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Abstract 

 

The study looks at a novel probabilistic entropy for a probability distribution 

𝑃 = {𝑝1, 𝑝2, … … , 𝑝𝑛} and its characteristics. Using a non-Shannon measure of 

entropy, we additionally establish the noisy image's threshold value. 

 

 

Introduction 

Entropy is a term used to describe the degree of disorder in a physical system. Shannon 

reformulated the Boltzmann/Gibbs entropy notion as a measure of uncertainty about 

the mathematical content of a system in [15]. He proposed a formula for calculating the 

quantity of information a process generates in terms of numbers. 

 

According to this definition, a random event A is said to contain 𝐼(𝐴) = 𝑙𝑛[1 𝑃(𝐴)⁄ ] =

−𝑙𝑛[𝑃(𝐴)] units of information if it occurs with probability 𝑃(𝐴). 𝐼(𝐴) is referred to 

as the self-information of event A. The relationship between an event's self-information 

and probability is inverse. 𝐼(𝐴) = 0 and no information is given to it if 𝑃(𝐴) = 1. In 
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this case, the event's range of uncertainty is zero. Therefore, if the event constantly 

happens, says that it has happened would not transfer any information. By saying that 

the event has occurred, some information can be explained if P(A) = 0.8[14]. 

The level of uncertainty there is in a signal or in a random occurrence is essential to the 

information theory concept of entropy. Consider the amount of information that the 

signal can carry as a different point of view [8]. Randomness can be measured by 

entropy. 

Let 𝑝1, 𝑝2, … … 𝑝𝑘 represent the discrete source's probability distribution. Consequently, 

0 ≤ 𝑝𝑖 ≤ 1, 𝑖 = 1,2, … … . , 𝑘 and ∑ 𝑝𝑖
𝑘
𝑖=1 = 1 where k is the total number of states. The 

probability distribution is frequently used to determine the entropy of a discrete source. 

The definition of the Shannon entropy is 

 

𝐻(𝑃) = − ∑ 𝑝𝑖𝑙𝑛(𝑝𝑖)

𝑘

𝑖=1

 

 

It has been established that this formalism is limited to the Boltzmann-Gibbs-Shannon 

(BGS) statistics' valid domain. When useful microscopic interactions and microscopic 

memory are short-ranged, these statistics appear to describe nature. Extensive systems 

are usually referred to as systems that follow BGS statistics. If we consider that a 

physical system can be divided into two statistically independent subsystems 𝐴 and 𝐵, 

the probability of the composite system [23] is 𝑝𝐴+𝐵 = 𝑝𝐴. 𝑝𝐵, it has been proven that 

the Shannon entropy has the extended property (additive): 

 

𝐻(𝐴 + 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) (1.1) 

 

and 

 

𝐻𝛼(𝐴 + 𝐵) = 𝐻𝛼(𝐴) + 𝐻𝛼(𝐵) + 𝜑(𝛼). 𝐻𝛼(𝐴). 𝐻𝛼(𝐵), (1.2) 

 

Where 𝜑(𝛼) is depends on the entropy index. In Shannon entropy 𝜑(𝛼) = 1. 

The generalised distribution's Rènyi entropy[12] can be expressed as follows: 

 

𝐻𝛼
𝑅(𝑃) =

1

1−𝛼
𝑙𝑛 ∑ (𝑝𝑖)

𝛼𝑘
𝑖=1 , 𝛼 > 0, (1.3) 
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When Havrada and Charvat [5] originally developed non-additive entropy, it was as 

follows: 

 

𝐻𝛼(𝑃) =
[∑ 𝑝𝑖

𝛼𝑛
𝑖=1 ]−1

21−𝛼−1
, 𝛼 ≠ 1, 𝛼 > 0 (1.4) 

 

Renyi's [12] measure was further generalised by Kapur [7] to generate an entropy 

measure of order 𝛼 and 𝛽 is 

 

𝐻𝛼,𝛽(𝑃) =
1

1−𝛼
𝑙𝑛 (

∑ 𝑝𝑖
𝛼+𝛽−1𝑛

𝑖=1

∑ 𝑝
𝑖
𝛽𝑛

𝑖=1

) , 𝛼 ≠ 1, 𝛼 > 0, 𝛽 > 0, 𝛼 + 𝛽 − 1 > 0 (1.5) 

 

Brissaud [1], Chakrabarti [2], Chen [3], Garbaczewski [4], Herremoes [6], Lavenda [9], 

Nanda and Paul [10], Rao, Yunmei and Wang [11], Sergio [13], Sharma and Taneja 

[16], Verma [17, 18, 19] and many others have analysed and produced numerous 

alternative probabilistic measures of entropy. Applications of the findings from 

different authors have been made to different mathematical science domains. We 

present a new generalised probabilistic information theoretic measure in this study. 

