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Abstract

The control of dynamic systems in presence of parametric matched
uncertainties and disturbances is a common problem to deal with when
considering real plants. The effect of these uncertainties on the system
dynamics should be carefully taken into account since they can reduce
the performance or even cause system instability. This paper deals with
the designing of a controller using different types of sliding mode
control strategies. Sliding mode control utilizes discontinuous control
laws to drive the system state trajectory onto a specified surface in the
state space, the so called sliding or switching surface, and to keep the
system state on this manifold for all the subsequent times. In order to
achieve the control objective, the control input must be designed with
an authority sufficient to overcome the uncertainties and the
disturbances acting on the system. Sliding mode control is a technique
to make any linear or nonlinear system completely insensitive to
parametric uncertainty and external disturbances. In this paper, an
analysis among two sliding mode control strategies, conventional
control and quasi control, is being done. The biggest problem which
we face in the path of implementing sliding mode control is control
chattering. Several methods to suppress chattering can be used. The
performance of the designed controllers is then studied by means of
simulation using MATLAB and SIMULINK.

1. Introduction

One of the common problems which we face in control of dynamical systems is the
presence of uncertainties and disturbances when considering real plants. These
disturbances sometime degrade the performance or even cause instability. Due to these
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reasons, during recent years, the problem of controlling dynamical systems in presence
of uncertainty conditions has become an important subject of research. As a result,
considerable progresses have been attained in robust control techniques, such as
nonlinear adaptive control, model predictive control, backstepping, sliding model
control and others. These techniques are capable of guaranteeing the attainment of the
control objectives in spite of modelling errors or parameter uncertainties affecting the
controlled plant. Among the existing methodologies, the Sliding Mode Control (SMC)
technique turns out to be characterized by high simplicity and robustness. Essentially,
SMC utilizes discontinuous control laws to drive the system state trajectory onto a
specified surface in the state space, the so called sliding or switching surface, and to
keep the system state on this manifold for all the subsequent times. In order to achieve
the control objective, the control input must be designed with an authority sufficient to
overcome the uncertainties and the disturbances acting on the system. The main
advantages of this approach are two. First, while the system is on the sliding manifold
it behaves as a reduced order system with respect to the original plant and second, the
dynamic of the system while in sliding mode is insensitive to model uncertainties and
disturbances. This latter property of invariance towards so called matched uncertainties
is the most distinguish feature of sliding mode control and makes this methodology
particular suitable to deal with uncertain linear and nonlinear systems. Designing of
controller using sliding mode control can be done by a conventional method insuring
stability of the system dynamics which is explained in next section.

2. Designing Sliding Mode Control
2.1 Conventional sliding mode control (CSMC)
Let the control law u be the control that drives the state variables x4, x, to the sliding
surface in finite time t,, and keeps them onto the surface thereafter in the occurrence
of the bounded disturbance f (x; x5, t).

Let the system be,

X1 =% x1(0) = x4
Xy =u+ fxg,x5,t) x2(0) = x5 (1)

Here the disturbance f (x4, x,,t) may contain dry and viscous friction as well as
any other unidentified resistance forces, and is believed to be bounded, i.e.
f (1, %5, )<L >0.

Our desired compensated dynamics will be one having no effect of the
disturbance f (x4, x5, t).

Let us introduce a new variable known as sliding variable in the state space of the
system,

o= a(xl’xl) = X, +¢xq,¢>0 (2)

In order to attain asymptotic convergence of the state variables x4, x, to zero, i.e.
lim;_, X1, X, = 0in the presence of the bounded disturbance f(xy, x,,t),we have to



Designing Robust Control by Sliding Mode Control Technique 139

take the sliding variable to zero in finite time by the means of control u. This job can
be achieved by applying Lyapunov function techniques to the o dynamics using
equations (1) and (2).

0 =cxy+ f(xy,x5,t) +u,0(0) =g, 3)

Equation (2) and (3) rewritten in the form ¢ = x, + cx; = 0,c¢ > 0 correspond to
a straight line in the state space of Eq. (1) and are referred to as a Sliding Surface.

