2 - Outer Independent Monophonic Domination Number of a Graph

¹P. Arul Paul Sudhahar

Department of Mathematics, Rani Anna Govt. College (W), Tirunelveli – 627 008, Tamilnadu, India.

²A. J. Bertilla Jaushal

Department of Mathematics, Nanjil Catholic College of Arts and Science, Kaliyakkavilai – 629 153, Kanyakumari District, Tamil Nadu, India. Manonmaniam Sundaranar University, Tirunelveli -627 012, Tamil Nadu, India.

Abstract

We initiate the study of 2 - outer independent monophonic domination in graphs. A set of vertices M of a graph G is called a 2- outer independent monophonic dominating set of G if M is a monophonic set and every vertex of V(G)-M has at least 2 neighbors in M and the set G(G)-M. The minimum cardinality of all 2 outer independent monophonic dominating sets of M is called the 2 - outer independent monophonic domination number and is denoted by $\gamma_{2m}^{oi}(G)$. For every pair k,p of integers with $1 \le k \le p$, there exists a connected graph $1 \le k \le p$ of order $1 \le k \le p$ and $1 \le k \le p$ of any positive integers $1 \le k \le p$ and $1 \le k \le p$ of integers $1 \le k \le p$ and $1 \le k \le p$ of order $2 \le k \le p$ or order $2 \le k \le p$ of integers $2 \le k \le p$ of any positive integers $2 \le k \le p$ of order $2 \le k \le p$ or order $2 \le k \le p$ order $2 \le k \le$

Keywords: 2 - outer independent monophonic dominating set, 2 - outer independent monophonic domination number.

AMS Subject classification: 05C12

1. INTRODUCTION

Let G = (V, E) be a graph and n be the number of vertices and m be the number of edges. Thus the cardinality of V(G) = m and the cardinality of E(G) = n. We consider a finite undirected graph without loops or multiple edges. For the basic graph theoretic notations and terminology we refer to Buckley and Harary. For vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u - v path in $G \cdot A \cdot u - v$ path of length d(u, v) is called a u - v geodesic.

The neighbourhood of a vertex v is the set N(v) consisting of all vertices which are adjacent with v. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighbourhood. A vertex v is an extreme vertex if the subgraph induced by its neighbourhood is complete. A vertex v in a connected graph G is a cut vertex of G, if G - v is disconnected. A vertex v in a connected graph G is said to be a semi-extreme vertex if $\Delta(\langle N(v) \rangle) = |N(v)| - 1$. A graph G is said to be semi-extreme graph if every vertex of G is a semi-extreme vertex. An acyclic graph is called a tree.

A subset of V(G) is independent if there is no edge between any two vertices of this set. The independence number of a graph G, denoted by $\alpha(G)$, is the maximum cardinality of an independent subset of the set of vertices of G. A monophonic set of G is a set $M \subseteq V(G)$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in G. The monophonic number G of G is the minimum order of its monophonic sets and any monophonic set of order G is a minimum monophonic set of G. We say that a subset of G is independent if there is no edge between any two vertices of this set. The independence number of a graph G, denoted by G is the maximum cardinality of an independent subset of the set of vertices of G. A subset G is a dominating set of G if every vertex of G is a least two neighbors in G. The domination (2-domination, respectively) number of a graph G, denoted by G is G in the minimum cardinality of a dominating (2-dominating, respectively) set of G.

2. 2 - OUTER INDEPENDENT MONOPHONIC DOMINATION NUMBER OF A GRAPH

Definition 2.1 A monophonic set $M \subseteq V(G)$ is said to be a 2 outer independent monophonic dominating set, abbreviated 2-OIMDS if it is a monophonic set and $\langle V(G) - S \rangle$ has at least 2 neighbours in S and V(G) - S is independent. The minimum cardinality of a 2 - outer independent monophonic dominating set, denoted by $\gamma_{2m}^{oi}(G)$ is called the 2 - outer independent monophonic domination number of G.

3

Example 2.2 For the graph given in Fig.2.1, it is clear that $M_1 = \{v_1, v_5\}$ is the monophonic set of G so that m(G) = 2. It is verified that the set $M_2 = \{v_1, v_4, v_5\}$ is the minimum 2 - outer independent monophonic dominating set so that $\gamma_{2m}^{oi}(G) = 3$.

