Two Periodic Solutions of Nonlinear Systems with Feedback Control

Jun Wu1,2, Zhicheng Wang1 and Zhengqiu Zhang3

(Communicated by Martin Bohner)

Abstract

In this paper, by the well-known Deimling fixed point theorem in a cone, we consider the following nonlinear functional differential system with feedback control

\[
\begin{aligned}
\frac{dx}{dt} &= -r(t)x(t) + \lambda F(t, x(t - \tau(t)), u(t - \delta(t))), \\
\frac{du}{dt} &= -h(t)u(t) + g(t)x(t - \sigma(t)),
\end{aligned}
\]

where λ is a positive parameter. We obtain the results on the existence and multiplicity of positive periodic solutions.

AMS Subject Classification: 34K13
Keywords: Positive periodic solutions; Functional differential system; Fixed point theorem; Fixed point index; Feedback control.

1. Introduction

The existence problem of periodic solutions has been an interesting problem for a long time. We can find many pretty results on the existence problem by using the fixed point theorem.
Two Periodic Solutions of Nonlinear Systems

They showed that the number of positive periodic solutions of (1.1) could be determined by the asymptotic behaviors of the quotient \(\frac{f(u)}{u} \) at zero and infinity based on the well known fixed point theorem (Deimling [3], Guo and Laksmikantham [4] and Krasnosel’skii [5]).

Motivated by the above excellent works, we study the following nonlinear nonautonomous functional differential system with feedback control:

\[
\begin{align*}
\frac{dx}{dt} &= -r(t)x(t) + \lambda F(t, x(t - \tau(t)), u(t - \delta(t))], \\
\frac{du}{dt} &= -h(t)u(t) + g(t)x(t - \sigma(t)),
\end{align*}
\]
\tag{1.2}

where \(\tau(t), \delta(t), \sigma(t) \in C(R, R_+), r(t), h(t), g(t) \in C(R, R_+) \), all of the above functions are \(\omega \)-periodic functions and \(\omega > 0 \) is a constant.

When \(\lambda = 1 \), system (1.2) was studied by Liu and Li [7]. In [8], the author can directly impose conditions on \(f(u) \) and obtain the results because the function \(f \) is only about \(u \) in (1.1). The techniques in [8] are difficulty to be used here. In this paper, we assume that

\[
b_1(t)f_1(x)u \leq F(t, x, u) \leq b_2(t)f_2(x)u,
\]

where \(b_1(t), b_2(t), f_1(x) \) and \(f_2(x) \) are positive continuous functions and satisfy

\[
b_i(t) = b_i(t + \omega), \quad i = 1, 2.
\]

Then by considering the quotient \(\frac{f_i(x)}{x} \) (\(i = 1, 2 \)), results on the existence and multiplicity of positive periodic solutions of (1.2) are established by the well-known fixed point theorem applied in [8] and [9]. Our conditions on \(F \) and sufficient conditions on the existence of periodic solutions are explicit and easy to be verified.

The rest of the paper consists of three sections. In Section 2, we give some notations and our main results. Section 3 contains preparations for the proofs of theorems. In the fourth section, the proofs of the main results are given.

2. Assumptions and main results

In this paper, we always assume that

(A1) there exist positive functions \(b_1(t), b_2(t), f_1(x) \) and \(f_2(x) \) such that

\[
b_1(t)f_1(x)u \leq F(t, x, u) \leq b_2(t)f_2(x)u,
\]

where \(b_i(t) = b_i(t + \omega) \) and \(f_i(u) \) (\(i = 1, 2 \)) are continuous;
(A2) for all \(s \in R \), \(F(s + \omega, x(s + \omega - \tau(s + \omega)), u(s + \omega - \delta(s + \omega))) = F(s, x(s - \tau(s)), u(s - \delta(s))) \);

(A3) \(r(t), h(t) \) and \(g(t) \) are nonnegative \(\omega \)-periodic functions and \(\int_0^{\omega} r(s)ds > 0, \int_0^{\omega} h(s)ds > 0, \int_0^{\omega} g(s)ds > 0 \);

(A4) \(\tau(t), \delta(t) \) and \(\sigma(t) \) are positive \(\omega \)-periodic functions.

