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Abstract 
 

The control of dynamic systems in presence of parametric matched 
uncertainties and disturbances is a common problem to deal with when 
considering real plants. The effect of these uncertainties on the system 
dynamics should be carefully taken into account since they can reduce 
the performance or even cause system instability. This paper deals with 
the designing of a controller using different types of sliding mode 
control strategies. Sliding mode control utilizes discontinuous control 
laws to drive the system state trajectory onto a specified surface in the 
state space, the so called sliding or switching surface, and to keep the 
system state on this manifold for all the subsequent times. In order to 
achieve the control objective, the control input must be designed with 
an authority sufficient to overcome the uncertainties and the 
disturbances acting on the system. Sliding mode control is a technique 
to make any linear or nonlinear system completely insensitive to 
parametric uncertainty and external disturbances. In this paper, an 
analysis among two sliding mode control strategies, conventional 
control and quasi control, is being done. The biggest problem which 
we face in the path of implementing sliding mode control is control 
chattering. Several methods to suppress chattering can be used. The 
performance of the designed controllers is then studied by means of 
simulation using MATLAB and SIMULINK. 
 
 

1. Introduction 
One of the common problems which we face in control of dynamical systems is the 
presence of uncertainties and disturbances when considering real plants. These 
disturbances sometime degrade the performance or even cause instability. Due to these 
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reasons, during recent years, the problem of controlling dynamical systems in presence 
of uncertainty conditions has become an important subject of research. As a result, 
considerable progresses have been attained in robust control techniques, such as 
nonlinear adaptive control, model predictive control, backstepping, sliding model 
control and others. These techniques are capable of guaranteeing the attainment of the 
control objectives in spite of modelling errors or parameter uncertainties affecting the 
controlled plant. Among the existing methodologies, the Sliding Mode Control (SMC) 
technique turns out to be characterized by high simplicity and robustness. Essentially, 
SMC utilizes discontinuous control laws to drive the system state trajectory onto a 
specified surface in the state space, the so called sliding or switching surface, and to 
keep the system state on this manifold for all the subsequent times. In order to achieve 
the control objective, the control input must be designed with an authority sufficient to 
overcome the uncertainties and the disturbances acting on the system. The main 
advantages of this approach are two. First, while the system is on the sliding manifold 
it behaves as a reduced order system with respect to the original plant and second, the 
dynamic of the system while in sliding mode is insensitive to model uncertainties and 
disturbances. This latter property of invariance towards so called matched uncertainties 
is the most distinguish feature of sliding mode control and makes this methodology 
particular suitable to deal with uncertain linear and nonlinear systems. Designing of 
controller using sliding mode control can be done by a conventional method insuring 
stability of the system dynamics which is explained in next section. 
 
 
2. Designing Sliding Mode Control  
2.1 Conventional sliding mode control (CSMC)  
Let the control law u be the control that drives the state variables ݔଵ,  ଶ to the slidingݔ
surface in finite time ݐ௥, and keeps them onto the surface thereafter in the occurrence 
of the bounded disturbance ݂ሺݔଵ,ݔଶ,  .ሻݐ

Let the system be, 
 
ଵ ሶݔ  ଵሺ0ሻݔ ଶݔ = ൌ  ଵ଴ݔ
ሶଶݔ  ൌ ݑ ൅ ݂ሺݔଵ, ,ଶݔ ଶሺ0ሻݔ ሻݐ ൌ  ଶ଴   (1)ݔ
 

Here the disturbance ݂ሺݔଵ, ,ଶݔ  ሻ may contain dry and viscous friction as well asݐ
any other unidentified resistance forces, and is believed to be bounded, i.e. 
݂ሺݔଵ, ,ଶݔ  .ሻ≤ L > 0ݐ

Our desired compensated dynamics will be one having no effect of the 
disturbance ݂ሺݔଵ, ,ଶݔ   .ሻݐ

Let us introduce a new variable known as sliding variable in the state space of the 
system, 

ߪ  ൌ ଵ൯ݔ,ଵݔ൫ߪ ൌ ଶݔ  ൅ ,ଵݔܿ ܿ ൐ 0  (2) 
 
In order to attain asymptotic convergence of the state variables ݔଵ,  .ଶ to zero, i.eݔ

lim௧՜ஶ ,ଵݔ ଶݔ ൌ 0 in the presence of the bounded disturbance ݂ሺݔଵ, ,ଶݔ  ሻ,we have toݐ



Designing Robust Control by Sliding Mode Control Technique 139 

take the sliding variable to zero in finite time by the means of control u. This job can 
be achieved by applying Lyapunov function techniques to the ߪ dynamics using 
equations (1) and (2). 

