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Abstract

Gyroscope is important component in guided navigation systems,
aerospace and robotics. Uncertainty in nonlinear dynamics model of
gyroscope system and increasing of time needed to control of motion
of gyroscope can lead to large losses. In order to reducing of
uncertainty and linearization of gyroscope system, Takagi—Sugeno
(TS) fuzzy model was used. TS fuzzy controller was applied to
synchronization of two chaotic gyroscope systems. We have shown
that synchronization of two gyroscopes is done in short time.
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1. Introduction

Gyroscopes as one of the most important elements used in aerospace, marine systems,
robotics and optics industries widely. This system has been studied by many authors
[1-8]. In the past decade, a new phenomenon in this system was expressed and many
researchers were interested in this phenomenon. This phenomenon was first described
in 1981 and it has been shown that the system has a chaotic behavior for certain initial
conditions [9]. Gyroscopes are used in sensitive industries and the slightest error can
cause a lot of damage. Therefore, an appropriate control signal must be applied to the
system and the chaotic behavior will be controlled. Since the studied system has large
uncertainty in this paper, we have proposed a fuzzy controller. Because it is used in
online applications, so it should be tried to reduce the time control. For this purpose,
we are changing the gyroscope nonlinear model to the TSk fuzzy model. Within this
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method, a nonlinear system is transformed into linear or pseudo-linear subsystems
[10].

In this paper, controllers are designed for the obtained model. The objective in this
paper is synchronization of two chaotic gyroscopes. This paper is organized as follows:
Gyroscope equations and chaotic conditions are described in Section 2. In section 3 the
TS fuzzy model is given. In section 4 the controller is designed to synchronize two
chaotic systems. Numerical simulations in Section 5 and conclusions in Section 6 are
given.

2. Motion equation of a gyroscope
A symmetric gyro with linear-plus-cubic damping is considered [1]. These equations
are given with respect to the angle theta:
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In particular, the gyro exhibits chaotic behavior for the following parameters:
a?=100,=1,¢;, =05, ¢, =005, w=2,f =355and [x,(0),x,(0)] =
[1,—1].

3. Takagi-Sugeno fuzzy model of nonlinear chaotic gyro

In order to achieved a control model, in this system we have briefly made a review on
TS fuzzy model [11]. This control oriented fuzzy modeling method is simple and
natural. The system dynamics is captured by a set of fuzzy implications which
characterize local relations in the state space. The chaotic system considered is in the
form of x™ = f(x) + g(x)u + d(x, t), in which f(x)and g(x) are unknown smooth
functions and d(x,t) is the bounded external disturbance. This nonlinear chaotic
system can be modeled using a Takagi—Sugeno (TS) fuzzy model. The main feature of
a TS fuzzy model is to express a nonlinear dynamical system by a set of fuzzy rules.
Each fuzzy rule is a linear dynamical system and the overall fuzzy model of the system
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is achieved by a fuzzy blending of each local model. The i th rule of the fuzzy model
for the nonlinear system can be written as:
RY:if x, is M} (x;)and ...and x,, is M} (x,) then x =
A;x(t) + Bju(t) + B;d(x,t) 3)

where x(t) = [x,(t), x,(t), ..., x,(t)] € R™ denotes the state vector and i =
1,...,1; u(t) € R is the input; [ is the number of rules. Also A;,B; and B, are state
matrices.

The final output of the fuzzy model is inferred as follows:

x(t) = Ty h(x(®){Ax () + Bu(t) } + Byd(x, t) (4)

which h;(x(£)) = wi(x(£))/ Zioy w; (x(£)) . Tt is the firing strength of ith rule,
and

w;i (2 (1)) = [T}=1 M} (x;(1)), (5)

where M ]-i (x(t)) is the grade of membership function.

Using TS fuzzy model, the gyroscope nonlinear dynamic model becomes the three
linear subsystems. Given the stated assumptions, the fuzzy model of system as follows:

if x, is zero then x,(t) = Z,,
if x, is positive then x,(t) = Z,,

if x, is negative then x,(t) = Zs, (5)
where

Zy
= 35.5sin(2t — 24) (x; — 0.001) — 0.5x,
+ 0.0355 sin(2t) — 0.024

Zy
= 31.1542 sin(2t — 30.9453) (x; — 0.5)
— 0.5x, +17.0196 sin(2t) — 13.1201

Z3

= 31.1542 sin(2t — 30.9453) (x; + 0.5)
— 0.5x, —17.0196 sin(2t) + 13.1201.

