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Abstract 
 

Gyroscope is important component in guided navigation systems, 
aerospace and robotics. Uncertainty in nonlinear dynamics model of 
gyroscope system and increasing of time needed to control of motion 
of gyroscope can lead to large losses. In order to reducing of 
uncertainty and linearization of gyroscope system, Takagi–Sugeno 
(TS) fuzzy model was used. TS fuzzy controller was applied to 
synchronization of two chaotic gyroscope systems. We have shown 
that synchronization of two gyroscopes is done in short time. 
 
Keywords: Chaos, Takagi–Sugeno fuzzy model, Indirect model 
reference, Nonlinear system, Gyroscope.  
 
 

1. Introduction 
Gyroscopes as one of the most important elements used in aerospace, marine systems, 
robotics and optics industries widely. This system has been studied by many authors 
[1-8]. In the past decade, a new phenomenon in this system was expressed and many 
researchers were interested in this phenomenon. This phenomenon was first described 
in 1981 and it has been shown that the system has a chaotic behavior for certain initial 
conditions [9]. Gyroscopes are used in sensitive industries and the slightest error can 
cause a lot of damage. Therefore, an appropriate control signal must be applied to the 
system and the chaotic behavior will be controlled. Since the studied system has large 
uncertainty in this paper, we have proposed a fuzzy controller. Because it is used in 
online applications, so it should be tried to reduce the time control. For this purpose, 
we are changing the gyroscope nonlinear model to the TSk fuzzy model. Within this 
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method, a nonlinear system is transformed into linear or  pseudo‐linear subsystems 
[10].  

In this paper, controllers are designed for the obtained model. The objective in this 
paper is synchronization of two chaotic gyroscopes. This paper is organized as follows: 
Gyroscope equations and chaotic conditions are described in Section 2. In section 3 the 
TS fuzzy model is given. In section 4 the controller is designed to synchronize two 
chaotic systems. Numerical simulations in Section 5 and conclusions in Section 6 are 
given. 

 
 

2. Motion equation of a gyroscope 
A symmetric gyro with linear-plus-cubic damping is considered [1]. These equations 
are given with respect to the angle theta: 
 

ሷߠ ൅ ଶߙ ሺଵି௖௢௦ ఏሻమ

௦௜௡యఏ
െ ߚ ݊݅ݏ ߠ  ൅ ܿଵߠሶ ൅ ܿଶߠሶ ଷ  ൌ ݂ ݊݅ݏ ݐ߱ ݊݅ݏ  (1)  ߠ

 
where ݂ ݊݅ݏ ሶߠis a parametric excitation, ܿଵ ݐ߱  and ܿଶߠሶ ଷ are linear and nonli 
near damping terms, respectively. the αଶ ሺଵିୡ୭ୱ ஘ሻమ

ୱ୧୬య஘
െ β sin θ  is a nonlinear 

resilience force. Considering the states as ݔଵ ൌ ,ߠ ଶݔ ൌ ሶߠ  and gሺθሻ ൌ ଶߙ ሺଵି௖௢௦ ఏሻమ

௦௜௡యఏ
െ

݊݅ݏ  :the equations are normalized as follows ,ߠ
 

൝
ሶଵݔ ൌ  ଶݔ

ሶଶݔ ൌ െߙଶ ሺଵି௖௢௦ ௫భሻమ

௦௜௡య௫భ
െ ܿଵݔଶ െ ܿଶݔଷ  ൅ ଵݔ ݊݅ݏ ߚ ൅ ݐ߱ ݊݅ݏ݂ ݊݅ݏ  ଵ    (2)ݔ

 
In particular, the gyro exhibits chaotic behavior for the following parameters: 
ଶߙ ൌ 100 , ߚ ൌ 1 ,  ܿଵ ൌ 0.5 ,  ܿଶ ൌ 0.05 , ߱ ൌ 2 , ݂ ൌ 35.5 and ሾݔଵሺ0ሻ, ଶሺ0ሻሿݔ ൌ

ሾ1, െ1ሿ. 
 