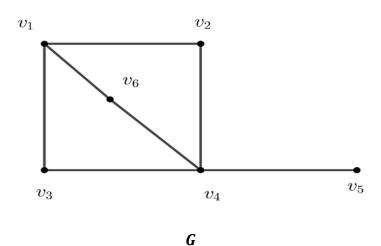


Fig 1.1

3. PRELIMINARY RESULTS

Proposition 3.1. Let G be a graph. Then

- (i) $\gamma_{2m}^{oi}(G) \ge \gamma_m(G)$
- (ii) $\gamma_{2m}^{oi}(G) \ge \gamma_m^{oi}(G)$

Proof. (i) Every monophonic domination set of a graph lies in the 2- outer independent monophonic dominating set of a graph and thus $\gamma_m(G) \leq \gamma_{2m}^{oi}(G)$.

(ii) Every 2 - outer independent monophonic dominating set is a outer independent monophonic dominating set and so $\gamma_m^{oi}(G) \leq \gamma_{2m}^{oi}(G)$.

Theorem 3.2. For the complete graph K_p , $p \ge 2$, $\gamma_{2m}^{oi}(K_p) = p$.

Proof. Since every vertex of the complete graph K_p , $p \ge 2$ is an extreme vertex, the vertex set of K_p is the unique 2-OIMD set of K_p . Thus $\gamma_{2m}^{oi}(K_p) = p$.

Theorem 3.3. Let G be a connected graph of order $p \ge 2$, then $\gamma_{2m}^{oi} = p$ if and only if G is the complete graph on p vertices.

Proof. Suppose $G = K_p$. Then by theorem 2.2, $\gamma_{2m}^{oi} = p$. Conversely let $\gamma_{2m}^{oi} = p$. Suppose that G is not a complete graph, then $\gamma_{2m}^{oi} \leq p-1$, which is a contradiction.

Theorem 3.4. For the complete bipartite graph $G = K_{p,q}$

- $\gamma_{2m}^{oi}(G)=2 \text{ if } p=q=1$ (i)
- $\gamma_{2m}^{oi}(G) = n \text{ if } p = 1, q \ge 2$ (ii)
- $\gamma_{2m}^{oi}(G) = \min\{p, q\} \text{ if } p, q \geq 2$ (iii)

Observation 3.5. Every pendant vertex of a graph G belongs to every $\gamma_{2m}^{oi}(G)$ -set.

Observation 3.6. Each simplicial vertex of G belongs to every 2 - outer independent monophonic dominating set of G.

Proposition 3.7. Let *G* be a connected graph. We have

- $\gamma_{2m}^{oi}(G) = 2 \text{ iff } G \in \{P_2, P_3, C_4\}$ $\gamma_{2m}^{oi}(G) = n \text{ iff } G = P_2.$ (i)
- (ii)

Proof. Obviously $\gamma_{2m}^{oi}(P_2) = 2 = n$ and $\gamma_{2m}^{oi}(P_3) = 2$, $\gamma_{2m}^{oi}(C_4) = 2$.

Assume that for some graph G, we have $\gamma_{2m}^{oi}(G) = 2$. Let M be a $\gamma_{2m}^{oi}(G)$ -set. If all vertices of G belong to the set M, then the graph G has two vertices. Hence $G = P_2$. Let x be a vertex of V(G) - M. The vertex x has to be dominated twice, thus $d(x) \ge 2$. Also, the vertex x has to be independent, the vertex x cannot have more than 2 neighbours in G. Thus $G = P_3$.

Assume that for a cycle C_4 , we have $\gamma_{2m}^{oi}(G) = 2$. Let $M = \{u, y\}$ be a $\gamma_{2m}^{oi}(G)$ -set. Also $\{x, z\}$ be a vertex of V(G) - M. The vertices of V(G) - M has to be dominated twice, also the vertices has to be independent. Thus $G = C_4$.

4. BOUNDS

Proposition 4.1. Let G be a graph. For every vertex v of G, we have $\gamma_{2m}^{oi}(G) - 1 \le$ $\gamma_{2m}^{oi}(G-v) \le \gamma_{2m}^{oi}(G) + d_G(v) - 1.$

Proof. Let M be a $\gamma_{2m}^{oi}(G)$ -set. If $\notin M$, then observe that M is a 2 - OIMDS of the graph G - v. Now assume that $v \in M$. Also, $M \cup N_G(v) \setminus \{v\}$ is a 2 - OIMDS of the graph G-v . Therefore, $\gamma_{2m}^{oi}(G-v) \leq |M \cup N_G(v) \backslash \{v\}| \leq |M\{v\}| + |N_G(v)| =$ $\gamma_{2m}^{oi}(G) + d_G(v) - 1.$

Now, let M' be any $\gamma_{2m}^{oi}(G-v)$ set. It is easy to see that $M' \cup \{v\}$ is a 2 - OIMDS of the graph G.Thus $\gamma_{2m}^{oi}(G) \leq \gamma_{2m}^{oi}(G-v) + 1$.

