
Advance in Electronic and Electric Engineering.
ISSN 2231-1297, Volume 3, Number 2 (2013), pp. 257-264
© Research India Publications
http://www.ripublication.com/aeee.htm

Dynamic Partial Reconfiguration in Low-Cost FPGAs

K. Bhuvaneswari1 and V. Srinivasa Rao2

1ECE Dept, Shri Vishnu Engineering College for Women, Vishnupur, Bhimavaram,

West Godavari District, Andhra Pradesh, INDIA.
2ECE Dept, Shri Vishnu Engineering College for Women, Vishnupur, Bhimavaram,

West Godavari District, Andhra Pradesh, INDIA.

Abstract

Field Programmable Gate Array (FPGA) market is growing rapidly
with various applications in different industries. There is a new
concept evolving in FPGA industry called Dynamic Partial
Reconfiguration (DPR) with has a greater exposure in different
applications. Partial reconfiguration is nothing but reconfiguring the
selected areas of an FPGA after its initial configuration at runtime. In
this paper we reconfigure some specific region of the FPGA with a
new functionality at runtime while the remaining areas remain static
during this time. The complexities during the runtime can be simplified
by a tool called PlanAhead which was introduced by Xilinx that is able
to implement run time reconfigurable systems for all Virtex FPGAs.
This results in low computational cost and low power FPGAs,
PlanAhead is the first graphical environment for Partial
Reconfiguration. In this context Partial Reconfiguration gives the
flexibility for reducing the board space (effective utilization of
resources), change a design in the field and also reduces the power
consumption and delay.

Keywords: FPGA, Dynamic Partial Reconfiguration, PlanAhead.

1. Introduction
FPGAs provide users with an environment where the user is able to quickly develop
and implement a circuit or module at low cost and fast turnaround time. [1] FPGA
hardware allow the reconfiguration of a programmable logic partial reconfiguration [2]
can also be used to allow larger complex designs to be implemented on devices with

K. Bhuvaneswari & V. Srinivasa Rao

258

fewer resources than would normally be required for a complete implementation. The
most common method for implementation of partial reconfiguration is one in which a
modular design approach is used. The logic is configured in a manner such that one
module is dynamically reconfigured [5] while another module is retained in a static
configuration for performing operations which do not change. Partial reconfiguration is
the practice of reprogramming only a portion of an FPGA.Specifically,Dynamic Partial
Reconfiguration denotes the ability to reprogram a portion of a circuit while it is
operating. This is done without a need for the chip to power down or be reset. Partial
reconfiguration can be implemented through the use of the Xilinx ISE tools in
conjunction with PlanAhead software [8]. Partial reconfiguration generally requires the
use of a modular design flow. Modular design [4] requires additional procedures for
synthesis and implementation and adds complexity not found when utilizing the basic
design flow. In general, modular design allows for simultaneous development of
different modules which together complete the design of an FPGA. The modular
design flow consists of two phases. PlanAhead’s main purpose is to customize the way
circuits designed in ISE are laid out on the FPGA as well as providing timing and
placement analysis to improve circuit function. By using this tool users can group
circuits and modules. The benefit of this is that if each module is in its own area, the
task of partial reconfiguration becomes much easier as only one area is being
programmed and will not affect any of the other sections. This task is known as floor
planning. PlanAhead also provides a useful set of design rule checks which can be
used to improve designs and provide suggestions to the designer.

2. Dynamic Partial Reconfiguration
Partial reconfiguration [4] is of two types namely dynamic partial reconfiguration and
static partial reconfiguration. In this project we concentrate on the dynamic partial
reconfiguration process. Dynamic partial reconfiguration is also known as active
partial reconfiguration, permits to change a part of the device while the rest of an
FPGA is still running. In other words, while the partial data is sent into the FPGA,the
rest of the device will be still running and the new data is being configured into
FPGA.There are two styles of dynamic partial reconfiguration[4] named as Difference
based partial reconfiguration and Module based partial reconfiguration.Difference
based partial reconfiguration can.