We set

\[
 f_{20} = \lim_{u \to 0^+} \frac{f_2(u)}{u}, \quad f_{1\infty} = \lim_{u \to \infty} \frac{f_1(u)}{u}.
\]

We also define

\[
 M(r) = \max_{u \in [0, r]} \{ f_2(u) \}, \quad m(r) = \min \{ f_1(u) : \frac{p}{q} r \leq u \leq r \};
\]

\[
 n = \frac{1}{e^{\int_0^\omega h(\theta)d\theta} - 1}, \quad m = \frac{e^{\int_0^\omega \frac{h(\theta)d\theta}{\delta(\theta)}} - 1}{\delta(\theta)};
\]

\[
 p = \frac{1}{e^{\int_0^\omega \frac{r(\theta)d\theta}{\delta(\theta)}} - 1}, \quad q = \frac{e^{\int_0^\omega \frac{r(\theta)d\theta}{\delta(\theta)}} - 1}{\delta(\theta)};
\]

\[
 \lambda_0 = \frac{q}{m(1)p^2n \int_0^\omega b_1(s)ds \int_0^\omega g(\theta)d\theta};
\]

\[
 \lambda_1 = \frac{1}{M(1)qm \int_0^\omega b_2(s)ds \int_0^\omega g(\theta)d\theta}.
\]

Our main results are as follows.

Theorem 2.1: Assume (A1)–(A4) hold, then

1. if one of \(f_{20} = 0 \) and \(\lim_{x \to \infty} f_2(x) = 0 \) holds, then (1.2) has at least one positive \(\omega \)-periodic solution for \(0 < \lambda_0 < \lambda \);

 if both \(f_{20} = 0 \) and \(\lim_{x \to \infty} f_2(x) = 0 \) hold, then (1.2) has at least two positive \(\omega \)-periodic solutions for \(0 < \lambda_0 < \lambda \).

2. if one of \(f_{1\infty} = \infty \) and \(\lim_{x \to \infty} f_1(x) = \infty \) holds, then (1.2) has at least one positive \(\omega \)-periodic solution for \(\lambda_1 > \lambda > 0 \); if both \(f_{1\infty} = \infty \) and \(\lim_{x \to \infty} f_1(x) = \infty \) hold, then (1.2) has at least two positive \(\omega \)-periodic solutions for \(\lambda_1 > \lambda > 0 \).

Theorem 2.2: Assume (A1)–(A4) hold, \(f_{1\infty} > 0 \) and \(f_{20} < \infty \). If \(f_{20} < f_{1\infty} \) and \(\frac{q^2}{p^2n \int_0^\omega b_1(s)ds} < \frac{1}{qm \int_0^\omega b_2(s)ds} \), then (1.2) has at least one positive \(\omega \)-periodic solution for

\[
 \frac{q^2}{p^2n \int_0^\omega b_1(s)ds \int_0^\omega g(\theta)d\theta f_{1\infty}} < \lambda < \frac{1}{qm \int_0^\omega b_2(s)ds \int_0^\omega g(\theta)d\theta f_{20}}.
\]
3. Preparations

We first state the well-known fixed point theorem to be employed in the proofs of the main results.

Lemma 3.1 (Deimling [3], Guo and Lakshmikantham [4] and Krasnoselskii [5]): Let E be a Banach space and K a cone in E. For $r > 0$, define $K_r = \{u \in K : \|u\| < r\}$. Assume that $T : K_r \to K$ is completely continuous such that $Tx \neq x$ for $x \in \partial K_r = \{u \in K : \|u\| = r\}$.

1. If $\|Tx\| \geq \|x\|$ for $x \in \partial K_r$, then $i(T, K_r, K) = 0$.
2. If $\|Tx\| \leq \|x\|$ for $x \in \partial K_r$, then $i(T, K_r, K) = 1$.

In order to employ Lemma 3.1 to verify our results, we first transform (1.2) into one equation. Integrating the second equation in (1.2) from t to $t + \omega$, we get

$$u(t) = \int_t^{t+\omega} k(t, s)g(s)x(s - \sigma(s))ds =: (\Phi x)(t), \quad (3.1)$$

where

$$k(t, s) = \frac{e^{\int_t^s h(\theta)d\theta}}{e^{\int_t^\omega h(\theta)d\theta} - 1}.$$

Note that $u(t + \omega) = u(t)$ and $k(t + \omega, s + \omega) = k(t, s)$ and

$$n \leq k(t, s) \leq m, \quad s \in [t, t + \omega].$$

Combining (3.1) with (1.2), we get the following equation

$$x'(t) = -r(t)x(t) + \lambda F(t, x(t - \tau(t)), (\Phi x)(t - \delta(t))). \quad (3.2)$$

Obviously, the existence problem of ω-periodic solution of (1.2) is equivalent to that of (3.2). Therefore, it is sufficient to consider the existence and multiplicity of positive ω-periodic solutions of the equation (3.2).

