Some Approximation Properties of q- MBS Operators

Prerna Maheshwari Sharma and Rupa Sharma

Department of Mathematics. SRM University, Delhi-NCR Campus, Modinagar (U.P), India
E-mail: mprerna_anand@yahoo.com
Mewar University, Chittorgarh (Rajasthan), India
E-mail: rupa198221@yahoo.com

ABSTRACT

This paper deals with the new type q-analogue of the modified Beta operators. We apply q-derivatives to obtain the central moments of the discrete q-Beta operators. We establish a direct result in terms of modulus of continuity for the q-operators. We also obtain some approximation properties and asymptotic formula for these operators.

KEY WORDS: Linear positive operators, Voronovskaja type asymptotic formula, Modulus of continuity, q-integers, q-Beta functions, q-derivatives, Weighted-approximation.

AMS SUBJECT CLASSIFICATION: 41A25, 41A35.

1. INTRODUCTION

In the recent years, the q-calculus has a great deal of interest. The applications of q-calculus in the approximation theory are one of the main areas of research. After the q-analogue of Bernstein polynomials obtained by Phillips [23], Gupta and Heping [9] introduced q-Durrmeyer operators. Several other researchers have studied in this direction and obtained different approximation properties of many other operators. We mention some of them as [1], [4], [12], [21], [22] etc. In the present article, we propose the q-analogue of the modified Beta operators and study their convergence behavior. To approximate Lebesgue integrable function on the interval [0,∞), modified Beta operators [8] are defined as
\[B_n(f, x) = \frac{n-1}{n} \sum_{k=0}^{\infty} b_{n,k}(x) \int_0^1 p_{n,k}(t) f(t) dt, \quad x \in [0, \infty) \]
(1.1)

where
\[b_{n,k}(x) = \frac{(n+k)!}{k!(n-1)!} \frac{x^k}{(1+x)^{n+k+1}} \]
and
\[p_{n,k}(t) = \frac{(n+k-1)!}{k!(n-1)!} \frac{t^k}{(1+t)^{n+k}}. \]

For every \(q \in (0, 1) \) we propose the q-analogue of these operators as
\[B_q^n(f(t), x) = \frac{[n-1]_q}{[n]_q} \sum_{k=0}^{\infty} b_{n,k}^q(x) \int_0^1 q^k p_{n,k}^q(t) f(t) d_q t, \]
(1.2)

Where
\[b_{n,k}^q(x) = \frac{[n+k]_q}{[k]_q [n-1]_q} q^{q(k-1)/2} \frac{x^k}{(1+x)^{n+k+1}} \]
and
\[p_{n,k}^q(t) = \frac{[n+k-1]_q}{[k]_q [n-1]_q} q^{q(k-1)/2} \frac{t^k}{(1+t)^{n+k}}. \]

We can easily define
\[\sum_{k=0}^{\infty} b_{n,k}^q(x) = [n]_q \]
and
\[\int_0^1 q^k p_{n,k}^q(t) d_q t = \frac{1}{[n-1]_q}. \]

These operators reproduce constant function. Also \(B_q^n(f(t), x) = B_n(f(t), x) \). We consider the discrete q-Beta operators defined as
\[V_q^n(f, x) = \frac{1}{[n]_q} \sum_{k=0}^{\infty} b_{n,k}^q(x) f \left(\frac{[k]_q}{[n]_q} q^{k-1} \right) \]
(1.3)

Maheshwari and Sharma [19] introduced the q-analogue of the Baskakov Beta Stancu operators and studied the rate of approximation and weighted approximation of these operators. Other approximation properties of these operators were studied by [17], [18], [20]. In this direction, we mention contribution of some other authors such as [6], [7]. Motivated by the [24], we suggest for \(0 \leq \alpha \leq \beta \), the q-analogue of the operators \(B_{n,\alpha,\beta}^q \)
\[B_{n,\alpha,\beta}^q(f, x) = \frac{[n-1]_q}{[n]_q} \sum_{k=0}^{\infty} b_{n,k}^q(x) \int_0^1 q^k p_{n,k}^q(t) f \left(\frac{[n]_q t + \alpha}{[n]_q + \beta} \right) d_q t. \]
(1.4)

For the notation and definition of q-calculus, we can refer the book written by Aral, Gupta and Agarwal [11]. De Sole and Kac [3] gave the q-analogue of Beta function of
second kind.