 

 

2. Our Work 

2.1 Based on Probability Distributions, a Novel Generalised Information 

Theoretic Tool 

This section examines the key characteristics and desirable attributes of a new 

generalised information measure we propose for a probability distribution 𝑃 =

{(𝑝1, 𝑝2, … . . , 𝑝𝑛), 𝑝𝑖 ≥ 0, ∑ 𝑝𝑖 = 1𝑛
𝑖=1 }. This generalised entropy is determined by the 

following mathematical expression, which depends on n real parameters 𝛼1, 𝛼2, … . , 𝛼𝑛. 

 

𝐻𝛼,𝛼1,……𝛼𝑛
𝑛 (𝑃) =

𝑙𝑛 ∑  𝑝𝑖
𝛼+𝛼1+⋯….+𝛼𝑛𝑛

𝑖=1

1−𝛼−𝛼1−⋯…−𝛼𝑛
 (2.1.1) 

 

Where 

𝛼 + ∑ 𝛼𝑖 ≠ 1,𝑛
𝑖=1 𝛼 + ∑ 𝛼𝑖

𝑛
𝑖=1 > 1 𝑎𝑛𝑑 𝛼 ≠ 1, 𝛼 > 0, 𝛼𝑖 ≥ 0 (2.1.2) 

 

If ∑ 𝛼𝑖
𝑛
𝑖=1 = 0, then 𝛼 ≠ 1, 𝛼 > 0. 
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Thus, The recommended measure (1.1) is evidently transformed as 

 

𝐻𝛼
𝑛(𝑃) =  

𝑙𝑛 ∑  𝑝𝑖
𝛼𝑛

𝑖=1

1−𝛼
 (2.1.3) 

 

It represents the entropy of order as measured by Verma [18] and Renyi’s entropies 

[11]. We then look at a few important features of this generalised measure. The measure 

(2.1.1) satisfies the criteria listed below: 

(i)  It is a continuous function of 𝑝1, 𝑝2, … . . , 𝑝𝑛, meaning that minor changes in 

𝑝1, 𝑝2, … . . , 𝑝𝑛 cause a small change in it. 

(ii)  It is a permutationally symmetric function of 𝑝1, 𝑝2, … . . , 𝑝𝑛, meaning that it 

remains unchanged when 𝑝1, 𝑝2, … . . , 𝑝𝑛 are permuted among one another. 

 

(iii)  𝐻𝛼,𝛼1,……𝛼𝑛
𝑛 (𝑃) ≥ 0 

 

(iv)  𝐻𝛼,𝛼1,……𝛼𝑛
𝑛+1 (𝑝1, 𝑝2, … … , 𝑝𝑛, 0) =

𝑙𝑛 ∑  𝑝𝑖
𝛼+𝛼1+⋯….+𝛼𝑛𝑛

𝑖=1

1−𝛼−𝛼1−⋯…−𝛼𝑛
=𝐻𝛼,𝛼1,……𝛼𝑛

𝑛 (𝑃) 

 

According to this property, the inclusion of an impossible event with probability zero 

has no effect on entropy. 

(v)  𝐻𝛼,𝛼1,……𝛼𝑛
𝑛 (𝑃) must reach its maximum value because it is an entropy measure. 

We go about finding the largest value as follows: 

 

Let 

𝑙𝑛 ∑  𝑝𝑖
𝛼+𝛼1+⋯+𝛼𝑛𝑛

𝑖=1

1 − 𝛼 − 𝛼1 − ⋯ . −𝛼𝑛
− 𝜆 (𝑙𝑛 ∑  𝑝𝑖

𝑛

𝑖=1

) 

Then, we have 
𝜕𝑓

𝜕𝑝1
=

1

𝑝1
(

𝛼 + 𝛼1 + ⋯ . +𝛼𝑛

1 − 𝛼 − 𝛼1 − ⋯ − 𝛼𝑛
− 𝜆) 

 
𝜕𝑓

𝜕𝑝2
=

1

𝑝2
(

𝛼 + 𝛼1 + ⋯ . +𝛼𝑛

1 − 𝛼 − 𝛼1 − ⋯ − 𝛼𝑛
− 𝜆) 

 

. 

 

. 
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. 

 

. 

 
𝜕𝑓

𝜕𝑝𝑛
=

1

𝑝𝑛
(

𝛼 + 𝛼1 + ⋯ . +𝛼𝑛

1 − 𝛼 − 𝛼1 − ⋯ − 𝛼𝑛
− 𝜆) 

 

For maximum value,we take 

 
𝜕𝑓

𝜕𝑝1
 =

𝜕𝑓

𝜕𝑝2
= ⋯ =

𝜕𝑓

𝜕𝑝𝑛
= 0 

 

Thus  

∑ 𝑝𝑖 = 1𝑖=1
𝑛  gives 𝑝1 = 𝑝 = 𝑝𝑛 =

1

𝑛
 

 

In light of this, we can see that the generalised entropy measure (2.1.1) has a maximum 

value, which is subject to the natural constraint that ∑ 𝑝𝑖 = 1𝑛
𝑖=1  and obtains when 

𝑝1 = 𝑝2 = … . . = 𝑝𝑛 =
1

𝑛
. This outcome is the ideal one. 