We set

$$E = \{u(t) \in C([0, \omega], \mathbb{R}) : u(t + \omega) = u(t)\}.$$

Define $\|u\| = \max_{t \in [0, \omega]} |u(t)|$ in E. Let K and K_r in E be given by

$$K = \{u \in E : u(t) \geq \frac{p}{q}\|u\|\}, \quad K_r = \{u \in K : \|u\| < r\}, \quad r > 0.$$

It is easy to prove that $(E, \| \cdot \|)$ is a Banach space and K is a cone in E. Note that $\partial K_r = \{u \in K : \|u\| = r\}$.

Let the map $T_{\lambda} : K \to E$ be defined by

$$T_{\lambda}u(t) = \lambda \int_t^{t+\omega} G(t, s)F(s, u(s - \tau(s)), (\Phi u)(s - \delta(s)))ds.$$
where
\[G(t, s) = \frac{e^{\int_{\theta}^{t} r(\theta)d\theta}}{e^{\int_{0}^{\tau} r(\theta)d\theta} - 1}. \]

It is easy to see that \(G(t + \omega, s + \omega) = G(t, s) \) for all \((t, s) \in \mathbb{R}^2\) and
\[p \leq G(t, s) = \frac{e^{\int_{\theta}^{t} r(\theta)d\theta}}{e^{\int_{0}^{\tau} r(\theta)d\theta} - 1} \leq q, \quad s \in [t, t + \omega]. \]

Next, we show that \(T_\lambda \) defined above satisfies the conditions in Lemma 3.1 and give our priori estimations.

Lemma 3.2: Assume (A1)–(A4) hold. Then \(T_\lambda : K \to K \) is completely continuous.

Proof: For \(u \in K \), we have
\[
T_\lambda u(t + \omega) = \lambda \int_{t+\omega}^{t+2\omega} G(t, s) F(s, u(s - \tau(s)), (\Phi u)(s - \delta(s))) ds
\]
\[
= \int_{t}^{t+\omega} \lambda G(t, \theta) F(\theta, u(\theta - \tau(\theta)), (\Phi u)(\theta - \delta(\theta))) d\theta = T_\lambda u(t).
\]

For \(u \in K \) and \(t \in [0, \omega] \), we can show that
\[
T_\lambda u(t) \geq \lambda p \int_{0}^{\omega} F(s, u(s - \tau(s)), (\Phi u)(s - \delta(s))) ds
\]
\[
\geq \frac{\lambda p}{q} \int_{0}^{\omega} F(s, u(s - \tau(s)), (\Phi u)(s - \delta(s))) ds
\]
\[
\geq \frac{\lambda p}{q} \max_{t \in [0, \omega]} \left\{ \int_{t}^{t+\omega} G(t, s) F(s, u(s - \tau(s)), (\Phi u)(s - \delta(s))) ds \right\}
\]
\[
= \frac{p}{q} ||T_\lambda u||.
\]

So \(T_\lambda (K) \subset K \). By the assumptions (A1)–(A4), it is easy to show that \(T_\lambda \) is completely continuous by Arzela-Ascoli theorem.

Lemma 3.3: Assume (A1)–(A4) hold. The existence of positive \(\omega \)-periodic solutions of (3.2) is equivalent to the existence of the positive fixed point of \(T_\lambda \) in \(K \).

