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Abstract

The study looks at a novel probabilistic entropy for a probability distribution
P ={py,pz o , Pr} and its characteristics. Using a non-Shannon measure of
entropy, we additionally establish the noisy image's threshold value.

Introduction

Entropy is a term used to describe the degree of disorder in a physical system. Shannon
reformulated the Boltzmann/Gibbs entropy notion as a measure of uncertainty about
the mathematical content of a system in [15]. He proposed a formula for calculating the
quantity of information a process generates in terms of numbers.

According to this definition, a random event A is said to contain I(4) = In[1/P(A)] =
—In[P(A)] units of information if it occurs with probability P(A). I(A) is referred to
as the self-information of event A. The relationship between an event's self-information
and probability is inverse. I(4) = 0 and no information is given to it if P(4) = 1. In
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this case, the event's range of uncertainty is zero. Therefore, if the event constantly
happens, says that it has happened would not transfer any information. By saying that
the event has occurred, some information can be explained if P(A) = 0.8[14].

The level of uncertainty there is in a signal or in a random occurrence is essential to the
information theory concept of entropy. Consider the amount of information that the
signal can carry as a different point of view [8]. Randomness can be measured by

entropy.
Let p1, Dg, on oo Py represent the discrete source's probability distribution. Consequently,
0<p;<1,i=12,.....,.kand ¥, p; = 1 where k is the total number of states. The

probability distribution is frequently used to determine the entropy of a discrete source.
The definition of the Shannon entropy is

k
HP) = = ) piln(p)
i=1

It has been established that this formalism is limited to the Boltzmann-Gibbs-Shannon
(BGS) statistics' valid domain. When useful microscopic interactions and microscopic
memory are short-ranged, these statistics appear to describe nature. Extensive systems
are usually referred to as systems that follow BGS statistics. If we consider that a
physical system can be divided into two statistically independent subsystems A and B,
the probability of the composite system [23] is p4*8 = p4.p?, it has been proven that
the Shannon entropy has the extended property (additive):

H(A+B) = H(A) + H(B) (1.1)
and
Ho(A+ B) = Ho(A) + He(B) + ¢(@). Hy(A). He (B), (1.2)

Where ¢ (a) is depends on the entropy index. In Shannon entropy ¢(a) = 1.
The generalised distribution's Renyi entropy[12] can be expressed as follows:

HE(P) = T In T, (p)™ @ > 0, (13)
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When Havrada and Charvat [5] originally developed non-additive entropy, it was as
follows:

S, Pt
Ha(P) = Zntl

,a+1l,a>0 (1.4)
Renyi's [12] measure was further generalised by Kapur [7] to generate an entropy
measure of order @ and S is

n .0£+B—1
Ha”g(P)=ﬁln<‘=1np—‘3>,a¢1,a>0,ﬁ>0,a+/3—1>0 (1.5)

i=1F]

Brissaud [1], Chakrabarti [2], Chen [3], Garbaczewski [4], Herremoes [6], Lavenda [9],
Nanda and Paul [10], Rao, Yunmei and Wang [11], Sergio [13], Sharma and Taneja
[16], Verma [17, 18, 19] and many others have analysed and produced numerous
alternative probabilistic measures of entropy. Applications of the findings from
different authors have been made to different mathematical science domains. We
present a new generalised probabilistic information theoretic measure in this study.

2. Our Work

2.1 Based on Probability Distributions, a Novel Generalised Information
Theoretic Tool

This section examines the key characteristics and desirable attributes of a new
generalised information measure we propose for a probability distribution P =
{(p1, 02, -, Pn), 0i = 0,27, p; = 1}. This generalised entropy is determined by the
following mathematical expression, which depends on n real parameters a4, @y, ...., a,.

Iny™ p;z+a1+~--....+an
P (o B — (2.1.1)
Where
a+Yi o #FLa+Yaq;>1landa#1,a>0,a; 20 (2.1.2)

If /v, a; =0,thena # 1,a > 0.
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Thus, The recommended measure (1.1) is evidently transformed as

HMP) = D=1 Pe (2.1.3)
1-a

It represents the entropy of order as measured by Verma [18] and Renyi’s entropies

[11]. We then look at a few important features of this generalised measure. The measure

(2.1.1) satisfies the criteria listed below:

() It is a continuous function of py,p,, ....., p,, Meaning that minor changes in
P1, D2, ---- -, Py, CAUSE a small change in it.

(i) It is a permutationally symmetric function of py,p,, .....,p,, Meaning that it
remains unchanged when p,, p,, ....., b, are permuted among one another.

(i) Hgg,,..a,(P) 20

iv) HIEL 0) = I pTT P
(lV) A0, an(plpr' ------ » P )_ 1—a—a;—..—ap —HMa,aq,...... an( )

According to this property, the inclusion of an impossible event with probability zero

has no effect on entropy.
(V) Hge,,...a,(P) must reach its maximum value because it is an entropy measure.

n
Pi)
i=1

( atag+-tay A)
l—a—a;——ay,

We go about finding the largest value as follows:

Let

Iny™ a+ay+-+an
Lict P ~ |
l—a—a;—.—ay

Then, we have
of 1

op1 B P1

of 1( a+a+-.ta, A)
dp, p\l—a—a; = —ay
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of 1( ata+-.ta, /1)
apn pp\l—a—a;——a,

For maximum value,we take

O _0F _ . _3 _,
0p1 0p2 0pn

Thus
P . 1
n pi=1givesp; =p=p, =+

In light of this, we can see that the generalised entropy measure (2.1.1) has a maximum
value, which is subject to the natural constraint that };}.; p; = 1 and obtains when
PL=DP2 = ce..=Pp = % This outcome is the ideal one.

