Modeling of Polarimetric Hyperspectral Imaging

Supriya P. Gaikwad¹, Ashumati Dhuppe² and Prof. Vijay R. Dahake³

¹Dept. of Electronics and Telecommunication, Ramrao Adik Institute of Technology, Navi Mumbai, Mumbai University, India.
²³Dept. of Electronics and Telecommunication, Ramrao Adik Institute of Technology, Navi Mumbai, Mumbai University, India.

Abstract

Hyperspectral images contain a wealth of data. Hyperspectral imaging (HSI) systems can acquire both spectral and spatial information of ground surface. The work on polarimetric hyperspectral imaging mechanism and on image characteristics is of great importance for information extraction and utilization of the images. The purpose is to analyze the mechanism of polarimetric hyperspectral imaging and to model such a process. The outcome will help designers and users of a polarimetric hyperspectral imaging system to further understand the system and take full advantages of it.

Polarimetric hyperspectral images can provide spectral, spatial, and polarimetric information of a scene, which are unique and comprehensive for remote sensing applications such as growth monitoring of crops, analysis of water quality, and geology mapping, etc. Here, a polarimetric hyperspectral imaging model is proposed, in which the influence of skylight on polarization is considered. Here we analyze and calculate the condition and parameters of the imaging models, the uniqueness, and usefulness of the integration of polarimetric and spectral information. Here we generate the polarimetric hyperspectral image data source according to the imaging model. The polarimetric hyperspectral image model here is realized at the low attitude considering the characteristic of atmosphere environment.

Keywords: Imaging modeling, polarimetric hyperspectral images, polarimetric information.
1. Introduction
The modeling of hyperspectral imaging systems plays a number of roles in the development and application of the technology. Primary role is that by constructing and validating models, we demonstrate our understanding of the problematics and processes of hyperspectral imaging. Another major role is to create accurate simulations of hyperspectral images. A third role is to optimize the design and operation of the imaging systems. Hyperspectral images possess spectral and spatial information of ground cover, which have been widely used in remote sensing fields. Polarimetric hyperspectral images can provide extra polarimetric information of a scene and are expected to play more important role than hyperspectral images in remote sensing applications such as monitoring growth status of vegetation, the atmosphere, and underwater ecological environment [11] etc. As both sensor and processing systems become increasingly complex, the need for understanding the impact of various system parameters on performance also increases. Here, we analyze the mechanism of polarimetric hyperspectral imaging and model such a process. The outcome of the work can help system designers and users understand imaging process better and find the influencing factors to system performance, so as to optimize sensor parameters and to plan new missions.

2. Literature Survey
As early as 1989, Kerekes and Landgrebe made a detailed description about the modeling and simulation of optical remote sensing system. Many models are developed to describe the reflection of vegetation canopies, such as Suits model [6], etc. Scattering by arbitrary inclined leaves model is one of the earliest canopy reflectance models [7], gives rise to several improved versions. Kuusk put forward an improved SAIL model where the hot-spot effect was added [1]. Fast canopy reflectance (FCR) model [9] overcomes the defect of SAIL model that failed considering the specular reflection on leaf surfaces and the hot-spot effect. The four-stream model is applied to describe the complex interaction of the heterogeneous and non-Lambertian land surface with the atmosphere in an effective manner. The six atmosphere parameters of four stream model can be calculated. Vanderbilt and Grant firstly derived a specular reflectance and polarized reflectance model for the headed and preheaded plant canopy [13]. In 2005, Shell further analyzed three backgrounds and six targets polarization in his doctoral dissertation. In 2009, Waquet presented an alternative to the previous model by using a shadowing function given by Saunders.

3. Method of Implementation
This paper proposes a polarimetric hyperspectral imaging model, in which the influence of skylight on polarization is considered. First, three kinds of typical material’s (vegetation, top soil, water surface) polarized reflectance models are analysed. Next, we come up with a model of polarimetric hyperspectral imaging process based on the previous work of hyperspectral image modeling, and polarimetric information is characterized and introduced in the model. The polarimetric
hyperspectral image model here is realized at the low attitude considering the characteristic of atmosphere environment. Finally we also analyze the subpixel model.