This lemma is obvious and its proof is omitted.
Lemma 3.4: Assume (A1)–(A4) hold and let $\eta > 0$. If $f_1(u(t)) \geq \eta$ for any $u \in K$ and for any $t \in [0, \omega]$, then
\[
\|T_\lambda u\| \geq \frac{\lambda p^2 m \eta}{q} \int_0^\omega b_1(s)ds \int_0^\omega g(\theta)d\theta \|u\|.
\]
Proof: From the proof of Lemma 3.2, we have
\[
T_\lambda u(t) \geq \lambda p \int_0^\omega F(s, u(s - \tau(s)), (\Phi u)(s - \delta(s)))ds.
\]
Then for $u \in K$ and $t \in [0, \omega]$, we have
\[
T_\lambda u(t) \geq \lambda p \int_0^\omega \{b_1(s)f_1(u(s - \tau(s)))\} \int_{s - \delta(s)}^{s + \delta(s)} k(s, \theta)g(\theta)u(\theta - \sigma(\theta))d\theta ds
\]
\[
\geq \lambda pn \int_0^\omega \{b_1(s)f_1(u(s - \tau(s)))\} \int_0^\omega g(\theta)u(\theta - \sigma(\theta))d\theta ds
\]
\[
\geq \lambda pn \eta \int_0^\omega b_1(s)ds \int_0^\omega g(\theta)u(\theta - \delta(\theta))d\theta
\]
\[
\geq \frac{\lambda p^2 m \eta}{q} \int_0^\omega b_1(s)ds \int_0^\omega g(\theta)d\theta \|u\|,
\]
since $f_1(u(t)) \geq \eta$ for $u \in K$. ■

Lemma 3.5: Assume (A1)–(A4) hold and let $\eta > 0$. If $f_1(u(t)) \geq \eta u(t)$ for any $u \in K$ and for any $t \in [0, \omega]$, then
\[
\|T_\lambda u\| \geq \frac{\lambda p^3 m \eta}{q^2} \int_0^\omega b_1(s)ds \int_0^\omega g(\theta)d\theta \|u\|^2.
\]
Proof: From the proof of Lemma 3.4, for $u \in K$ and $t \in [0, \omega]$, we have
\[
T_\lambda u(t) \geq \lambda pn \int_0^\omega \{b_1(s)f_1(u(s - \tau(s)))\} \int_0^\omega g(\theta)u(\theta - \sigma(\theta))d\theta ds
\]
\[
\geq \lambda pn \eta \int_0^\omega b_1(s)ds \int_0^\omega g(\theta)u(\theta - \delta(\theta))d\theta
\]
\[
\geq \frac{\lambda p^3 m \eta}{q^2} \int_0^\omega b_1(s)ds \int_0^\omega g(\theta)d\theta \|u\|^2,
\]
since $f_1(u(t)) \geq \eta u(t)$ for $u \in K$. ■

Lemma 3.6: Assume (A1)–(A4) hold and $\varepsilon > 0$. Let $r > 0$. If $f_2(u(t)) \leq \varepsilon$ for $u \in \partial K_r$ and for any $t \in [0, \omega]$, then
\[
\|T_\lambda u\| \leq \lambda q m \varepsilon \int_0^\omega b_2(s)ds \int_0^\omega g(\theta)d\theta \|u\|.
\]
Proof: From the definition of T_λ and the assumptions (A1)–(A4), for $u \in \partial K_r$, we have

$$||T_\lambda u|| \leq \lambda q \int_t^{t+\omega} F(s, u(s - \tau(s)), (\Phi u)(s - \delta(s))) ds$$

$$= \lambda q \int_0^{\omega} F(s, u(s - \tau(s)), (\Phi u)(s - \delta(s))) ds$$

$$\leq \lambda q \int_0^{\omega} \{b_2(s)f_2(u(s - \tau(s))) \int_{s-\delta(s)}^{s-\delta(s)+\omega} k(s, \theta) g(\theta) u(\theta - \sigma(\theta)) d\theta\} ds$$

$$\leq \lambda q m \varepsilon \int_0^{\omega} \{b_2(s) \int_0^{\omega} g(\theta) u(\theta - \sigma(\theta)) d\theta\} ds$$

$$\leq \lambda q m \varepsilon \int_0^{\omega} b_2(s) ds \int_0^{\omega} g(\theta) d\theta ||u||.$$

Then $||T_\lambda u|| \leq \lambda q m \varepsilon \int_0^{\omega} b_2(s) ds \int_0^{\omega} g(\theta) d\theta ||u||$ for $u \in \partial K_r$ and $t \in [0, \omega]$. \blacksquare

Lemma 3.7: Assume (A1)–(A4) hold and $\varepsilon > 0$. Let $r > 0$. If $f_2(u(t)) \leq \varepsilon u(t)$ for $u \in \partial K_r$ and for any $t \in [0, \omega]$, then

$$||T_\lambda u|| \leq \lambda q m \varepsilon \int_0^{\omega} b_2(s) ds \int_0^{\omega} g(\theta) d\theta ||u||^2.$$