 

3. Takagi-Sugeno fuzzy model of nonlinear chaotic gyro 
In order to achieved a control model, in this system we have briefly made a review on 
TS fuzzy model [11]. This control oriented fuzzy modeling method is simple and 
natural. The system dynamics is captured by a set of fuzzy implications which 
characterize local relations in the state space. The chaotic system considered is in the 
form of ݔ௡ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻݑ ൅ ݀ሺݔ,  ሻ are unknown smoothݔሻand ݃ሺݔሻ, in which ݂ሺݐ
functions and ݀ሺݔ,  ሻ is the bounded external disturbance. This nonlinear chaoticݐ
system can be modeled using a Takagi–Sugeno (TS) fuzzy model. The main feature of 
a TS fuzzy model is to express a nonlinear dynamical system by a set of fuzzy rules. 
Each fuzzy rule is a linear dynamical system and the overall fuzzy model of the system 
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is achieved by a fuzzy blending of each local model. The ݅ th rule of the fuzzy model 
for the nonlinear system can be written as: 

ܴ௜ ׷ ଵܯ ݏ݅ ଵݔ ݂݅
௜  ሺݔଵሻܽ݊݀ … ௡ܯ ݏ݅ ௡ݔ ݀݊ܽ

௜  ሺݔ௡ሻ ݔ ݄݊݁ݐሶ ൌ
ሻݐሺݔ௜ܣ ൅ ሻݐሺݑ௜ܤ ൅ ,ݔଵ݀ሺܤ  ሻ   (3)ݐ

where ݔሺݐሻ ൌ ሾݔଵሺݐሻ, ,ሻݐଶሺݔ … , ሻሿݐ௡ሺݔ א ܴ௡ denotes the state vector and ݅ ൌ
1, … , ሻݐሺݑ ;݈ א ܴ is the input; ݈ is the number of rules. Also ܣ௜ ,  ଵ are stateܤ ௜ andܤ
matrices.  

The final output of the fuzzy model is inferred as follows: 
 

ሻݐሶሺݔ ൌ ∑ ݄௜൫ݔሺݐሻ൯ሼܣ௜ݔሺݐሻ ൅ ሻ ሽݐሺݑ௜ܤ ൅௟
௜ୀଵ ,ݔଵ݀ሺܤ   ሻ (4)ݐ

 
which ݄௜൫ݔሺݐሻ൯ ൌ /ሻሻݐሺݔ௜ሺݓ ∑ ௜ݓ

௟
௜ୀଵ ሺݔሺݐሻሻ . It is the firing strength of ݅th rule, 

and  
ሻ൯ݐሺݔ௜൫ݓ   ൌ ∏ ௝ܯ

௜ሺݔ௝ሺݐሻሻ௡
௝ୀଵ ,  (5) 

 
 where ܯ௝

௜ሺݔሺݐሻሻ is the grade of membership function.  
Using TS fuzzy model, the gyroscope nonlinear dynamic model becomes the three 

linear subsystems. Given the stated assumptions, the fuzzy model of system as follows: 
 

ଶሶݔ ݄݊݁ݐ ݋ݎ݁ݖ ݏ݅ ଵݔ ݂݅ ሺݐሻ ൌ ܼଵ , 
ଶሶݔ ݄݊݁ݐ ݁ݒ݅ݐ݅ݏ݋݌ ݏ݅ ଵݔ ݂݅ ሺݐሻ ൌ ܼଶ , 

ଶሶݔ ݄݊݁ݐ ݁ݒ݅ݐܽ݃݁݊ ݏ݅ ଵݔ ݂݅ ሺݐሻ ൌ ܼଷ,  (5) 
where  

ܼଵ
ൌ 35.5 ݐሺ2݊݅ݏ െ 24ሻ ሺݔଵ െ 0.001ሻ െ ଶݔ0.5
൅ ሻݐሺ2݊݅ݏ 0.0355 െ 0.024 

ܼଶ
ൌ 31.1542 ݐሺ2݊݅ݏ െ 30.9453ሻ ሺݔଵ െ 0.5ሻ
െ ଶݔ0.5 ൅ ሻݐሺ2݊݅ݏ 17.0196 െ 13.1201 

ܼଷ
ൌ 31.1542 ݐሺ2݊݅ݏ െ 30.9453ሻ ሺݔଵ ൅ 0.5ሻ
െ ଶݔ0.5 െ 17.0196 ሻݐሺ2݊݅ݏ  ൅ 13.1201. 

