∙ , |cn−2>, |d0 >, |d1>, |e> and | f 

> are a0, a1, ∙∙∙ , an−1, b, c0, c1, ∙∙∙ , cn−2, d0, d1, e and f, respectively. 

1. Step 1: Each qubit of |a0>, |a1>, ∙∙∙ , |an−1>, |b>, |c0>, |c1>, ∙∙∙ , |cn−2>, |d0>, |d1>, 

|e> and | f > is set |0>. 

2. Step 2: The Hadamard gate H [3, 4] acts on each qubit of |a0>, |a1>, ∙∙∙ , |an−2> 

and |an−1>. It changes them for entangled states. The total states are (2P )
n
. 

3. Step 3: It is assumed that a quantum gate (A) changes |b> for |1> in ah < n, or it 

changes |b> for |0> in the others of ah. As a target state for |b> is 1, quantum 

phase inversion gates (PI) and quantum inversion about mean gates (IM) [3, 6, 

7] act on |b>. When Q is the minimum even integer that is (2P/n)
1/2

 or more, 

the total number that (PI) and (IM) act on |b> is Q, because they are a couple. 

Next, an observation gate (OB) observes |b>. These actions are repeated 

sequentially from |a0> to |an−1>. Therefore, each state of |ah> is 0, 1, ··· , n−2 

or n−1, and the total states become n
n
. 

4. Step 4: It is assumed that a quantum gate (B) changes |c0>, |c1>, ∙∙∙ , |cn−3> and 

|cn−2> for |c0 + 1>, |c1 + 1>, ∙∙∙ , |cn−3 + 1> and |cn−2 + 1> in ah = 0, 1, ∙∙∙ , n−3 

and n−2, respectively. This action is repeated from |a0> to |an−1>. As the target 

state for |c0> is 1, (PI) and (IM) act on |c0>. When R0 is the minimum even 

integer that is (n/(n−1))
(n−1)/2

 or more, the total number that (PI) and (IM) act 

on |c0> is R0. Next, (OB) observes |c0>. Therefore, only the graphs that contain 

1 piece of 0 remain. The number of data is n(n−1)
n−1

. As the target state for 

|c1> is 1, (PI) and (IM) act on |c1>. When R1 is the minimum even integer that 

is ((n−1)/(n−2))
(n−2)/2

 or more, the total number that (PI) and (IM) act on |c1> is 

R1. Next, (OB) observes |c1>. Therefore, only the graphs that contain 1 piece 

of 1 remain. The number of data is n(n−1)(n−2)
n−2

. Similarly, these actions are 

repeated sequentially from |c2> to |cn−2>. Only the graphs that contain 1 piece 
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of number from 0 to n−1, respectively, remain. The number of data is n! 

[=W0]. 

5. Step 5: It is assumed that a quantum gate (C0) changes |d0> for |d0 + 1> at x(0, 

0) = y(a0, a0), or it changes |d0> for |d0 + 0> in x(0, 0) ≠ y(a0, a0), and it 

changes |d1> for |d1 + a0n
n−1

>. Similarly, (Ci) [1 ≤ i ≤ n−1. i is the integer.] 

changes |d0> for |d0 + 1> at x(i, i) = y(ai, ai), or it changes |d0> for |d0 + 0> in 

x(i, i) ≠ y(ai, ai), and it changes |d1> for |d1 + ain
n−1−i

 >. These actions are 

repeated sequentially from 1 to n−1 at i. Therefore, |d0> becomes |0>, |1>, ∙∙∙ , 

|n−1> or |n>, and |d1> becomes |a0n
n−1

 + a1n
n−2

 + ∙∙∙ + an−1n
0
 = U >. 

6. Step 6: It is assumed that a quantum gate (D(0, 1)) changes |d0> for |d0 + 1> at 

x(0, 1) = y(a0, a1), or it changes |d0> for |d0 + 0> in x(0, 1) ≠ y(a0, a1). Similarly, 

(D(i, j)) [0 ≤ i < j ≤ n−1. i and j are integers.] changes |d0> for |d0 + 1> at x(i, j) 

= y(ai, aj), or it changes |d0> for |d0 + 0> in x(i, j) ≠ y(ai, aj). These actions 

are repeated sequentially from 0 and 2 to n−2 and n−1 at i and j, respectively. 