Proof: From Lemma 3.6, for $u \in \partial K_r$, we have

$$||T_\lambda u|| \leq \lambda q m \int_0^{\omega} \{b_2(s)f_2(u(s - \tau(s))) \int_0^{\omega} g(\theta) u(\theta - \sigma(\theta)) d\theta\} ds$$

$$\leq \lambda q m \varepsilon \int_0^{\omega} \{b_2(s)u(s - \tau(s)) \int_0^{\omega} g(\theta) u(\theta - \sigma(\theta)) d\theta\} ds$$

$$\leq \lambda q m \varepsilon \int_0^{\omega} b_2(s) ds \int_0^{\omega} g(\theta) d\theta ||u||^2.$$

Then $||T_\lambda u|| \leq \lambda q m \varepsilon \int_0^{\omega} b_2(s) ds \int_0^{\omega} g(\theta) d\theta ||u||^2$ for $u \in \partial K_r$ and $t \in [0, \omega]$. \blacksquare

Lemma 3.8: Assume (A1)–(A4) hold and let $r > 0$, then for $u \in \partial K_r$,

$$||T_\lambda u|| \geq \lambda \frac{F^2}{q} m(r) \int_0^{\omega} b_1(s) ds \int_0^{\omega} g(\theta) d\theta ||u||.$$

Proof: For $u \in \partial K_r$, we have $f_1(u(t)) \geq m(r)$ for $t \in [0, \omega]$. Therefore

$$T_\lambda u(t) \geq \lambda q m \int_0^{\omega} b_1(s) f_1(u(s - \tau(s))) ds \int_0^{\omega} g(\theta) u(\theta - \sigma(\theta)) d\theta$$
Two Periodic Solutions of Nonlinear Systems

\[
\geq \lambda \frac{p^2}{q} \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta \|u\|.
\]

\[\blacktriangleright\]

Lemma 3.9: Assume (A1)–(A4) hold and let \(r > 0 \), then for \(u \in \partial K_r \)

\[
\|T_\lambda u\| \leq \lambda q m M(r) \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta \|u\|.
\]

Proof: For \(u \in \partial K_r \), we have \(f_2(u(t)) \leq M(r) \) for \(t \in [0, \omega] \). Then, from the proof of Lemma 3.6, we get

\[
T_\lambda u(t) \leq \lambda q m \int_0^\omega b_2(s) f_2(u(s - \tau(s))) ds \int_0^\omega g(\theta) u(\theta - \sigma(\theta)) d\theta
\]

\[
\leq \lambda q m M(r) \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta \|u\|.
\]

\[\blacktriangleright\]

4. Proofs of main results

4.1. Proof of Theorem 2.1

(i) Take \(r_1 = 1 \). By Lemma 3.8, for \(\lambda > \lambda_0 \), we have

\[
\|T_\lambda u\| \geq \lambda \frac{p^2}{q} \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta \|u\| > \|u\|, \ u \in \partial K_{r_1}.
\]

If \(f_{20} = 0 \), then for any \(\varepsilon > 0 \), we can find a positive constant \(r_2 \) with \(0 < r_2 < r_1 \) such that \(f_2(u) \leq \varepsilon u \) for \(0 \leq u \leq r_2 \). Take \(\varepsilon \) such that

\[
\lambda q m \varepsilon \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta < 1.
\]

Thus by Lemma 3.7, for \(u \in \partial K_{r_2} \) and \(t \in [0, \omega] \), we have

\[
\|T_\lambda u\| \leq \lambda q m \varepsilon \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta \|u\|^2
\]

\[
= \lambda q m \varepsilon r_2 \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta \|u\|
\]

\[
< \lambda q m \varepsilon \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta \|u\| < \|u\|.
\]

It follows from Lemma 3.1 that

\[
i(T_\lambda, K_{r_1}, K) = 0, \ i(T_\lambda, K_{r_2}, K) = 1, \ i(T_\lambda, K_{r_1} \setminus K_{r_2}, K) = -1.
\]
Then T_λ has at least a positive fixed point in $K_{r_1} \setminus K_{r_2}$, which is a positive ω-periodic solution of (3.2).