4. Synchronization of two chaotic gyroscopes

Consider two coupled, chaotic gyro systems are as following:
J'Cl == xz
. 1—cos x1)? , , , 6
X, = —az% — Xy — Cx3 + B sinx;, + fsin wtsinx, , (©6)
1
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V1i=Y2
(1—cos y;1)? .
_azTgyll_Cﬂ’z — ¢y + Bsiny; + (7

fsin wt siny; + U(t) + Af (y1,¥2) ,

Vo =

where U(t) is the control input, 4f (y;, y,) is an uncertainty term representing the
unmodeled dynamics or structural variation of the system which is given in Eq. (7). In
general, the uncertainty is assumed to be bounded as |Af(y)| < a, where a is a
positive constant. Control input is applied to a slave system (7) that will be
synchronized with the master system. Therefore the following objective must be
achieved:

limeollx(8) = y(®)Il = 0, (®)

Because the three linear subsystems for gyro is intended, with definition of error
states as e; = y; — x5 and e, = y, — X, , the error state equations for each subsystem
are as follows:

The first subsystem:
él = 82
é, = 35.5sin(2t — 24) (e; — 0.001) — 0.5e, + 0.0355sin(2t) — (9)
0.024 + Af (y1,y2) + Us(8)
The second subsystem:

é1=¢6,
é, = 31.1542 sin(2t — 30.9453) (e; — 0.5) — 0.5¢, + (10)
17.0196 sin (2t) — 13.1201 + Af (y4,y,) + U,(t)
The third subsystem:
é; = e

é, = 31.1542 sin(2t — 30.9453) (e, + 0.5) — 0.5e; — (11)
17.0196 sin(2t) + 13.1201 + Af (y4,y2) + Us(t)

To obtainU;(t) where j = 1,..,3 ,the fuzzy controller is proposed. The i th rule for
the controller can be expressed as follows:

Ri:if ejisk, and e, is k, thenu,; = fi(ey, e;) (12)
where k; and k, are the input fuzzy sets, u;; is the output which is the analytical

function f;(.) of the input variables (e, e3).
Also U;(t) given as follows:

Yit g Kithi ;
U= 2‘."1-—1:: g = min(pe (), iz (e2)) - (13)



Modeling and Synchronization of Chaotic Gyroscopes using TS Fuzzy Approach 343

Using P, Z and N as input fuzzy sets representing ‘positive’, ‘zero’ and ‘negative’,
respectively, we obtain the membership function.
According to error state equation a Lyapunov function is consider:

V==(e?+ed) (14)

For stability, this condition must be met

. €161

V = elél + 62é2 < 0, SO éz < — e (15)
2

According the Lyapunov stability condition, the following case will satisfy all the
stability conditions.

Casel. For e, > 0, the equation (14) becomes to e, < —e;.

It will be different for each subsystem. For the first subsystem we have:

35.5sin(2t — 24) (e; — 0.001) — 0.5e, + 0.0355 sin(2t) — 0.024 +
Af 1, y2) + un(t) < —eq

With consider [Af (y)| < a, the control signal is:

u;;(t) = —e; — 35.5sin(2t — 24) (e; — 0.001) + 0.5e, — 0.0355sin(2t) +
0.024 — a (16)

It is including the three rules: uy; (t) = u (t) = up (t).

Case2. For e, < 0, the equation (14) becomes to &, > —e;.

So, like the previous case, the control signal as follows:

u;3(t) = —e; — 35.5sin(2t — 24) (e; — 0.001) + 0.5e, — 0.0355sin(2t) +
0.024 + a (17)

It is including the three rules: u;3(t) = ue(t) = uyo(t) .

Case3. For e, € zse; >0, because e; +é, = —sgn(e,), the equation (14)
becomes to &, < —sgn(e,).

The control signal as follows:

up(t) =
—sgn(e,) — 35.5sin(2t — 24) (e; — 0.001) + 0.5e, — 0.0355 sin(2t) + 0.024 —
a (18)

cased. Fore, € z s5e; < 0, the equation (14) becomes to &, > —sgn(e,).

The control signal as follows:

wg(t) =
—sgn(e,) — 35.5sin(2t — 24) (e; — 0.001) + 0.5e, — 0.0355sin(2t) + 0.024 +
a (19)

caseb. e, se; € z , This condition is included in the other rules, and we define
U5 (t) = 0 in this rule.

In the same way we do for other subsystems. Finally, the overall control signal
from equation (4) is obtained.
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5. Simulation Result

In this section the proposed controller is applied to system. The initial values of the
master system (6) and the slave system (7) are taken as

and , respectively. is considered. In
figl, it shows that the slave system and the master system can reach synchronization
with control operation. In addition, the time responses control input is shown in fig2, it
shows that the resulting control input is continuous and smooth, and it is easy to
implement in real physical system.

a5 1 I I 1 I I I 1 |
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Fig. 1: Time responses of controlled chaotic gyro

error

time

Fig. 2: Time responses control input synchronization system.
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6. Conclusion

In this paper, TS fuzzy control scheme to synchronization of chaotic gyroscopes is
proposed. For reducing the uncertainty in gyroscope dynamic model and time of the
control actions a nonlinear model system is transformed into linear subsystems. Our
numerical simulations have demonstrated the validity and feasibility of the proposed
method.
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