\[B(r, s) = \int_{0}^{\infty} \frac{x^{r-1}}{(1+x)^{r+s}} \, dx \]

As follows

\[B_{q}(r, s) = K(A, r) \int_{0}^{\infty} \frac{x^{r-1}}{(1+x)_{q}^{r+s}} \, dx \]

(1.5)

where

\[K(x, r) = \frac{1}{(1+x)^{x}} x^{(1+1/2)} (1+x)^{1/2}. \]

That function is q-constant in x, that is \(K(qx, r) = K(x, r) \). It was observed in [3] that \(B_{q}(r, s) \) is independent of A. In particular for any positive integer n, we have \(K(x, n) = q^{n(n-1)/2} \), \(K(x, 0) = 1 \).

and we have

\[B_{q}(r, s) = \frac{\Gamma_{q}(r)\Gamma_{q}(s)}{\Gamma_{q}(r+s)}. \quad (1.6) \]

For q-analogue of linear positive operators many researches such as [14], [15], [16] and [13] have done a lot of work in this direction.

2. MOMENT ESTIMATION AND AUXILIARY RESULTS

In this section, we establish certain lemmas which will be useful for the proof of our main theorems.

Lemma 1: [10] For \(V_{n}^{q}(t^{m}, x) \), \(m = 0, 1, 2, \ldots \)

\[V_{n}^{q}(1, x) = \int_{x} \]

\[V_{n}^{q}(t, x) = x \]

\[V_{n}^{q}(t^{2}, x) = \frac{[n+2]_{q}x^{2} + x [n+1]_{q}}{q[n+1]_{q}}. \]

Lemma 2: [10]: The following equalities hold

\[B_{n}^{q}(1, x) = 1 \]

\[B_{n}^{q}(t, x) = \frac{[n+1]_{q}x + 1}{q[n-2]_{q}}, \quad n > 2 \]

\[B_{n}^{q}(t^{2}, x) = \frac{[n+1]_{q}[n+2]_{q}x^{2} + [n+1]_{q}[2]_{q}^{2}x + [2]_{q}}{q[n-2]_{q}[n-3]_{q}}, \quad n > 3. \]

Lemma 3: The following equalities hold
\[B_n^q(1, x) = 1 \]
\[B_n^q(t, x) = \frac{[n+1]_q [n]_q}{q^2[n-2]_q ([n]_q + \beta)} x + \left(\frac{[n]_q}{q[n-2]_q} + \alpha \right) \frac{1}{([n]_q + \beta)}, \ n > 2 \]
\[B_n^q(t^2, x) = \frac{[n+1]_q [n+2]_q [n]_q}{q^3[n-2]_q [n-3]_q ([n]_q + \beta)^2} x^2 + \left(\frac{[n]_q [2]_q^2}{q^3[n-3]_q} + 2\alpha \right) \frac{[n+1]_q [n]_q}{q^2[n-2]_q ([n]_q + \beta)^2} x \]
\[+ \frac{[2]_q [n]_q^2}{q^3[n-2]_q [n-3]_q ([n]_q + \beta)^2} + \frac{2\alpha [n]_q}{q[n-2]_q ([n]_q + \beta)^2} + \frac{\alpha}{([n]_q + \beta)^2}, \ n > 3. \]

Proof: The operators \(B_n^q \) are well defined on function \(1, t, t^2 \). By Lemma 2, for every \(n > 3 \) and \(x \in [0, \infty) \), we have
\[B_n^q(1, x) = B_n^q(1, x) = 1. \]
\[B_n^q(t, x) = \frac{[n]_q}{([n]_q + \beta)} B_n^q(t, x) + \left(\frac{[n]_q}{[n]_q + \beta} \right) B_n^q(1, x) \]
\[= \frac{[n+1]_q [n]_q}{q^2[n-2]_q ([n]_q + \beta)} x + \left(\frac{[n]_q}{q[n-2]_q} + \alpha \right) \frac{1}{([n]_q + \beta)}. \]

Similarly
\[B_n^q(t^2, x) = \frac{[n+1]_q [n+2]_q [n]_q}{q^3[n-2]_q [n-3]_q ([n]_q + \beta)^2} x^2 + \left(\frac{[n]_q [2]_q^2}{q^3[n-3]_q} + 2\alpha \right) \frac{[n+1]_q [n]_q}{q^2[n-2]_q ([n]_q + \beta)^2} x \]
\[+ \frac{[2]_q [n]_q^2}{q^3[n-2]_q [n-3]_q ([n]_q + \beta)^2} + \frac{2\alpha [n]_q}{q[n-2]_q ([n]_q + \beta)^2} + \frac{\alpha}{([n]_q + \beta)^2}. \]