(vi) An increasing function of n determines the maximum value. To prove this 

conclusion, we have, 

 

𝑓(𝑛) =
𝑛1−𝛼−𝛼1−⋯.−𝛼𝑛

1 − 𝛼 − 𝛼1 − ⋯ … − 𝛼𝑛
 

Thus 

 

𝑓′(𝑛) =
1

𝑛𝛼+𝛼1+⋯..+𝛼𝑛
> 0 

 

Since  

𝛼 + ∑ 𝛼𝑖 ≠ 1,

𝑛

𝑖=1

𝛼 + ∑ 𝛼𝑖

𝑛

𝑖=1

> 1 

Therefore, the maximum value is an increasing function of n. 

(vi) Additive property: To show that the measure (2.1.1) is additive, we consider 

 



98  Rohit Kumar Verma and Som Kumari 

 

 

𝐻𝛼,𝛼1,…,𝛼𝑛

𝑛,𝑚 (𝑃 ∪ 𝑄) =
𝑙𝑛 ∑ ∑ (𝑝𝑚

𝑗=1 𝑖
𝑞𝑗)𝛼+𝛼1+⋯+𝛼𝑛𝑛

𝑖=1

1 − 𝛼 − 𝛼1 − ⋯ . −𝛼𝑛
 

 

= (
𝑙𝑛 ∑ 𝑝𝑖

𝛼+𝛼1+⋯+𝛼𝑛𝑛
𝑖=1

1 − 𝛼 − 𝛼1 − ⋯ … . −𝛼𝑛
) (𝑙𝑛 ∑  𝑞𝑗

𝛼+𝛼1+⋯.+𝛼𝑛

𝑚

𝑗=1

) + (
𝑙𝑛 ∑  𝑝𝑖

𝛼+𝛼1+⋯.+𝛼𝑛𝑛
𝑖=1

1 − 𝛼 − 𝛼1 − ⋯ . −𝛼𝑛
) 

 

+ (
𝑙𝑛 ∑  𝑞𝑗

𝛼−𝛼1−⋯.−𝛼𝑛𝑚
𝑗=1

1 − 𝛼 − 𝛼1 − ⋯ − 𝛼𝑛
) 

 

= (1 − 𝛼 − 𝛼1 − ⋯

− 𝛼𝑛) (
𝑙𝑛 ∑  𝑝𝑖

𝛼+𝛼1+⋯+𝛼𝑛𝑛
𝑖=1

1 − 𝛼 − 𝛼1 − ⋯ … . −𝛼𝑛
) (𝑙𝑛 ∑

 𝑞𝑗
𝛼+𝛼1+⋯.+𝛼𝑛

1 − 𝛼 − 𝛼1 − ⋯ − 𝛼𝑛

𝑚

𝑗=1

) 

 

+ (
𝑙𝑛 ∑  𝑝𝑖

𝛼+𝛼1+⋯.+𝛼𝑛𝑛
𝑖=1

1 − 𝛼 − 𝛼1 − ⋯ . −𝛼𝑛
) + (

𝑙𝑛 ∑  𝑞𝑗
𝛼−𝛼1−⋯.−𝛼𝑛𝑚

𝑗=1

1 − 𝛼 − 𝛼1 − ⋯ − 𝛼𝑛
) 

 

= (1 − 𝛼 − 𝛼1 − ⋯ − 𝛼𝑛)𝐻𝑛(𝑃). 𝐻𝑚(𝑄) + 𝐻𝑛(𝑃) + 𝐻𝑚(𝑄) (2.1.4) 

 

which shows that the generalized entropy (2.1.1) is additive. 

 

2.2 RENYI ENTROPY-BASED THRESHOLD VALUE SELECTION 

A new image is generated by thresholding based on the previous image represented by 

f. It effectively makes a new thresholded image by using a different function, g(x,y). 

For every pixel value, a threshold is identified. The new value of the current pixel is 

calculated by comparing this threshold to the original image. The following equation 

[7] can be used to express g. 

 

𝑔(𝑥, 𝑦) = {
0 𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝑡
1, 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑡

, 𝑡 𝑖𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒. 

 

Entropy evaluates the normality of the particular grey level distribution of an image 

when it is used in image processing techniques. The Renyi entropy as defined in (2.1.1) 

will show how much the intensity distribution is normal when the entire image is taken 

into account. The concept can be applied to picture segmentation, which is the division 
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of an image's foreground and background parts. Entropy is calculated for both regions, 

and the outcome indicates the way the segmentation occurred. For each region, two 

priori equations [20, 21, 22] are required in this situation. 