If $\lim_{x \to \infty} f_2(x) = 0$, then for any $\varepsilon > 0$, there must be $H > 0$ such that $f_2(u) \leq \varepsilon$ for $u \geq H$ and $t \in [0, \omega]$. We take ε such that

$$\lambda q m \varepsilon \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta < 1.$$

Take $r_3 = \max\left\{3r_1, \frac{Hq}{p}\right\}$. Then it follows that $u(t) \geq \frac{p}{q} \|u\| \geq H$ for $u \in \partial K_{r_3}$ and $t \in [0, \omega]$. Thus in view of Lemma 3.6, we have

$$\|T_\lambda u\| \leq \lambda q m \varepsilon \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta \|u\| < \|u\|, \ u \in \partial K_{r_3}, \ t \in [0, \omega].$$

Lemma 3.1 implies

$$i(T_\lambda, K_{r_1}, K) = 0, \ i(T_\lambda, K_{r_3}, K) = 1, \ i(T_\lambda, K_{r_3} \setminus K_{r_1}, K) = 1.$$

Then T_λ has at least a positive fixed point in $K_{r_3} \setminus K_{r_1}$, which is also a positive ω-periodic solution of (3.2).

If $f_{20} = 0$ and $\lim_{x \to \infty} f_2(x) = 0$, from the above argument, it is easy to conclude that T_λ has at least two positive fixed points in $K_{r_1} \setminus K_{r_2}$ and $K_{r_3} \setminus K_{r_1}$, that is, (3.2) has at least two positive ω-periodic solutions x_1 and x_2 in $K_{r_1} \setminus K_{r_2}$ and $K_{r_3} \setminus K_{r_1}$ for $\lambda > \lambda_0$, which satisfy

$$r_2 < \|x_1\| < r_1 < \|x_2\| < r_3.$$

(ii) We take $r_1 = 1$. Then by Lemma 3.9, for $0 < \lambda < \lambda_1$, we have

$$\|T_\lambda u\| \leq \lambda q m \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta \|u\| < \|u\|, \ u \in \partial K_{r_1}.$$

If $\lim_{x \to 0^+} f_1(x) = \infty$, then for any $\eta > 0$ there must be a positive number $r_2 < r_1$ such that $f_1(u) \geq \eta$ for $u \in [0, r_2]$ and $t \in [0, \omega]$. We choose η such that

$$\frac{\lambda p^2 n \eta}{q} \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta > 1.$$

Therefore by Lemma 3.4, we get

$$\|T_\lambda u\| \geq \frac{\lambda p^2 n \eta}{q} \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta \|u\| > \|u\|, \ u \in \partial K_{r_2}.$$

Then it follows from Lemma 3.1 that

$$i(T_\lambda, K_{r_1}, K) = 1, \ i(T_\lambda, K_{r_2}, K) = 0.$$
and \(i(T_\lambda, K_{r_1 \setminus K_{r_2}}, K) = 1 \). So \(T_\lambda \) has at least one positive fixed point in \(K_{r_1 \setminus K_{r_2}} \) for \(0 < \lambda < \lambda_1 \).

If \(f_{1^\infty} = \infty \), then there is \(H > 0 \) such that \(f_1(u) \geq \eta u \) for \(u \in [H, \infty) \), where \(\eta > 0 \) satisfies
\[
\frac{\lambda p^3 n \eta}{q^2} \int_{0}^{\omega} b_1(s)ds \int_{0}^{\omega} g(\theta)d\theta > 1.
\]
Take \(r_3 = \max\{3r_1, \frac{Hq}{p}\} \). Then for \(u \in \partial K_{r_3} \) and \(t \in [0, \omega] \), there must be \(u(t) \geq \frac{p}{q} ||u|| \geq H \). Again, it follows from Lemma 3.5 that
\[
||T_\lambda u|| \geq \frac{\lambda p^3 n \eta}{q^2} \int_{0}^{\omega} b_1(s)ds \int_{0}^{\omega} g(\theta)d\theta ||u||^2
\]
\[
= \frac{\lambda p^3 n \eta}{q^2} \int_{0}^{\omega} b_1(s)ds \int_{0}^{\omega} g(\theta)d\theta ||u|| r_3 > ||u||, \quad u \in \partial K_{r_3}.
\]
Lemma 3.1 tells that
\[
i(T_\lambda, K_{r_1}, K) = 1, \quad i(T_\lambda, K_{r_3}, K) = 0.
\]
Thus \(i(T_\lambda, K_{r_1 \setminus K_{r_2}}, K) = -1 \). So \(T_\lambda \) has at least one positive fixed point in \(K_{r_1 \setminus K_{r_2}} \) for \(0 < \lambda < \lambda_1 \).