Figure 1: Dynamic Partial Reconfiguration.

Dynamic Partial Reconfiguration in Low-Cost FPGAs 259

be used when a small change is made to the design.It is especially useful in case of
changing Look-Up Table(LUT) equations or dedicated memory blocks content.
Module based partial reconfiguration uses modular design concepts to reconfigure
large blocks of logic.

3. EAPR Design Flow
The dynamic partial reconfiguration is supported on all types of Virtex series
device.Early Access Partial Reconfiguration[10] is the latest design flow used for
partial reconfiguration. The EAPR flow allows signals in the base design to cross
through a partially reconfigurable region without busmacro.This improves timing
performance and simplifies the process of building a PR design. Static module is the
design remains in operation during the PR process.

Figure 2: Architecture of EAPR design.

Partial Reconfiguration Module(PRM)[6] can be swapped in and out of the
device.Multiple PRMs can be defined for a specific region.Partial Reconfiguration
Region(PRR) is the part of the FPGA that is set aside for partial reconfigurable
modules.More than one PRRs can be set for reconfiguration.Here a Proxy LUT is used
which automatically connects the reconfigurable modules to the static module.This
was possible in Virtex4 and above series of devices.There is no need to use busmacros
for the purpose of connecting the modules which is the greatest advantage.The EAPR
design flow can be implemented using PlanAhead[8].

4. Implementation with Planahead
The EAPR design flow is shown in the figure 3.This can be implemented using
PlanAhead tool[8].

K. Bhuvaneswari & V. Srinivasa Rao

260

i) HDL design description: The HDL design description for the top module,static
module and the reconfigurable module are implemented here. The top module doesnot
consist of any logic. It contains only I/O instantiations, static modules, clock signals
etc..The static module is nothing but the base module which remains in the stable state
during the partial reconfiguration state. The HDL description for the reconfigurable
modules is implemented.These make use of the clock signals from the top level
modules.

Figure 3: EAPR design flow.

ii)Set design constraints: The area group, reconfiguration mode,timing constraint
and location constraints are defined here.

iii) Implement base module:The static modules will be created.The constraints files
will be checked whether it has been properly created.

iv)Implement PR modules:There are various steps to be performed for creating a
PR module

• Create a Reconfigurable Partition(RP).
• Add a Reconfigurable Module(RM)
• Define P block ranges for the reconfigurable partitions.
• Run pre-specific DRC checks.
• Implement configurations.
• Verify the configuration.
v) Merge: As soon as the configurations have been checked, all the base and the

PR modules will be merged in order to complete a design. Furtherly many partial bit
streams for each PRM and initial full bit streams are created to configure the FPGA.
These partial bit files will be further downloaded onto the FPGA.

Dynamic Partial Reconfiguration in Low-Cost FPGAs 261

5. Results
In this paper two different modules have been taken and they are reconfigured on the
FPGA at runtime. The effective utilization of the resources will be taken place due to
this runtime reconfiguration process. Here the functionality of one module can be
replaced with the functionality of another module. So any kind of module can be
reconfigured with a different functionality on FPGA dynamically. Reconfiguration
time can be greatly reduced. The reconfigurable module-Vedic multiplier is designed
and this module will be reconfigured in the place of an array type of multiplier. The
simulation and synthesis results for the Vedic and Array multipliers are shown in the
following figures:

Figure 4: Simulation result for 8×8 Array type of multiplier.

Figure 5: Simulation result for 8×8 Vedic multiplier using Urdhva Tiryagbhyam Sutra.

K. Bhuvaneswari & V. Srinivasa Rao

262

Figure 6: RTL Schematic of 8×8 Vedic multiplier.

Figure 7: Runtime output view in chipscope.

Table 1: Comparison between multipliers.