(vi) An increasing function of n determines the maximum value. To prove this
conclusion, we have,

l1-a—ay—.—an
fm) = l—a—a;—...—a,
Thus
, B 1
f (n) - Nnet A1+ tan >0
Since

n n
a+2ai¢1,a+2ai>1
i=1 i=1

Therefore, the maximum value is an increasing function of n.
(vi) Additive property: To show that the measure (2.1.1) is additive, we consider



98 Rohit Kumar Verma and Som Kumari

ISy T (p, q) et

l—a—a;—.—ay

:< nyi 1pla+a1+ . > lnz qa+a1+ g (lnzl 1 pz(x+a1+ +an>

l—a—a; — l—a—a; —.—a,
<an, Lq; ""‘“”)
+
l—a—a;——ay,

Heay,..ay(PUQ) =

=1l-a—a; —

anl ) pzx+a1+ +an m q}05+a1+ ~tan
- ay) In T

l—a—a; —...—ay = —a—a;— " —Qy
+ag+-tan Q=@ = —0n
+<an pita “>+<ln2,1q, v )
1—a—a:1 L=y l—a—a;——a,
=(1l-a—a;——a,)H"(P).H™(Q) + H"*(P) + H™(Q) (2.1.4)

which shows that the generalized entropy (2.1.1) is additive.

2.2 RENYI ENTROPY-BASED THRESHOLD VALUE SELECTION

A new image is generated by thresholding based on the previous image represented by
f. It effectively makes a new thresholded image by using a different function, g(x,y).
For every pixel value, a threshold is identified. The new value of the current pixel is
calculated by comparing this threshold to the original image. The following equation
[7] can be used to express g.

C(0if fy) <t
96 =1 i ey >

t is thresholding value.

Entropy evaluates the normality of the particular grey level distribution of an image
when it is used in image processing techniques. The Renyi entropy as defined in (2.1.1)
will show how much the intensity distribution is normal when the entire image is taken
into account. The concept can be applied to picture segmentation, which is the division
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of an image's foreground and background parts. Entropy is calculated for both regions,
and the outcome indicates the way the segmentation occurred. For each region, two
priori equations [20, 21, 22] are required in this situation.

Every grey level value is a potential candidate to be the threshold value when
performing maximum entropy thresholding on images. Each value will be used to
separate the pixels into two groups based on their affinity, as less or larger than the
threshold value (t), and their respective grey levels.

Let h; be the grey level histogram and p, be the normalised histogram, where p, =
ht/(M x N) is the normalised histogram and pq, Pz, ..., Do Prsts oo P 1S the
probability distribution for an image with k grey levels.Two probability distributions,

one for the object itself (Type A) and the other for the background (Type B), can be
derived from this distribution, and they are represented as follows:

.P1 P2 bt .Pt+1 Pt+2 Pk
A.PA,PA,....,PA,and PBi T (2.2.1)
Where
Py =Xt pi,Ps =YX 1 pi tis the threshold value. (2.2.2)

The entropy of object pixels and the entropy of background pixels can be described as
follows in terms of the definition of Renyi entropy of order a:

N

HA®) == In3i, (57) a>0 (2.2.3)
\Na

HE(D) = — I3y, (5_3) a>0 (2.2.4)

Renyi's entropy The threshold value t for the object and background determines how
entropy, providing the additive property for statistically independent systems. Between
the two classes (object and background), we aim to maximise the information measure.
The brightness level t that maximises the function is thought of as the ideal threshold
value when H, (t) is maximised.

t°Pt = Arg max[(1 — a)HZ (t).HE(t) + HA(t) + HE(b)] (2.2.5)
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The threshold value in (1.4) is equal to the value determined by Shannon entropy when
a — 1. Shannon's method is thus included as a particular case in this suggested solution.
For the best threshold at « — 1, the following expression can be employed as a criterion
function.

opt

ton = Arg max[HZ () + HE (t)] (2.2.6)

The Renyi Threshold algorithm, which chooses an appropriate threshold value, may
now be explained as follows:

Step 1: Input: A noisy image | of size M X N.

Step 2: Let f(x,y) represent the pixel's initial grey value at the coordinates (x, y) and
calculate the probability distribution p;.

Step 3: Calculate Py, Pg, p4, and pg from equation (2.2.1) and (2.2.2).

Step 4: If 0 < @ < 1 then use Equation (2.2.5) to determine the ideal threshold value

t°Pt otherwise use Equation (2.2.6) to determine the ideal threshold value tg,ft.

Step 5: Output: An appropriate threshold value t°P¢ of | for a > 0.

Conclusion:

The proposed function, with the exception of additivity and recursivity, satisfies all the
significant features that Shannon's measure of entropy satisfies, as shown by this study.
This work presents an effective method for detecting edges in grayscale images using
the Renyi entropy. The recommended method stands out with standard edge detectors.
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