 
 

4. Synchronization of two chaotic gyroscopes 
Consider two coupled, chaotic gyro systems are as following: 

൝
ሶଵݔ ൌ  ଶݔ

ሶଶݔ ൌ െߙଶ ሺଵି௖௢௦ ௫భሻమ

௦௜௡య௫భ
െ ܿଵݔଶ െ ܿଶݔଷ  ൅ ଵݔ ݊݅ݏ ߚ ൅ ݐ߱ ݊݅ݏ݂ ݊݅ݏ ଵݔ  ,  (6) 
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൞

ሶଵݕ ൌ  ଶݕ

ሶଶݕ ൌ െߙଶ ሺଵି௖௢௦ ௬భሻమ

௦௜௡య௬భ
െ ܿଵݕଶ െ ܿଶݕଷ ൅ ݅ݏߚ ݊ ଵݕ ൅

ଵݕ݊݅ݏ ݐ߱ ݊݅ݏ݂ ൅ ܷሺݐሻ ൅ ,ଵݕሺ݂߂ , ଶሻݕ
   (7) 

 
where ܷሺݐሻ is the control input, ݂߂ሺݕଵ,  ଶሻ is an uncertainty term representing theݕ

unmodeled dynamics or structural variation of the system which is given in Eq. (7). In 
general, the uncertainty is assumed to be bounded as |∆݂ሺݕሻ| ൑  where α is a , ߙ 
positive constant. Control input is applied to a slave system (7) that will be 
synchronized with the master system. Therefore the following objective must be 
achieved:  

݈݅݉௧՜ஶԡݔሺݐሻ െ ሻԡݐሺݕ ՜ 0,  (8) 
 
Because the three linear subsystems for gyro is intended, with definition of error 

states as ݁ଵ ൌ ଵݕ െ ଵ and ݁ଶݔ ൌ ଶݕ െ  ଶ , the error state equations for each subsystemݔ
are as follows: 

 
The first subsystem: 

ቐ
ሶ݁ଵ ൌ ݁ଶ 

ሶ݁ଶ ൌ 35.5 ݐሺ2݊݅ݏ െ 24ሻ ሺ݁ଵ െ 0.001ሻ െ 0.5݁ଶ ൅ 0.0355 ሻݐሺ2݊݅ݏ െ
0.024 ൅ ,ଵݕሺ݂߂ ଶሻݕ ൅  ଵܷሺݐሻ 

  (9) 

The second subsystem: 

ቐ
ሶ݁ଵ ൌ ݁ଶ 

ሶ݁ଶ ൌ 31.1542 ݐሺ2݊݅ݏ െ 30.9453ሻ ሺ݁ଵ െ 0.5ሻ െ 0.5݁ଶ ൅
ሻݐሺ2 ݊݅ݏ 17.0196 െ 13.1201 ൅ ,ଵݕሺ݂߂ ଶሻݕ ൅ ܷଶሺݐሻ 

   (10) 

The third subsystem: 

ቐ
ሶ݁ଵ ൌ ݁ଶ 

ሶ݁ଶ ൌ 31.1542 ݐሺ2݊݅ݏ െ 30.9453ሻ ሺ݁ଵ ൅ 0.5ሻ െ 0.5݁ଶ െ
17.0196 ሻݐሺ2݊݅ݏ ൅ 13.1201 ൅ ,ଵݕሺ݂߂ ଶሻݕ ൅ ܷଷሺݐሻ

  (11) 

 
To obtain ௝ܷሺݐሻ where ݆ ൌ 1, . . ,3 ,the fuzzy controller is proposed. The ݅ th rule for 

the controller can be expressed as follows: 
 

ܴ௜ ׷ ݂݅ ݁ଵ ݅ݏ ݇ଵ ܽ݊݀ ݁ଶ ݅ݏ ݇ଶ  ݑ ݄݊݁ݐ௟௜ ؠ ௜݂ሺ݁ଵ, ݁ଶሻ  (12) 
 
where ݇ଵ and ݇ଶ are the input fuzzy sets, ݑ௟௜ is the output which is the analytical 

function ௜݂ሺ. ሻ of the input variables ሺ݁ଵ, ݁ଶሻ. 
Also ௝ܷሺݐሻ given as follows: 
 

௝ܷ ൌ ∑ ఓ೔௨೗೔
೙
೔సభ
∑ ఓ೔

೙
೔సభ

 , ௜ߤ ൌ ݉݅ ݊൫ߤ௞ଵሺ݁ଵሻ,  ௞ଶሺ݁ଶሻ൯ .  (13)ߤ
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Using P, Z and N as input fuzzy sets representing ‘positive’, ‘zero’ and ‘negative’, 
respectively, we obtain the membership function.  