Every grey level value is a potential candidate to be the threshold value when 

performing maximum entropy thresholding on images. Each value will be used to 

separate the pixels into two groups based on their affinity, as less or larger than the 

threshold value (t), and their respective grey levels. 

Let ℎ𝑡 be the grey level histogram and 𝑝𝑡 be the normalised histogram, where 𝑝𝑡 =
ℎ𝑡

(𝑀 × 𝑁)⁄  is the normalised histogram and 𝑝1, 𝑝2, … . , 𝑝𝑡, 𝑝𝑡+1, … . , 𝑝𝑘 is the 

probability distribution for an image with k grey levels.Two probability distributions, 

one for the object itself (Type A) and the other for the background (Type B), can be 

derived from this distribution, and they are represented as follows: 

 

𝑝𝐴:
𝑝1

𝑃𝐴
,

𝑝2

𝑃𝐴
, … . ,

𝑝𝑡

𝑃𝐴
, 𝑎𝑛𝑑 𝑝𝐵:

𝑝𝑡+1

𝑃𝐵
,

𝑝𝑡+2

𝑃𝐵
, … ,

𝑝𝑘

𝑃𝐵
, (2.2.1) 

 

Where  

 

𝑃𝐴 = ∑ 𝑝𝑖
𝑡
𝑖=1 , 𝑃𝐵 = ∑ 𝑝𝑖

𝑘
𝑖=𝑡+1 , t is the threshold value. (2.2.2) 

 

The entropy of object pixels and the entropy of background pixels can be described as 

follows in terms of the definition of Renyi entropy of order 𝛼: 

 

𝐻𝛼
𝐴(𝑡) =

1

1−𝛼
 𝑙𝑛 ∑ (

𝑝𝑖

𝑃𝐴
)

𝛼
𝑡
𝑖=1  𝛼 > 0 (2.2.3) 

 

𝐻𝛼
𝐵(𝑡) =

1

1−𝛼
 𝑙𝑛 ∑ (

𝑝𝑖

𝑃𝐵
)

𝛼
𝑘
𝑖=𝑡+1  𝛼 > 0 (2.2.4) 

 

Renyi's entropy The threshold value t for the object and background determines how 

entropy, providing the additive property for statistically independent systems. Between 

the two classes (object and background), we aim to maximise the information measure. 

The brightness level t that maximises the function is thought of as the ideal threshold 

value when 𝐻𝛼(𝑡) is maximised. 

 

𝑡𝑜𝑝𝑡 = 𝐴𝑟𝑔 max [(1 − 𝛼)𝐻𝛼
𝐴(𝑡). 𝐻𝛼

𝐵(𝑡) + 𝐻𝛼
𝐴(𝑡) + 𝐻𝛼

𝐵(𝑡)] (2.2.5) 
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The threshold value in (1.4) is equal to the value determined by Shannon entropy when 

𝛼 → 1. Shannon's method is thus included as a particular case in this suggested solution. 

For the best threshold at 𝛼 → 1, the following expression can be employed as a criterion 

function. 

 

𝑡𝑆ℎ
𝑜𝑝𝑡 = 𝐴𝑟𝑔 max [𝐻𝛼

𝐴(𝑡) + 𝐻𝛼
𝐵(𝑡)] (2.2.6) 

 

The Renyi Threshold algorithm, which chooses an appropriate threshold value, may 

now be explained as follows: 

 

Step 1: Input: A noisy image I of size 𝑀 × 𝑁. 

 

Step 2: Let 𝑓(𝑥, 𝑦) represent the pixel's initial grey value at the coordinates (𝑥, 𝑦) and 

calculate the probability distribution 𝑝𝑖. 

 

Step 3: Calculate 𝑃𝐴, 𝑃𝐵, 𝑝𝐴, 𝑎𝑛𝑑 𝑝𝐵 from equation (2.2.1) and (2.2.2). 

 

Step 4: If 0 < 𝛼 < 1 then use Equation (2.2.5) to determine the ideal threshold value 

𝑡𝑜𝑝𝑡 otherwise use Equation (2.2.6) to determine the ideal threshold value 𝑡𝑆ℎ
𝑜𝑝𝑡

. 

 

Step 5: Output: An appropriate threshold value 𝑡𝑜𝑝𝑡 of I for 𝛼 > 0. 

 

 

Conclusion: 

The proposed function, with the exception of additivity and recursivity, satisfies all the 

significant features that Shannon's measure of entropy satisfies, as shown by this study. 

This work presents an effective method for detecting edges in grayscale images using 

the Renyi entropy. The recommended method stands out with standard edge detectors. 
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