Therefore, |d0> becomes |0>, |1>, ∙∙∙, |n + (n(n−1)/2) – 1> or |n + n(n−1)/2 = 

n(n+1)/2>. 

7. Step 7: It is assumed that a quantum gate (E) changes |e> for |0> at d0 = 

n(n+1)/2, or it changes |e> for |d1>in the others of d0. 

8. Step 8: It is assumed that a quantum gate (F1) changes | f > for |1> in U(V = 1) 

≤ e ≤ U(V=(n!/4) – 1) or e = 0, or it changes | f > for |0> in the others of e. As 

the target state for | f > is 1, (PI) and (IM) act on | f >. The number of the data 

that is included in U(V=1) ≤ e ≤ U(V=(n!/4) – 1) or e = 0 is W1 ≈ n!/4. When 

T1 is the minimum even integer that is (W0/W1)
1/2

 or more, the total number 

that (PI) and (IM) act on | f > is T1 ≈ 2. Next, (OB) observes | f >, and the data 

of W1 remain. Similarly, (Fi) [2 ≤ i ≤ g − 1. i is the integer.] changes | f > for 

|1> in U(V= 1) ≤ e ≤ U(V=(n!/4
i
) – 1) or e = 0, or it changes | f > for |0> in the 

others of e. As the target state for | f > is 1, (PI) and (IM) act on | f >. The 

number of the data that is included in U(V= 1) ≤ e ≤ U(V=(n!/4
i
) − 1) or e = 0 

is Wi ≈ n!/4
i
. When Ti is the minimum even integer that is (Wi−1/Wi)

1/2
 or more, 

the total number that (PI) and (IM) act on | f > is Ti ≈ 2. Next, (OB) observes | f 

>, and the data of Wi remain. These actions are repeated sequentially from 2 to 

g − 1 at i. (Fg) changes | f > for |1> at e = 0, or it changes | f > for |0> in the 

others of e. As the target state for | f > is 1, (PI) and (IM) act on | f >. The 

number of the data that is included at e = 0 is Wg ≈ n!/4
g
. When Tg is the 

minimum even integer that is (Wg −1/Wg )
1/2

 or more, the total number that (PI) 
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and (IM) act on | f > is Tg ≈ 2. Next, (OB) observes |a0>, |a1>, ∙∙∙ ,|an−1>, |b>, 

|c0>, |c1>, ∙∙∙ , |cn−2>, |d0>, |d1>, |e> and | f >, and one of the data of Wg remains. 

Therefore, one example of combinations that are b0 = n(n + 1)/2 is obtained. 

 

 

4. Numerical Computation 

It is assumed that there are n = 5, x(0, 1) = 1, x(0, 2) = 1, x(0, 4) = 1, x(1, 2) = 2, x(2, 

3) = 1, x(2, 4) = 1, x(4, 4) = 1, y(0, 3) = y(3, 0) = 1, y(0, 4) = y(4, 0) = 2, y(1, 1) = 1, 

y(1, 3) = y(3, 1) = 1, y(1, 4) = y(4, 1) = 1, y(2, 4) = y(4, 2) = 1, y(3, 4) = y(4, 3) = 1, g 

= 4 [5!/1 = 120 ≤ 4
4
 = 256], U(V=1) = 194, U(V=(5!/4) – 1 = 29) = 738 [for example, 

V = 29 = 1∙4! + 0∙3! + 2∙2! + 1∙1!, U = 738 = 1∙5
4 
+ 0∙5

3
 + 4∙5

2
 + 2∙5

1
 + 3∙5

0
], U(V = 

(5!/16) – 1 ≈ 7) = 294 and U(V = (5!/64) – 1 ≈ 1) = 194. 