Device Utilization Array Type OF 8×8
Vedic Multiplier

8×8 VEDIC Multiplier
Using Urdhva
Tiryagbhyam Sutra

Selected Device 3S500EFG320-5 3S500EFG320-5
Number of Slices 90 OUT OF 4656 1% 91 OUT OF 4656 1%
Number of 4 Input LUTS 157 OUT OF 9312 1% 161 OUT OF 9312 1%
Number of IOS 17 17
Number of bonded IOBS 17 OUT OF 232 7% 18 OUT OF 232 7%
Delay 22.995NS AT 43.48MHZ 20.477NS AT 48.83MHZ

6. Conclusions
In this manner, we showed that the design flow methodology EAPR have the clear
advantage over the existing FPGA design methodology. This methodology is also
applicable to detect some kind of problems in the FPGA architecture with the help of
redundancy at the runtime. Partial reconfiguration begins new advantages to
encryption implementation with the use of an FPGA.

Dynamic Partial Reconfiguration in Low-Cost FPGAs 263

References

[1] Krzysztof Jozwik, Hiroyuki Tomiyama, Masato Edahiro,Shinya Honda and
Hiroaki Takada,(June 2012)“Comparison of Preemption Schemes For
Partially Reconfigurable FPGAS”, IEEE Embedded Systems Letters, vol.4,
no.2.

[2] Kyprianos Papadimitriou, Student Member IEEE, Tonis Anyfantis and
Apostolos Dollas, Senior Member, IEEE,(June 2010),“An Effective
Framework to Evaluate Dynamic Partial Reconfiguration in FPGA Systems”,
IEEE transactions on Instrumentation and Measurement, vol. 59, no.6.

[3] Zine EL Abidine Alaoui Ismailia ns Ahmedmoussa,(2009),“Self-partial and
Dynamic Reconfiguration Implementation for AES using FPGA”, IJCSI
International Journal of Computer Science Issues,Vol.2.

[4] Wang Lie, Wu Feng-yan,(2009),“Dynamic Partial Reconfiguration in
FPGAs”, Third International Symposium on Intelligent Information
Technology Application,vol.2,IEEE.

[5] Eric J.Mcdonald,(July 2008)“ Runtime FPGA Partial Reconfiguration”,
IEEE A&E systems Magazine.

[6] S.S.Shriramwar and Kartik Ingole,(May 2012),”Partial Reconfiguration for
Signal Processing Application using FPGA”,International Journal ofAdvances
in Engineering &Technology,Vol.3,Issue 2, pp. 680-684.

[7] Matthew G.Paris,(2008),”Optimizing Dynamic Logic Realizations for Partial
Reconfiguration of Field Programmable Gate Arrays”,B.S.University of
Louisville.

[8] Xilinx,Inc.Partial Reconfiguration Tutorial PlanAhead Design Tool, (May
8,2012).UG743(V14.1).

[9] Xilinx,Inc.Overview of PartialReconfiguration Flow,PlanAhead software
tutorial,(July23,2010),(v12.2).

[10] Xilinx,Inc.UG208,Early Access Partial Reconfiguration userguide
http://www.xilinx.com.2006.

[11] Swami Bharati Krishna Tirtha,Vedic Mathematics. Delhi: Motilal Banarsidass
Publishers, (1965).

[12] Ming-Chen Wen,Sying-Jyan Wang, and Yen-Nan Lin,(10-12 May
2005),”Low Power Parallel Multiplier with Column Bypassing”,Electronics
letters,vol.41,Issue Page(s):581-583.

[13] Kamboh, Hamid M,Khan Shoab A,(2012),”FPGA Implementation of fast
adder”,7th International Conference on Computing and Convergence
Technology(ICCCT),Page(s):1324-1327, IEEE.

[14] Xilinx Inc,Chipscope Pro Software and Cores userguide
www.xilinx.com/chipscope_pro_sw_cores_ug029.pdf, UG029 (v9.2), May
30, 2007.

K. Bhuvaneswari & V. Srinivasa Rao

264