Proposition 4.2.Let G be a graph. For every edge e of G we have

$$\gamma_{2m}^{oi}(G-e) \in \big\{\gamma_{2m}^{oi}(G)-1, \gamma_{2m}^{oi}(G), \gamma_{2m}^{oi}(G)+1\big\}.$$

Proof. Let M be a $\gamma_{2m}^{oi}(G)$ - set and let e=xy be an edge of G. Since the set V(G)-M is independent, some of the vertices x and y belongs to the set M. Without loss of generality we may assume that $x \in M$. If $y \in M$, then it is easy to see that M is a 2-OIMDS of the graph G-e. If $y \notin M$, then $M \cup \{y\}$ is a 2-OIMDS of G-e. Thus $\gamma_{2m}^{oi}(G-e) \leq \gamma_{2m}^{oi}(G) + 1$. Now let M' be a $\gamma_{2m}^{oi}(G-e)$ -set. If some of the vertices x and y belongs to the set M', then it is easy to observe that $M' \cup \{x\}$ is a 2-OIMDS of the graph G. Therefore $\gamma_{2m}^{oi}(G) \leq \gamma_{2m}^{oi}(G-e) + 1$.

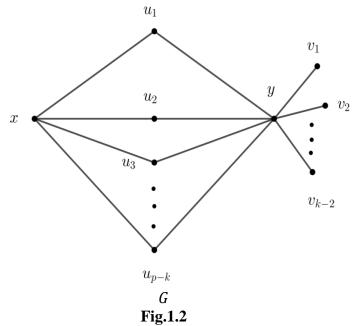
Proposition. 4.3. Let G be a graph. If $e \notin E(G)$, then

$$\gamma_{2m}^{oi}(G+e) \in \{\gamma_{2m}^{oi}(G) - 1, \gamma_{2m}^{oi}(G), \gamma_{2m}^{oi}(G) + 1\}.$$

5. REALISATION RESULTS

Theorem 5.1. For every pair k, p of integers with $3 \le k \le p$, there exists a connected graph G of order p such that $\gamma_{2m}^{oi}(G) = k$.

Proof. Let $V(K_2) = \{x, y\}$ and $V(K_{p-k}) = \{u_1, u_2, ..., u_{p-k}\}$. Let $H = K_{p-k} + K_2$. Let G be the graph obtained in Fig.1.2 from H by adding k-2 new vertices $\{v_1, v_2, ..., v_{k-2}\}$ and joining each vertex $v_i (1 \le i \le k-2)$ with y. Let $M = \{v_1, v_2, ..., v_{k-2}\}$ be the set of all extreme vertices of G. It is clear that M is not a monophonic set of G. Also every edge monophonic set contains M.

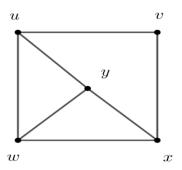


Clearly $M_1 = M \cup \{x\}$ is the unique minimum monophonic set and monophonic domination set of G. But $V(G) - M_1$ is independent. Therefore, $M_2 = M_1 \cup \{y\}$ is the 2 - OIMDS of G, since $V(G) - M_2$ is dominated twice and so that $\gamma_{2m}^{oi}(G) = k - 2 + 1 + 1 = k$.

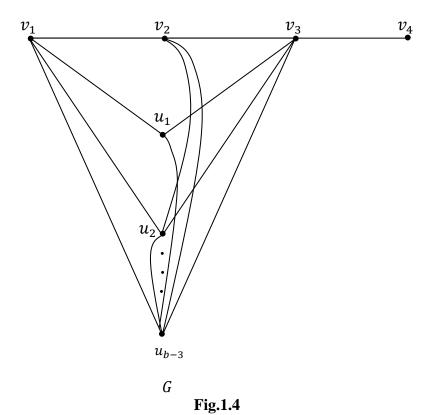
Theorem 5.2. For any positive integers $2 \le a \le b$, there exists a connected graph G such that m(G) = a and $\gamma_{2m}^{oi}(G) = b$.

Proof. If a = b, take $G = K_a$. Then by theorem 2.2, m(G) = a, $\gamma_{2m}^{oi}(G) = b$.