Remark 1. If we put \(q = 1 \) and \(\alpha = \beta = 0 \), we get the moments of the modified Beta operators [8] as
\[B_n^1(t, x) = \frac{(n+1)x+1}{n-2}, \ n > 2 \]
\[B_n^1(t^2, x) = \frac{(n+1)(n+2)x^2 + 4(n+1)x + 2}{n(n-2)(n-3)}, \ n > 3 \]
Remark 2. From Lemma 3, we have
\[E_{n,\alpha,\beta}(x) = B_{n,\alpha,\beta}^q ((t-x), x) \]
\[= \left(\frac{[n+1]_q[n]_q}{q^2 [n-2]_q ([n]_q + \beta)} \right) x + \left(\frac{[n]_q}{q [n-2]_q} + \alpha \right) \frac{1}{([n]_q + \beta), \quad n > 2} \]
\[F_{n,\alpha,\beta}(x) = B_{n,\alpha,\beta}^q ((t-x)^2, x) \]
\[= B_{n,\alpha,\beta}^q (t^2, x) - 2 x B_{n,\alpha,\beta}^q (t, x) + x^2 \]
\[= \left(\frac{[n+1]_q[n+2]_q[n]_q^2}{q^3 [n-2]_q [n-3]_q ([n]_q + \beta)^2} - \frac{[n+1]_q[n]_q}{q^2 [n-2]_q ([n]_q + \beta)} + 1 \right) x^2 \]
\[+ \left(\frac{[n+1]_q[n]_q^2 [2]_q}{q^2 [n-2]_q [n-3]_q ([n]_q + \beta)^2} + \frac{[n+1]_q[n]_q \alpha}{q^2 [n-2]_q ([n]_q + \beta)} - 2 \right) \frac{[n]_q}{q [n-2]_q} + \alpha \right) \frac{1}{([n]_q + \beta)} x \]
\[+ \left(\frac{2 \alpha [n]_q}{q^2 [n-2]_q [n-3]_q ([n]_q + \beta)^2} + \frac{\alpha}{([n]_q + \beta)^2} + \frac{\alpha}{([n]_q + \beta)} \right) x, \quad n > 3 \]

Remark 3. [10] We define the central moment as
\[T_{n,m}(x) = B_{n,\alpha,\beta}^q (t^n, x) = \frac{[n-1]_q [n]_q \sum_{k=0}^\infty b^\gamma_{\alpha,\beta}^k (x)}{[n]_q} \int_0^1 q^k p^\gamma_{\alpha,\beta}^k (t) t^m d_q t, \]
then for \(n > m + 2 \), we have the following recurrence relation
\[([n]_q - [m+2]_q) T_{n,m+1}(q x) = q x (1 + x) D_q T_{n,m}(x) + q ([m+1]_q + [n+1]_q x) T_{n,m}(q x). \]

3. DIRECT ESTIMATES
Definition: Let the space \(C_q[0,\infty) \) of all real valued continuous bounded functions \(f \) on \([0,\infty)\) endowed with the norm \(||f|| = \sup \{|f(t) : x \in [0,\infty)\}| \). Further, let us consider the following K functional
\[K_2(f, \delta) = \inf \{ ||f - g|| + \delta ||g'|| \}, \]
where \(\delta > 0 \) and \(W^2 = \{ g \in C_q[0,\infty) : g', g'' \in C_q[0,\infty) \} \), according to [2], there exist an absolute constant \(C > 0 \) such that
\[K_2(f, \delta) \leq C \omega_2(f, \sqrt{\delta}), \quad (3.1) \]
where
\[\omega_2(f, \sqrt{\delta}) = \sup_{0 < h < \sqrt{\delta}} \sup_{q \in [0,\infty)} |f(x + 2h) - 2f(x + h) + f(x)| \]
is the second order modulus of smoothness of \(f \in C_q[0,\infty) \) and
\[\omega(f, \sqrt{\delta}) = \sup_{0 < h < \sqrt{\delta}} \sup_{q \in [0,\infty)} |f(x + h) - f(x)| \]
Theorem 1. Let \(f \in C_q(0,\infty), \) with \(q \in (0,1), \) then for every \(x \in [0,\infty) \) and \(n \geq 3, \) we
have