 
ሶߪ  ൌ ଶݔܿ ൅ ݂ሺݔଵ, ,ଶݔ ሻݐ ൅ ,ݑ ሺ0ሻߪ ൌ  ଴  (3)ߪ

 
Equation (2) and (3) rewritten in the form ߪ ൌ ଶݔ ൅ ଵݔܿ ൌ 0, ܿ ൐ 0 correspond to 

a straight line in the state space of Eq. (1) and are referred to as a Sliding Surface.  
For the ߪ dynamics (3) we introduce a Lyapunov function of the form 

 ܸ ൌ ଵ
ଶ

 ଶ  (4)ߪ
 

In order to give asymptotic stability to Eq. (3) about the equilibrium point 0=ߪ, 
a) ሶܸ ൏ ߪ ݎ݋݂ 0 ് 0  
b) lim|ఙ|՜ஶ ܸ ൌ ∞   
 
Condition (b) is satisfied by V in Eq. (4). In order to achieve finite-time 

convergence, condition (a) can be modified to be 
 
 ሶܸ ൑ െܸߙଵ

ଶൗ , ߙ ൐ 0  (5) 
 
Integrating Eq. (5) in the interval 0 to t, we obtain,  

 
 ܸଵ ଶ⁄ ሺݐሻ ൑ െ ଵ

ଶ
ݐߙ ൅ ܸଵ ଶ⁄ ሺ0ሻ  (6) 

 
Consequently, V (t) reaches 0 in a finite time ݐ௥ that is bounded by 

 

௥ݐ  ൑ ଶ௏భ మ⁄ ሺ଴ሻ
ఈ

.  (7) 
 
So, a control u that is derived to satisfy Eq. (5) will drive the variable ߪ to zero in 

finite time and will keep it at zero afterwards. The derivative of V is computed as 
 
 ሶܸ ൌ ሶߪߪ ൌ ଶݔሺܿߪ ൅  ݂ሺݔଵ, ,ଶݔ ሻݐ ൅  ሻ  (8)ݑ

 
Assume ݑ ൌ െܿݔଶ  ൅  ,and substituting it into Eq. (8), we obtain ݒ 

 
 ሶܸ ൌ ,ଵݔሺ݂ሺߪ ,ଶݔ ሻݐ ൅ ሻݒ  ൌ ,ଵݔሺ݂ߪ ,ଶݔ ሻݐ ൅ ݒߪ ൑ ܮ|ߪ| ൅  ݒߪ

 
Selecting ݒ ൌ െ݊݃݅ݏߩሺߪሻ where 

Sign(x) = ቄ  1 if x ൐ 0 
െ1 if x ൐ 0  

And sign (0) Ԗ ሾ െ1, 1ሿ  (9) 
 
With ߩ ൐ 0 and substituting in expression of ሶܸ , we get 
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 ሶܸ ൑ ܮ|ߪ| െ ߩ|ߪ| ൌ െ|ߪ|ሺߩ െ  ሻ  (10)ܮ
 
Taking into account Eq. (4) and (5) we get, 

 
 ሶܸ ൑ െܸߙଵ

ଶൗ ൌ െ ఈ
√ଶ

,|ߪ| ߙ ൐ 0  (11) 
 
Finally, the control gain ߩ ൌ ܮ ൅ ఈ

√ଶ
 

Thus, a control law u that drives ߪ to zero in finite time is  
 
u ൌ െcxଶ െ ρsignሺσሻ  (12) 
  

The control gain of Eq. (12) is designed to compensate for the bounded disturbance 
݂ሺݔଵ, ,ଶݔ ሻ while the second term ఈݐ

√ଶ
 is accountable for determining the sliding surface 

reaching time given by Eq. (7). The larger the value of ߙ, the shorter reaching time. 
Condition +(5) is equivalent to  

 
ሶߪߪ  ൑ െ ఈ

√ଶ
 (13)  |ߪ|

 
Equation (13) is often termed the reachablity condition and is essential condition 

for sliding mode to occur. Meeting the existence condition (13) means that the state 
trajectory of the system in Eq. (1) is focused towards the sliding surface and remains 
on it afterwards.  

The phase plane trajectory, so obtained from above sliding mode control technique 
suffers from a zigzag motion which has a small amplitude and high frequency when 
sliding mode occurs. This effect is known as chattering. In many real time practical 
control systems it is required to avoid the chattering effect. 