If a=2,b=3, then for the graph G given in Fig 1.3. m(G)=2 and $\gamma_{2m}^{oi}(G)=3$. If $a=2,b\geq 4$, let G be a graph given in Fig.1.4 obtained from the path on three vertices $P:v_1,v_2,v_3,v_4$ by adding b-3 new vertices $u_1,u_2,...,u_{b-3}$ and joining each $u_i(1\leq i\leq b-3)$ with v_1,v_2,v_3 , each $u_i's$ are adjacent to each other. It is clear that $M=\{v_1,v_3\}$ is a monophonic set of G so that m(G)=2=a. Since V(G)-M is independent, $M_1=M\cup\{v_2,u_1,u_2,...,u_{b-3}\}$ is the G-OIMDS of G, so that G=0 independent, G=1 independent, G=2 independent, G=3 independent, G=3 independent, G=3 independent, G=4 independent, G=5 independent, G=6 independent G=6 independent G=6 independent G=6 independent G=7 independent G=7 independent G=7 independent G=7 independent G=8 independent G=9 independent G9 inde



G **Fig.1.3**



If $a \geq 3$, $b \geq 4$, $b \neq a+1$. Let G be the graph given in Fig 1.5, obtained from the path on three vertices $P: v_1, v_2, v_3$ by adding the new vertices $u_1, u_2, ..., u_{b-a-1}$ and $x_1, x_2, ..., x_{a-1}$ and joining each $u_i (1 \leq i \leq b-a-1)$ with v_1, v_2, v_3 and also joining each $x_i (1 \leq i \leq a-1)$ with v_1 and v_2 . Also each u_i 's are adjacent to each other. First we show that m(G) = a. Since each $x_i (1 \leq i \leq a-1)$ is a simplicial vertex of G, by observation 3.6, each $x_i (1 \leq i \leq a-1)$ belongs to every monophonic set of G. Let $X = \{x_1, x_2, ..., x_{a-1}\}$. Then X is not a monophonic set of G and so $m(G) \geq a$. However, $X_1 = X \cup \{v_3\}$ is a monophonic set of G and so m(G) = a. Next we show that $\gamma_{2m}^{oi}(G) = b$. Since $V(G) - X_1$ is not independent and let $X_2 = X_1 \cup \{v_2, u_1, u_2, ..., u_{b-a-1}\}$. It is clear that X_2 is the 2 - OIMDS of G, so that $\gamma_{2m}^{oi}(G) = a + b - a - 1 + 1 = b$.

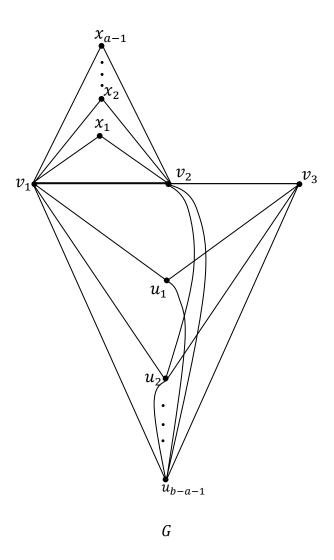


Fig.1.5

If $a \ge 3$, $b \ge 4$, b = a + 1. Let C_4 : v_1, v_2, v_3, v_4, v_1 be a cycle of order 4. Let G be a graph obtained from C_4 by adding the new vertices $x_1, x_2, ..., x_{a-1}$ and joining each $x_i (1 \le i \le a - 1)$ to v_1 . The graph G is given in Fig 1.6. Let $X = \{x_1, x_2, ..., x_{a-1}\}$ be the set of simplicial vertices of G. It is clear that G is contained in every monophonic set of G by observation 3.6. It is easily seen that G is not a monophonic set of G. Let G is the monophonic set of G and so that G is the monophonic dominating set of G and G is independent and so that G is the 2 - OIMDS of G, so that G is that G is independent and so that G is

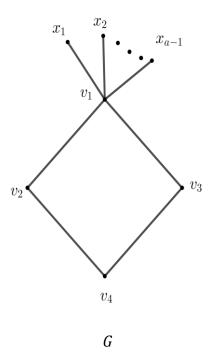


Fig.1.6

REFERENCES

- [1] Dr. P. Arul Paul Sudhahar, A.J.Bertilla Jaushal, The Total Outer Independent Monophonic Dominating Parameters in Graphs, *Asian Research Journal of Mathematics*, 14(1),2019.
- [2] Dr. P. Arul Paul Sudhahar, A.J.Bertilla Jaushal, The Semi-Total Monophonic Dominating Number of A Graph, *Asian Journal of Mathematics and Computer Research*, 26 (2),2019.
- [3] F. Harary, Graph Theory, Narosa Publishing House (1998).
- [4] Marcin Krzywkowski, Doost Mojdeh and Maryem Raoofi,Outer -2-independent Domination in Graphs, *Proc. Indian Acad. Sci. (Math.Sci.)*, 126(1), February 2016.
- [5] Nader Jafari Rad, Marcin Krzywkowski, 2-Outer independent Domination in Graphs, *Natl.Acad. Sci. Lett.*, 38(3), 2015.
- [6] Total Outer-independent domination in Graphs, marcin.krzywkowski@gmail.com