$$
|B_{n,a,b}^q(f,x) - f(x)| \leq C \omega_2(f,\delta_n(x)) + \alpha \left(f, \frac{[n+1]_q[n]_q}{q^2[n-2]_q ([n]_q + \beta)} - 1 \right) x + \left(\frac{[n]_q}{q[n-2]_q + \alpha} \right) \frac{1}{([n]_q + \beta)}.
$$

where C is an absolute constant and

$$
\delta_n(x) = F_{n,a,b}(x) + \left(\frac{[n+1]_q[n]_q}{q^2[n-2]_q ([n]_q + \beta)} - 1 \right) x + \left(\frac{[n]_q}{q[n-2]_q + \alpha} \right) \frac{1}{([n]_q + \beta)} \right)^{1/2}.
$$

Proof: Introducing the auxiliary operators as follows

$$
\overline{B}_{n,a,b}^q = B_{n,a,b}^q + f(x) - f \left(\frac{[n+1]_q[n]_q}{q^2[n-2]_q ([n]_q + \beta)} \right) x + \left(\frac{q^2 \alpha[n-2]_q + q}{[n]_q [n+1]_q} \right) (3.2)
$$

From (3.2) and Lemma 3, we have

$$
\overline{B}_{n,a,b}^q((t-x),x) = 0. \tag{3.3}
$$

Let \(x \in [0, \infty) \) and \(g \in \mathcal{W}^2[0, \infty) \). Using Taylor's formula

$$
g(t) = g(x) + (t-x)g'(x) + \int_0^t (t-u)g''(u)du, \quad t \in [0, \infty)
$$

applying \(B_{n,a,b}^q \) and by (3.3), we get

$$
\overline{B}_{n,a,b}^q(g,x) = g(x) + \overline{B}_{n,a,b}^q \left(\int_0^t (t-u)g''(u)du, x \right)
$$

Hence, by (3.2), we have

$$
|\overline{B}_{n,a,b}^q(g,x) - g(x)| \leq |B_{n,a,b}^q| \left(\int_0^t (t-u)g''(u)du, x \right) + \left| \int_0^t \frac{[n+1]_q[n]_q}{q^2[n-2]_q ([n]_q + \beta)} \right| \frac{1}{([n]_q + \beta)}
$$

$$
\leq |B_{n,a,b}^q| \left(\int_0^t (t-u)g''(u)du, x \right) + \left(\frac{[n+1]_q[n]_q}{q^2[n-2]_q ([n]_q + \beta)} \right) \frac{1}{([n]_q + \beta)}
$$

$$
\leq |B_{n,a,b}^q| \left((t-x)^2, x \right) + \left(\frac{[n+1]_q[n]_q}{q^2[n-2]_q ([n]_q + \beta)} - 1 \right) x + \left(\frac{[n]_q}{q[n-2]_q + \alpha} \right) \frac{1}{([n]_q + \beta)} \right)^2 ||g''|| \tag{3.4}
$$

From (3.2), we can write
Now from (3.2), (3.4) and (3.5), we get

\[|B_{n,a,b}^q(f,x) - f(x)| \leq B_{n,a,b}^q(f-g,x) - (f-g)(x) + B_{n,a,b}^q(g,x) - g(x) \]

\[
\frac{f(x) - f\left(\frac{[n+1]_q [n]_q}{[n-2]_q ([n]_q + \beta)} x + \frac{q\alpha [n-2]_q}{[n]_q [n+1]_q} x + \frac{q}{[n+1]_q}\right)}{[n]_q [n+1]_q} \leq 4\|f-g\| + \delta_n^2(x)\|g'\|.
\]

Now taking infimum on the right hand side over all \(g \in W^2[0, \infty) \), we get

\[B_{n,a,b}^q(f,x) - f(x) \leq CK_2(f,\delta_n^2(x)) + \omega\left(f,\left(\frac{[n+1]_q [n]_q}{[n-2]_q ([n]_q + \beta)} x + \frac{q\alpha [n-2]_q}{[n]_q [n+1]_q} x + \frac{q}{[n+1]_q}\right)\right) \]

From definition (3.1), we get

\[B_{n,a,b}^q(f,x) - f(x) \leq C\omega_2(f,\delta_n(x)) + \omega\left(f,\left(\frac{[n+1]_q [n]_q}{[q-2]_q ([n]_q + \beta)} x + \frac{[n]_q}{[q-2]_q} + \alpha\right)\right) \]

Hence proves the theorem.