According to error state equation a Lyapunov function is consider: 
 

ܸ ൌ ଵ
ଶ

ሺ݁ଵ
ଶ ൅ ݁ଶ

ଶሻ  (14)  
 

For stability, this condition must be met 
 

 ሶܸ ൌ ݁ଵ ሶ݁ଵ ൅ ݁ଶ ሶ݁ଶ ൏ 0, so ሶ݁ଶ ൏ െ ௘భ௘ሶభ
௘మ

 .   (15) 
According the Lyapunov stability condition, the following case will satisfy all the 

stability conditions. 
Case1. For ݁ଶ ൐ 0, the equation (14) becomes to ሶ݁ ଶ ൏ െ݁ଵ. 
It will be different for each subsystem. For the first subsystem we have: 
35.5 ݐሺ2݊݅ݏ െ 24ሻ ሺ݁ଵ െ 0.001ሻ െ 0.5݁ଶ ൅ 0.0355 ሻݐሺ2݊݅ݏ െ 0.024 ൅

,ଵݕሺ݂߂ ଶሻݕ ൅ ሻݐ௟ଵሺݑ  ൏ െ݁ଵ  
With consider |∆݂ሺݕሻ| ൑  :the control signal is ,ߙ 
ሻݐ௟ଵሺݑ ൌ െ݁ଵ െ 35.5 ݐሺ2݊݅ݏ െ 24ሻ ሺ݁ଵ െ  0.001ሻ ൅ 0.5݁ଶ െ 0.0355 ሻݐሺ2݊݅ݏ ൅

0.024 െ  (16) ߙ
It is including the three rules: ݑ௟ଵሺݐሻ ൌ ሻݐ௟ସሺݑ ൌ  . ሻݐ௟଻ሺݑ
 
Case2. For ݁ଶ ൏ 0, the equation (14) becomes to ሶ݁ଶ ൐ െ݁ଵ. 
So, like the previous case, the control signal as follows: 
ሻݐ௟ଷሺݑ ൌ െ݁ଵ െ 35.5 ݐሺ2݊݅ݏ െ 24ሻ ሺ݁ଵ െ  0.001ሻ ൅ 0.5݁ଶ െ 0.0355 ሻݐሺ2݊݅ݏ ൅

0.024 ൅   (17) ߙ
It is including the three rules: ݑ௟ଷሺݐሻ ൌ ሻݐ௟଺ሺݑ ൌ  . ሻݐ௟ଽሺݑ
 
Case3. For ݁ଶ א ଵ݁ و ݖ ൐ 0, because ݁ଵ ൅ ሶ݁ଶ ൌ െ݊݃ݏሺ݁ଶሻ, the equation (14) 

becomes to ሶ݁ଶ ൏ െ݊݃ݏሺ݁ଶሻ. 
The control signal as follows: 
ሻݐ௟ଶሺݑ ൌ

െ݊݃ݏሺ݁ଶሻ െ 35.5 ݐሺ2݊݅ݏ െ 24ሻ ሺ݁ଵ െ  0.001ሻ ൅ 0.5݁ଶ െ 0.0355 ሻݐሺ2݊݅ݏ ൅ 0.024 െ
 (18) ߙ

 
case4. For ݁ଶ א ଵ݁ و ݖ ൏ 0, the equation (14) becomes to ሶ݁ଶ ൐ െ݊݃ݏሺ݁ଶሻ. 
The control signal as follows: 
ሻݐ௟଼ሺݑ ൌ

െ݊݃ݏሺ݁ଶሻ െ 35.5 ݐሺ2݊݅ݏ െ 24ሻ ሺ݁ଵ െ  0.001ሻ ൅ 0.5݁ଶ െ 0.0355 ሻݐሺ2݊݅ݏ ൅ 0.024 ൅
  (19) ߙ

case5. eଶ و eଵ א z , This condition is included in the other rules, and we define 
u୪ହሺtሻ ൌ 0 in this rule. 

In the same way we do for other subsystems. Finally, the overall control signal 
from equation (4) is obtained. 
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6. Conclusion 
In this paper, TS fuzzy control scheme to synchronization of chaotic gyroscopes is 
proposed. For reducing the uncertainty in gyroscope dynamic model and time of the 
control actions a nonlinear model system is transformed into linear subsystems. Our 
numerical simulations have demonstrated the validity and feasibility of the proposed 
method. 
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