 
2.2 Chattering phenomenon 
In the design of sliding-mode controllers for realistic applications, it is essential to 
determine a proper sliding surface so that the output deviations can be reduced to a 
acceptable level. The sliding-mode control, despite the advantages of simplicity and 
robustness, generally suffer from the problem, called chattering, which is a very high-
frequency oscillation of the sliding variable around the sliding manifold. The 
chattering is undesirable for the real systems and actuator since it may direct to 
actuator breakdown and unreasonably large control signal. In practice, the occurrence 
of time delays in actuators and in many industrial processes, such as transportation lag, 
time lag, time delay, physical limitations and dead time cannot switch at an infinite 
frequency along the sliding surface as demand by the assumption of sliding-mode 
control algorithms. Many approaches have been projected to overcome chattering 
phenomenon. It may be prevail over by smoothing out the control discontinuity. 
Frequently preferred approaches are to substitute the control by a saturation function, 
hyperbolic functions, sigmoid functions, and hysteresis saturation functions [4].  
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2.3 Quasi-sliding mode control (QSMS)  
One solution to eliminate chattering is to approximate the discontinuous function 
vሺσሻ ൌ െρsignሺσሻ by some continuous and smooth function. For example, it could be 
replaced by a “sigmoid function”.  

 signሺσሻ ൎ ஢
|஢|ାக

  (14) 
Where ߝ is a small positive scalar value. It can be observed that for ߪ ് 0 point-

wise  
 limఌ՜଴

ఙ
|ఙ|ାఌ

ൌ  ሻ  (15)ߪሺ݊݃݅ݏ

 u ൌ െcxଶ െ ρ ஢
|஢|ାக

  (16) 
 
Due to smooth control law the sliding variable and the state variables do not 

converge to zero, but in its place converge to domains in a vicinity of the origin due to 
the consequence of the disturbance. This smooth control law is known as quasi-sliding 
mode control [3]. 

 
2.4 Simulation 
In this section, the performance of the projected methods are shown by applying it to 
following system  
 

ଵ ሶݔ  ଵሺ0ሻݔ ଶݔ = ൌ 1 
ሶଶݔ  ൌ ݑ ൅ ݂ሺݔଵ, ,ଶݔ ଶሺ0ሻݔ ሻݐ ൌ െ2 

 
The control gain 2=ߩ, parameter c=1.5, and the bounded disturbance 

is ݂ሺݔଵ, ,ଶݔ ሻݐ ൌ sin ሺ618ݐሻ. 
Using conventional sliding mode control, the results of simulation are presented in 

figures 1-3 
Using quasi-sliding mode control, the results of simulation are presented in figures 

4-6 
 
 

Figure 1: Phase plane trajectory using 
CSMC 

Figure 2 convergences of state 
trajectories using CSMC. 
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With Initial Condition, ݔଵሺ0ሻ ൌ ଶሺ0ሻݔ 1 ൌ  െ2 Simulation is done using 
MATLAB and Simulink to verify the controller. The simulation results are shown in 
Fig. 1, Fig. 2 and Fig. 3. From the phase plane trajectory plot, we see that the trajectory 
starts from the initial points (1, -2), move towards the switching surface ݔଵܽ݊݀ ݔଶ, 
then slide along the surface to reach the equilibrium point x = 0. According to Fig. 2, 
we can see that both signal ݔଵ and ݔଶ reach 0 after about 4 seconds. Also, noted from 
the ݔଶ plot, we could see that the trajectory reaches the switching surface when the 
time is approximately ݐ௥ = 3.3 seconds. However, for the control signal of the system, 
this control law has the drawback that the control signal chatters when the system 
trajectory is moving on the switching surface (refer Fig: 1) 

 
 

 
Figure 3 conventional sliding mode 

control law u 
Figure 4: phase plane trajectory using 

quasi-SMC 
 

 
  

Figure 5: Convergences of trajectories 
using QSMC 

Figure 6: Quasi sliding mode controls 

 
With Initial Condition, ݔଵሺ0ሻ ൌ ଶሺ0ሻݔ 1 ൌ  െ2 Simulation is done using 

MATLAB and Simulink to verify the quasi sliding mode controller. 0.01=ߝ. The 
simulation results are shown in Fig. 4, Fig. 5 and Fig. 6. From the phase plane 
trajectory plot, we see that the trajectory starts from the initial points (1, -2), move 
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towards the switching surface ݔଵܽ݊݀ ݔଶ, then slide along the surface to reach the 
equilibrium point x = 0. According to Fig, 5 we can see that both signal ݔଵ and ݔଶ 
reach 0 after about 4 seconds. Chattering is considerably eliminated as seen in phase 
plane trajectory figure 4 and a smooth trajectory is obtained. 

 
 

3. Conclusion 
This paper highlights the basics of sliding mode control, its control strategies, how it is 
applied, and its outcomes. It deals with the very basics of sliding motion, the presence 
of sliding surface and its control. Here most of the matter focuses on guaranteeing the 
robustness of sliding mode in the presence of practical engineering constraints and 
realities. Further conventional sliding mode technique can be used to design a robust 
controller for any linear system which will provide an attractive feature of being 
completely insensitive to parametric uncertainty and external disturbances during 
sliding mode. Further quasi-sliding mode control is explained which suppress the 
chattering occurring in conventional sliding mode control. An example is illustrated 
and the performance of both methods has been illustrated. 
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