Definition: Let \(H^*_{\omega}[0, \infty) \) be the set of all functions \(f \) defined on \([0, \infty)\), satisfying the condition \(|f(x)| \leq M_f (1 + x^2) \), where \(M_f \) is a constant depending only on \(f \). By \(C^*_{\omega}[0, \infty) \), we denote the subspace of all continuous functions belonging to \(H^*_{\omega}[0, \infty) \). Also let \(C^*_{\omega}[0, \infty) \) be the subspace of all functions \(f \in C^*_{\omega}[0, \infty) \), for which \(\lim_{x \to \infty} \frac{f(x)}{1 + x^2} \) is finite. The norm on \(C^*_{\omega}[0, \infty) \) is \(\|f\|_{C^*} = \sup_{x \in [0, \infty)} \frac{|f(x)|}{1 + x^2} \). We denote the modulus of continuity on \(f \) closed interval \([0, a]\), \(a > 0 \) as by \(\omega_2(f, \delta) = \sup_{\delta < \delta_0 \leq 0} \sup_{x \in [0, \infty)} |f(x) - f(x)| \)

We observe that for the function \(f \in C^*_{\omega}[0, \infty) \), the modulus of continuity \(\omega_2(f, \delta) \) tends to zero.

Theorem 2. Let \(q = q_n \) satisfies \(0 < q_n < 1 \) and let \(q_n \to 1 \) as \(n \to \infty \). For each \(f \in C^*_{\omega}[0, \infty) \), we have

\[\lim_{n \to \infty} \|B_{n,a,b}^q(f) - f\|_{C^*} = 0 \]

Proof: By using the Korovkin theorem [5], we see that it is sufficient to verify the
following three conditions
\[\lim_{n \to \infty} \| B_{n,\alpha,\beta}^{(v)}(t^v, x) - x^t \|_\varepsilon = 0, \quad v = 0, 1, 2 \] (3.6)

Since \(B_{n,\alpha,\beta}^{(1)}(1, x) = 1 \), therefore (3.6) holds true for \(v = 0 \).

By Lemma 3, we have for \(n > 2 \)
\[
\left\| B_{n,\alpha,\beta}^{(v)}(t, x) - x \right\|_\varepsilon \leq \left(\frac{[n + 1]_q [n]_q}{q^2 [n - 2]_q ([n]_q + \beta)} \right)^{-1} \sup_{\alpha \in (0, \infty)} \frac{x^2}{1 + x^2} + \left(\frac{[n]_q + \alpha}{q[n - 2]_q ([n]_q + \beta)} \right)^{-1} \sup_{\alpha \in (0, \infty)} \frac{1}{1 + x^2}
\]

Thus
\[\lim_{n \to \infty} \left\| B_{n,\alpha,\beta}^{(v)}(t, x) - x \right\|_\varepsilon = 0. \]

Similarly we can write for \(n > 3 \)
\[
\left\| B_{n,\alpha,\beta}^{(v)}(t^2, x) - x^2 \right\|_\varepsilon \leq \left(\frac{[n + 1]_q [n + 2]_q [n]_q^2}{q^6 [n - 2]_q [n - 3]_q ([n]_q + \beta)^2} \right)^{-1} \sup_{\alpha \in (0, \infty)} \frac{x^2}{1 + x^2}
\]
\[+ \left[\frac{[n]_q [2]_q^2}{q^3 [n - 3]_q ([n]_q + \beta)^2} \right] \sup_{\alpha \in (0, \infty)} \frac{x}{1 + x^2}
\]
\[+ \left[\frac{[2]_q [n]_q^2}{q^4 [n - 2]_q [n - 3]_q ([n]_q + \beta)^2} + \frac{2\alpha [n]_q}{q[n - 2]_q ([n]_q + \beta)^2} + \left(\frac{\alpha}{([n]_q + \beta)} \right)^2 \right] \sup_{\alpha \in (0, \infty)} \frac{1}{1 + x^2}
\]

Which implies that
\[\lim_{n \to \infty} \left\| B_{n,\alpha,\beta}^{(v)}(t^2, x) - x^2 \right\|_\varepsilon = 0. \]

Thus the proof is completed.

REFERENCES

Some Approximation Properties of q-MBS Operators