3.1 Polarized reflectance model

Polarization mainly comes from the specular reflection of sunlight, although polarimetric information produced by skylight should not be ignored. Polarized radiance basically comes from the microcosmic surface’s specular reflection. The specular reflection is highly dependent on the types of material, surface roughness, etc. Here we just consider the condition that surfaces are relatively flat; thus, the direction of surface’s specular reflection is close to that of macroscopic normal’s specular reflection. In this instance, when the microscopic normal is parallel to the macroscopic normal, incident light is reflected in the direction that reflected angle is equal to the incident angle; incident light and reflected light are within some plane according to Fresnel principle. This probability will gradually decrease when the microscopic normal is far from the macroscopic normal.

a) Case of vegetation:- A simple polarized reflectance model for vegetation canopy was proposed by Rondeaux and Herman in 1991. This model accounts for the leaf angle distribution and analyzes the effect of light transmission through the canopy. They pointed that the polarized reflectance is independent on the leaf area index for a dense canopy \((\text{LAI} \geq 3)\). Breon put forward a simpler version of the polarized reflectance model for vegetation and ignores the effect of LAI [3]. Leaf angle distribution function is generally defined as the probability density of leaf angle. Breon’s vegetation canopy model results are often lower than the measured data. Hence, we adopt the Rondeaux-Herman model in our work, and the effect of LAI is ignored.

b) Case of top soil:- A polarized reflectance model for bare soils was also given by Breon, using the hypothesis like that for vegetation canopy. Moreover, it does not consider attenuation of the incoming reflected rays within the depth of the canopy. The top soil model results are often higher than the measured data [4]. Waquet introduced a polarized reflectance model using a shadowing function, and this model fit not only for vegetation surface but for bare soils [10].

c) Case of water surface:- The water’s polarized reflectance is affected by the waves, which depends on the wind speed. Hence, a wave facet’s distribution function derived by Cox and Munk depends only on the wind speed \(\omega\) and preserves the symmetry of the reflectance law. The model assume that the entire water surface or some part of the land surface consists in small Fresnel’s reflectors with random orientation. In Fig 3.2 We observe here that the value of polarized reflectance is also influenced by the climate, so the polarization can be utilized to monitor the weather change.
3.2 Polarimetric hyperspectral imaging

Based on our previous the hyperspectral simulation work, augments the polarization part. Therefore, we first analyze the hyperspectral imaging model and then put forward the polarimetric hyperspectral imaging model.

A) Hyperspectral imaging model:

In the modeling of hyperspectral imaging process, the four-stream radiance model [8] is adopted, in which major effects including heterogeneity of landscape, non-Lambertian reflectance of the land surface, atmospheric adjacency effect, and the limited spatial resolution of instrument are considered. According to the four-stream radioactive transfer theory, the radiance L_0 received by the sensor can be computed as,

$$L_0 = \rho_{so} \frac{E_0}{\pi} \cos \theta_s + \frac{\tau_{ss} \tau_{sd} + \tau_{ss} \tau_{dd}}{1 - \tau_{dd} \rho_{dd}} \tau_{do} \frac{E_0}{\pi} \cos \theta_s + \frac{\tau_{sd} \tau_{dd}}{1 - \tau_{dd} \rho_{dd}} \frac{\tau_{oo} \frac{E_0}{\pi} \cos \theta_s + \tau_{ss} \tau_{so} \tau_{oo} \frac{E_0}{\pi} \cos \theta_s}{(1)}$$

where r_{so} is target bidirectional reflectance, r_{do} is target directional reflectance for diffuse incidence, r_{sd} is the average surroundings diffuse reflectance for solar incidence, r_{dd} is the average surroundings diffuse reflectance for diffuse incidence, ρ_{so} is the bidirectional reflectance at the top of atmosphere, ρ_{dd} is the spherical albedo at the bottom of atmosphere (BOA), τ_{ss} is the direct atmospheric transmittance in the direction of the sun, τ_{oo} is the direct atmospheric transmittance in the direction of viewing, τ_{sd} is the diffuse atmospheric transmittance for solar incidence, τ_{do} is the directional atmospheric transmittance for diffuse incidence, E_{so} is the direct solar irradiance on a plane perpendicular to the sunrays, and θ_s is the local solar zenith angle.

According to the theory of Verhoef’s four stream model, we rederive the model again. The six atmosphere parameters calculated are,

$$\tau_{ss} = \exp(-b / \cos \theta_s) ...$$

$$\tau_{ss} \tau_{oo} = \exp[-b(1 / \cos \theta_s + 1 / \cos \theta_o)] = GSUN_{100} \times \frac{E_0}{\pi}(\cos \theta_s)$$

$$\rho_{dd}^2 \left(\frac{G_{TOT_{50}}}{G_{TOT_{100}}} - \frac{1}{2} \right) \tau_{ss} + \rho_{dd} \left[\frac{\tau_{ss}}{2} - \tau_{sd} + (\tau_{sd} - 2 \tau_{ss}) \right] + \left(1 - 2 \frac{G_{TOT_{50}}}{G_{TOT_{100}}} \right) \cdot \tau_{sd} = 0$$

$$\text{(3)}$$

Fig. 3.1: Waquet model.