First of all, |a0>, |a1>, |a2>, |a3>, |a4>, |b>, |c0>, |c1>, |c3>, |d0>, |d1>, |e> and | f 

> are prepared. When P is the minimum integer that is log2 n = log2 5 ≈ 2.322 ≤ 3 = P, 

each of |ah> that h is the integer from 0 to 4 is consisted of P = 3 qubits. States of |a0>, 

|a1>, |a2>, |a3>, |a4>, |b>, |c0>, |c1>, |c2>, |c3>, |d0>, |d1>, |e> and | f > are a0, a1, a2, a3, 

a4, b, c0, c1, c2, c3, d0, d1, e and f, respectively. 

1. Step 1: Each qubit of |a0>, |a1>, |a2>, |a3>, |a4>, |b>, |c0>, |c1>, |c2>, |c3>, |d0>, 

|d1>, |e> and | f > is set |0>. 

2. Step 2: H acts on each qubit of |a0>, |a1>, |a2>, |a3> and |a4>. It changes them 

for entangled states. The total states are (2
P
)
n
 = (2

3
)
5
. 

3. Step 3: (A) changes |b> for |1> in ah < 5, or it changes |b> for |0> in the others 

of ah. As the target state for |b> is 1, (PI) and (IM) act on |b>. When Q is the 

minimum even integer that is (2
P
/n)

1/2
 = (2

3
/5)

1/2
 ≈ 1.265 ≤ 2 = Q, the total 

number that (PI) and (IM) act on |b> is Q ≈ 2. Next, (OB) observes |b>. These 

actions are repeated sequentially from |a0> to |a4>. Therefore, each state of 

|ah> is 0, 1, 2, 3 or 4, and the total states become n
n
 = 5

5
. 

4. Step 4: (B) changes |c0>, |c1>, |c2> and |c3> for |c0 + 1>, |c1 + 1>, |c2 + 1> and 

|c3 + 1> in ah = 0, 1, 2 and 3, respectively. This action is repeated from |a0> to 

|a4>. As the target state for |c0> is 1, (PI) and (IM) act on |c0>. When R0 is the 

minimum even integer that is (5/4)
4/2

 ≈ 1.563 ≤ 2 = R0, the total number that 

(PI) and (IM) act on |c0> is R0. Next, (OB) observes |c0>. Therefore, only the 

graphs that contain 1 piece of 0 remain. The number of data is 5∙4
4
. As the 

target state for |c1> is 1, (PI) and (IM) act on |c1>. When R1 is the minimum 

even integer that is (4/3)
3/2

 ≈ 1.540 ≤ 2 = R1, the total number that (PI) and 
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(IM) act on |c1> is R1. Next, (OB) observes |c1>. Therefore, only the graphs 

that contain 1 piece of 1 remain. The number of data is 5∙4∙3
3
. Similarly, these 

actions are repeated sequentially from |c2> to |c3>. Only the graphs that 

contain 1 piece of number from 0 to 4, respectively, remain. The number of 

data is 5! [=W0]. 

5. Step 5: (C0) changes |d0> for |d0 + 1> at x(0, 0) = y(a0, a0), or it changes |d0> 

for |d0 + 0> in x(0, 0) ≠ y(a0, a0), and it changes |d1> for |d1 + a05
4
>. Similarly, 

(Ci) [1 ≤ i ≤ 4. i is the integer.] changes |d0> for |d0 + 1> at x(i, i) = y(ai, ai), or 

it changes |d0> for |d0 + 0> in x(i, i) ≠ y(ai, ai), and it changes |d1> for |d1 + 

ai5
4−i 

>. These actions are repeated sequentially from 1 to 4 at i. Therefore, 

|d0> becomes |0>, |1>, |2>, |3>, |4> or |5>, and |d1> becomes |a05
4
 + a15

3
 + a25

2
 

+ a35
1
 + a45

0
 = U >. 

6. Step 6: (D(0, 1)) changes |d0> for |d0 + 1> at x(0, 1) = y(a0, a1), or it changes 

|d0> for |d0 + 0> in x(0, 1) ≠ y(a0, a1). Similarly, (D(i, j)) [0 ≤ i < j ≤ 4. i and j 

are integers.] changes |d0> for |d0 + 1> at x(i, j) = y(ai, aj), or it changes |d0> 

for |d0 + 0> in x(i, j) ≠ y(ai, aj). These actions are repeated sequentially from 

0 and 2 to 3 and 4 at i and j, respectively. Therefore, |d0> becomes |0>, |1>, ∙∙∙ , 

|14> or |15>. 