If \(\lim_{x \to 0^+} f_1(x) = f_{1^\infty} = \infty \), from the above discussion, we can see that \(T_\lambda \) has at least two fixed points in \(K_{r_1 \setminus K_{r_2}} \) and \(K_{r_3 \setminus K_{r_1}} \), that is, (3.2) has at least two positive \(\omega \)-periodic solutions \(x_1 \) and \(x_2 \) in \(K_{r_1 \setminus K_{r_2}} \) and \(K_{r_3 \setminus K_{r_1}} \) for \(0 < \lambda < \lambda_1 \), which satisfy
\[
r_2 < ||x_1|| < r_1 < ||x_2|| < r_3.
\]

4.2. Proof of Theorem 2.2

If \(f_{1^\infty} > f_{20} \) and \(\frac{q^2}{p^3 n \int_{0}^{\omega} b_1(s)ds} < \frac{1}{qm \int_{0}^{\omega} b_2(s)ds} \), then for
\[
\frac{q^2}{p^3 n \int_{0}^{\omega} b_1(s)ds \int_{0}^{\omega} g(\theta)d\theta f_{1^\infty}} < \lambda < \frac{1}{qm \int_{0}^{\omega} b_2(s)ds \int_{0}^{\omega} g(\theta)d\theta f_{20}},
\]
there must exist a positive number \(\varepsilon \in (0, f_{20}) \) such that
\[
\frac{q^2}{p^3 n \int_{0}^{\omega} b_1(s)ds \int_{0}^{\omega} g(\theta)d\theta (f_{1^\infty} - \varepsilon)} < \lambda < \frac{1}{qm \int_{0}^{\omega} b_2(s)ds \int_{0}^{\omega} g(\theta)d\theta (f_{20} + \varepsilon)}.
\]

If \(f_{20} < \infty \), then there is a number \(1 > r_1 > 0 \) such that \(f_2(u) \leq (f_{20} + \varepsilon)u \) for \(u \in [0, r_1] \). Thus \(f_2(u) \leq (f_{20} + \varepsilon)u \) for \(u \in \partial K_{r_1} \). By Lemma 3.7, we have
\[
||T_\lambda u|| \leq \lambda q m (f_{20} + \varepsilon) \int_{0}^{\omega} b_2(s)ds \int_{0}^{\omega} g(\theta)d\theta ||u||^2
\]
= \lambda q m (f_{20} + \varepsilon) \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta \|u\| r_1 < \|u\|, \ u \in \partial K_{r_1}.

If \(f_{1\infty} > 0 \), we can find a number \(H > 1 > r_1 \) such that \(f_1(u) \geq (f_{1\infty} - \varepsilon) u \) for \(u \in [H, \infty) \). Let \(r_2 = \max\{3r_1, \frac{Hq}{p}\} \). It follows that \(u(t) \geq \frac{p}{q} \|u\| \geq H \) for \(u \in \partial K_{r_2} \). Thus \(f_1(u) \geq (f_{1\infty} - \varepsilon) u \) for \(u \in \partial K_{r_2} \) and \(t \in [0, \omega] \). By Lemma 3.5, we get

\[
\|T_\lambda u\| \geq \frac{\lambda p^q}{q^2} \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta \|u\|^2
\]

\[
= \frac{\lambda p^q}{q^2} \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta \|u\| r_2 > \|u\|, \ u \in \partial K_{r_2}.
\]

From Lemma 3.1, we can obtain

\[
i(T_\lambda, K_{r_1}, K) = 1, \ i(T_\lambda, K_{r_2}, K) = 0.
\]

So \(i(T_\lambda, K_{r_2} \backslash \overline{K}_{r_1}, K) = -1 \) and \(T_\lambda \) has at least one fixed point in \(K_{r_2} \backslash \overline{K}_{r_1} \) for

\[
\frac{q^2}{p^3 m \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta f_{1\infty}} < \lambda < \frac{1}{qm \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta f_{20}}.
\]

That is, (3.2) has at least one positive \(\omega \)-periodic solution in \(K_{r_2} \backslash \overline{K}_{r_1} \) for

\[
\frac{q^2}{p^3 m \int_0^\omega b_1(s) ds \int_0^\omega g(\theta) d\theta f_{1\infty}} < \lambda < \frac{1}{qm \int_0^\omega b_2(s) ds \int_0^\omega g(\theta) d\theta f_{20}}.
\]

Acknowledgment

The authors are grateful to the reviewers for their valuable comments.

References