Fig. 3.2: Cox-Munk model.
Like this we can derive the parameters, b, and θo. Where b is the extinction coefficient representing the optical thickness of the atmospheric layer, and θo is the zenith angle of observation. GTOT0, GTOT50, and GTOT100 are spectrally flat surface albedos of 0%, 50%, and 100%, respectively, here all for a uniform Lambertian surface reflectance. The three revised parameter equations including the diffuse atmospheric transmittance for solar incidence τsd, the directional atmospheric transmittance for diffuse incidence τdo, and the BOA spherical albedo of the atmosphere ρdd.

B) Polarimetric hyperspectral imaging model
Polarized radiance mainly depends on the specular reflection of sunlight; thus, conventional surface polarized radiance model does not take the skylight into consideration. However, the contribution of skylight for polarized radiance cannot be ignored. According to the data which is obtained [5], the ratio of polarized radiance which is produced by skylight is in the range of 10%–20%.

Fig. 3.3: Flux-interaction diagram of the atmosphere over a non-Lambertian reflecting earth’s surface.

In Fig. 3.3. According to the four-stream model, the total radiance received by sensor is L0. Then, the total radiance is divided into five parts which are path radiance, adjacent radiance, ref-sun radiance, ref-multi-skylight radiance, and ref-rayleigh radiance. The “ref-” means that the ground target reflects incident light, and incident light may be sunlight, or multiple scattering skylight, or skylight from Rayleigh scattering.

Moreover, it is reasonable that Waquet ignores the path polarized radiance and adjacent polarized radiance when the weather is “no rain, no cloud,” and the altitude of sensor is lower than 35 km. The atmospheric polarized radiance can be accurately estimated using the successive order of scattering code. To simplify, we also ignore the path polarized radiance and adjacent polarized radiance. Therefore, in terms of polarized radiance, we just consider that the polarized radiance comes from ground targets.

C) Subpixel Model
Previously, each pixel is considered as a pure pixel, and this assumption usually is unreasonable. Here, a simple area-weighted linear mixing model is used to obtain the reflectance of pixels in woodland-road scene that contains two classes (shrubbery and
uncovered soil). A pixel is modeled as an area-weighted sum of the reflectance of the four scene components: sunlit ground, sunlit crown, shadowed ground, and shadowed crown. The reflectance of mixed pixel in the scene depends on the four parameters, i.e., \(f_C \) for sunlit crown, \(f_f \) for shadowed crown side, \(f_G \) for sunlit ground, and \(f_Z \) for shadowed ground. The four subpixel parameters are used to describe the proportion of the four representative scene components, which are influenced by solar zenith angle, viewing zenith angle, and tree density per resolution element in the scene. [12]

1) Directional Reflectance Parameters: For the subpixel model, the directional reflectance \(r_{so}, r_{do}, r_{sd}, \) and \(r_{dd} \),

\[
r_{so} = f_C \rho_c(\mu_o, \phi_o, \mu_s, \phi_s) + f_G \rho_s(\mu_o, \phi_o, \mu_s, \phi_s)
\]

The foliage’s reflectance \(\rho_c(\mu_o, \phi_o, \mu_s, \phi_s) \) is realized by FCR model. The soil can be seen as Lambertian surface, whose reflectance \(\rho_s(\mu_o, \phi_o, \mu_s, \phi_s) \) can be obtained from the spectrum database. Like this we can calculate \(r_{do}, r_{sd}, \) and \(r_{dd} \). With these four directional reflectance parameters and six atmosphere parameters we obtain the total radiance that is received by the sensor.

4. Conclusion
In this work, we come to know that the polarized radiance has nothing to do with analyzer’s initial direction. We study the polarimetric hyperspectral imaging model to realize the ideal and real scene implementation of polarimetric hyperspectral image. We modify the Verhoef’s six atmosphere parameters, and the influence of skylight on polarization is analysed and four directional reflectance parameters are derived. Finally, we generate the polarimetric hyperspectral image data source according to the imaging model. Polarization is independent of the spectral feature. The polarization can provide the supplementary information for the image interpretation other than spectral and spatial features. Polarimetric hyperspectral remote sensing combines the advantages of polarization and hyperspectral techniques.

References

