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Abstract

The aim of this paper is to introduce the Heaviside step function on a bulge
function and formulate the Elzaki transform of the Heaviside step functionof a
bulge function by applying the Power series expansion.
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1 Introduction

Some problems in applied mathematics and physics can be solved by using ELzaki
transform. In mathematics, Elzaki transform can be appliedto find a solution of the
linear ordinary andpartial differential equations with constantcoefficient and variable
coefficients. In addition, Elzakitransforms ofderivatives have been studied in many
ways to solve the ODEs. Ig. Cho andHj. Kim [12] showed that Laplace transform of
derivative can be expressedby an infinite series or Heaviside function. T. Lee and H.
Kim [13] foundthe representation of energy equation by Laplace transform.

In the resent years, . P. Haarsa and S. Pothat [6] introduce the Heaviside step function
on a bulge function and formulate the Laplace transform of the Heaviside step
function of a bulge function by applying the Power series expansion

In this paper,we introduce the Heaviside step function on a bulge function and
formulateElzaki transform of the Heaviside step function of a bulge function
byapplying the Power series expansion.
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We introduce the study by handing out the Elzaki transform, Heaviside
stepfunction and the Power series expansion which can be used our study.This
method is illustrated by giving lemma already described in [6].

Definition 1.
Elzaki Transform [2]. Given a function f(t) defined for all t > 0, Elzaki transform of
f is the function T defined as follow:

ELF(0,v] = T() = v [} f(Desdt, v € (ky, ky) &)

for all values ofs for which the improper integral converges.
The non-homogeneous differential equation with constant coefficientsof the
form,

dny dn— ly dn—Z

a n2dn2

n on +- +a1d ta=f(x) (2

is called the higher order non-homogeneous linear differential equations. In thispaper,
we study the non-homogeneous second order differential equation with,a bulge
function in the form,

(t-n?
y”+W2y=f(t)={e_ 2 ,0<t<6
t,t>6

Elzaki transform of the first and second derivatives are expressed respectively

by:
E{y} = T2 —vf (0andE{y'} = T2~ £(0) — vf (0)
The Power series expansion ofe ‘gis derived by:
e —er e i+ e s (-2+ ;) e s (-3+ g) t3 (3)
Lemma 1.

(t=1?
The Elzaki transform of the bulge function e™ =z is expressed by,

t-n? 12
Elem s = olv? + 1o + (<14 Dot + (<31 + P’ ()

Heaviside step function of a bulge function of a piecewise continuous function
is given by:
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(t-1?

f(t):{e_ 2z ,0<t<é
t,t>46

Is expressedby

_(t=D? _(&=n?
fWH=e =z +tult—06)—e =z u(t—295) (5)
wherea, § are constants.

Lemma 2.

Elzaki transform ofe ‘gu(t — &)is expressed by:

E {e“gu(t - 5)} = Ae%sv2 - Ale_76[v3 +8v?] + ABe%S[Zv4 + 2603 + 6%v?] +
ACe%S[6v5 + 65v* + 36203 + §3v?] (6)

Where

Proof
From equation (3) and the Heaviside step function, we have

(t—D2 12 1

2 2 1 12
2ltu(t —8) +e 2 (_E + 3) t2u(t — &)

ez u(t—6)=e zu(t—6)+e

12

+e Tz (—%+§) t3u(t — &) ©)
Therefore, by takingElzaki transform to equation (7), we obtain:

E {e_gu(t - 5)} = [ E{u(t — 8)} + LIE{tu(t — 8)} + LILE{E?u(t — 6)) + LLEE u(t — 6))

-8 -8 -5
= Aevv? + AleV [v3 + §v?] + ABeV [2v* + 26v3 + §2v?]

-5

+ACeV [6v° + 65v* + 36%v3 + §3v?] = k(8)

Where
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2 Main Result

Lemma 3.

Elzaki transform of Heaviside step function of a bulgefunction of a piecewise
continuous function

_(-n?
f(t):{e 2z ,0<t<§
t,t> 90

can be expressed by
-8
Alv?2 + 3 + (1 + P)v* + (=31l + B)v®] + eV [v3 + 6v?] + k 9)
wherea, § are constants.

Proof.
By taking the Elzaki transform to equation (5) and lemmaz2, we have

E{f()}=E {e‘(t_zl)z} +E {[t - e_g] u(t — 6)}

(t-1?

(t-1?
=E{e_ 2 }+E{tu(t—6)}—E{e“ 2 u(t—6)} =L[v?+ 1+ (—1+
-5
P)v* + (=31 + B)v?] + eV [v® + 6v?] — (g + a, + a5 + a,) (10)
Where
-5 - -
a, = Levv? a, = LleV[v? + 6v?], a; = [ LeV [2v* + 26v3 + §%v2?],
-5
a, = eV [6v° + 66v* + 36%v3 + §3v?]

Lemma 4.
The solution of the non-homogeneous differential equation withconstant coefficients,

(t-p?

f(t):{e_ 2z ,0<t<§
t,t>96

Wherey (0) = wy, ¥'(0) = w;.is expressed by:

t212 1ed

y(t) :W0coswt+%sinwt+1“1[1+lt——+———+—]+k1+k2(11)

-5
Wherew ,wgyand w; are constant. k; = E~1 {67[1)3 + SUZ]},kZ = E~Y{K}
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Proof.
By taking the Elzaki transform to the non-homogeneous differentialequation with
constant coefficients and the Heaviside step function and lemma3. we obtain:

E{yvz_(t)} —wo —vwy + w2E{y(t)} = E{Heavisidestepfuctionof f(t)},
Or
o wpv? w,v3 (L L C T A A EL N X
Eb®)= 1+w?v? 1+ w?pd +4 1+lt_?+7_?+7 +evvt+avi+K

(12)

The inverse Elzaki transform can be used to equation (12) to obtain
thesolution of the non-homogeneous differential equation with the Heaviside
stepfunction as:

(t) = t+ Dsinwe+4|1+1t t2+tzl2 lt3+l3t3 +ki+k
y(©) = wo coswt +—~sinw 5 > i c 1tk
(13)

Where

-5
k, = E-1 {eV[v3 + 51;2]}, k, = E-Y{K)

3 Conclusion

In this paper, we introduce the Heaviside step function on a bulge functionand
formulate Elzaki transform of the Heaviside step function of a bulgefunction. And
also we discovered the method to solve theNon-homogeneous second order
differential equation with a bulge function involved the Heaviside step function.
Elzaki transform, the inverse Elzakitransform and the Power series expansion are used
in this method.
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