7. Step 7: (E) changes |e> for |0> at d0 = 15, or it changes |e> for |d1> in the 

others of d0. 

8. Step 8: (F1) changes | f > for |1> in U(V = 1) = 194 ≤ e ≤ U(V= 29) = 738 or e 

= 0, or it changes | f > for |0> in the others of e. As the target state for | f > is 1, 

(PI) and (IM) act on | f >. The number of the data that is included in 194 ≤ e ≤ 

738 or e = 0 is W1 ≈ 5!/4. When T1 is the minimum even integer that is 

(W0/W1)
1/2

 ≈ (5!/(5!/4))
1/2

 = 2 ≤ 2 = T1, the total number that (PI) and (IM) act 

on | f > is T1 ≈ 2. Next, (OB) observes | f >, and the data of W1 remain. 

Similarly, (Fi) [2 ≤ i ≤ 3. i is the integer.] changes | f > for |1> in 194 ≤ e ≤ 

U(V=(5!/4
i
) – 1) or e = 0, or it changes | f > for |0> in the others of e. As the 

target state for | f > is 1, (PI) and (IM) act on | f >. The number of the data that 

is included in 194 ≤ e ≤ U(V=(5!/4
i
) − 1) or e = 0 is Wi ≈ 5!/4

i
. When Ti is the 

minimum even integer that is (Wi−1/Wi)
1/2

 ≈ ((5!/4
i−1

)/(5!/4
i
))

1/2
 = 2 ≤ 2 = Ti, 

the total number that (PI) and (IM) act on | f > is Ti ≈ 2. Next, (OB) observes | f 

>, and the data of Wi remain. These actions are repeated sequentially from 2 to 

3 at i. (F4) changes | f > for |1> at e = 0, or it changes | f > for |0> in the others 

of e. As the target state for | f > is 1, (PI) and (IM) act on | f >. The number of 
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the data that is included at e = 0 is W4 ≈ 5!/4
4
. When T4 is the minimum even 

integer that is (W3/W4)
1/2

 ≈ ((5!/4
3
)/(5!/4

4
))

1/2
 = 2 ≤ 2 = T4, the total number 

that (PI) and (IM) act on | f > is T4 ≈ 2. Next, (OB) observes |a0>, |a1>, |a2>, 

|a3>, |a4>, |b>, |c0>, |c1>, |c2>, |c3>, |d0>, |d1>, |e> and | f >, and one of the data 

of W4 remains. Therefore, a0, a1, a2, a3, a4, b, c0, c1, c2, c3, d0, d1, e and f are 3, 

0, 4, 2, 1, 1, 1, 1, 1, 1, 15, 1986, 0 and 1, respectively. As a result, x(0), x(1), 

x(2), x(3) and x(4) of graph X are y(3), y(0), y(4), y(2) and y(1) of graph Y, 

respectively. 

 

 

5. Discussion and Summary 

The computational complexity of this quantum algorithm [= S] becomes the following. 

In the order of the actions by the gates, the number of them is Pn at H, n at (A), Qn ≈ 

2n at (PI) and (IM), n at (OB), n at (B), ∑ i=0→n−2 Ri ≈ 2(n−1) at (PI) and (IM), and 

(n−1) at (OB), n at (Ci) [0 ≤ i ≤ n−1. i is the integer.], n(n−1) at (D(i, j)) [1 ≤ i < j ≤ 

n−1. i and j are integers.], 2 at (E), g at (Fi) [1 ≤ i ≤ g. i is the integer.], ∑ i=1→g Ti ≈ 2g 

at (PI) and (IM), and g at (OB). Therefore, S becomes n
2
 + (P + 8)n – 1 + 4g. In the 

example of the numerical computation, S is 95. The computational complexity of the 

classical computation [= Z] is n! = 5! = 120. After all, S/Z becomes about 4/5. When n 

is large enough, S becomes about n
2
. And then, S/Z is about n

2
/n!. For example, as for 

n = 50, S/Z is about 1/10
61

. Therefore, the polynomial time process becomes possible. 
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