For the o dynamics (3) we introduce a Lyapunov function of the form
V=20 (4)

In order to give asymptotic stability to Eq. (3) about the equilibrium point =0,
a) V<O0foro#0
b) lim|a|_,oo V=0

Condition (b) is satisfied by V in Eq. (4). In order to achieve finite-time
convergence, condition (a) can be modified to be

V<—aV’2a>0 (5)
Integrating Eq. (5) in the interval O to t, we obtain,
V() < —Sat +V2(0) (6)

Consequently, V (t) reaches 0 in a finite time t,. that is bounded by

2v1/2(0)
1" S —.

(7

a

So, a control u that is derived to satisfy Eq. (5) will drive the variable o to zero in
finite time and will keep it at zero afterwards. The derivative of V is computed as

V=06=0(cx, + f(x1,%,t) +u) 8)
Assume u = —cx, + v and substituting it into Eq. (8), we obtain,

V=0(f(xy,xt) + v) = 0f(x,%,,t) + ov < |o|L + ov
Selecting v = —psign (o) where

. 1ifx> 0
Sign(x) = {—1lifXx >0

And sign (0) e [ —1,1] 9)

With p > 0 and substituting in expression of V, we get
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V<lolL—lalp =—|ol(p — L) (10)

Taking into account Eq. (4) and (5) we get,
V< —aV'e=-%lgl,a>0 (11)
-— \/i )

. . a
Finally, the control gain p = L + %

Thus, a control law u that drives o to zero in finite time is
u = —cx, — psign(o) (12)

The control gain of Eq. (12) is designed to compensate for the bounded disturbance

f (x4, x5, t) while the second term % is accountable for determining the sliding surface

reaching time given by Eq. (7). The larger the value of «, the shorter reaching time.
Condition +(5) is equivalent to

o a
06 < —\/_5|0| (13)

Equation (13) is often termed the reachablity condition and is essential condition
for sliding mode to occur. Meeting the existence condition (13) means that the state
trajectory of the system in Eq. (1) is focused towards the sliding surface and remains
on it afterwards.

The phase plane trajectory, so obtained from above sliding mode control technique
suffers from a zigzag motion which has a small amplitude and high frequency when
sliding mode occurs. This effect is known as chattering. In many real time practical
control systems it is required to avoid the chattering effect.

2.2 Chattering phenomenon

In the design of sliding-mode controllers for realistic applications, it is essential to
determine a proper sliding surface so that the output deviations can be reduced to a
acceptable level. The sliding-mode control, despite the advantages of simplicity and
robustness, generally suffer from the problem, called chattering, which is a very high-
frequency oscillation of the sliding variable around the sliding manifold. The
chattering is undesirable for the real systems and actuator since it may direct to
actuator breakdown and unreasonably large control signal. In practice, the occurrence
of time delays in actuators and in many industrial processes, such as transportation lag,
time lag, time delay, physical limitations and dead time cannot switch at an infinite
frequency along the sliding surface as demand by the assumption of sliding-mode
control algorithms. Many approaches have been projected to overcome chattering
phenomenon. It may be prevail over by smoothing out the control discontinuity.
Frequently preferred approaches are to substitute the control by a saturation function,
hyperbolic functions, sigmoid functions, and hysteresis saturation functions [4].
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2.3 Quasi-sliding mode control (QSMS)
One solution to eliminate chattering is to approximate the discontinuous function

v(o) = —psign(o) by some continuous and smooth function. For example, it could be
replaced by a “sigmoid function”.
. o
sign(o) = ol7e (14)

Where ¢ is a small positive scalar value. It can be observed that for o # 0 point-
wise
. g .
lim,_,, ole sign(o) (15)

(16)

U= =P

Due to smooth control law the sliding variable and the state variables do not
converge to zero, but in its place converge to domains in a vicinity of the origin due to
the consequence of the disturbance. This smooth control law is known as quasi-sliding
mode control [3].

2.4 Simulation
In this section, the performance of the projected methods are shown by applying it to
following system

.X:']_:.XZ xl(O) =1
5(2 =Uu +f(x1,x2, t) xz(O) =-2

The control gain p=2, parameter c=1.5, and the bounded disturbance
is f(xq, x5, t) = sin (618t).

Using conventional sliding mode control, the results of simulation are presented in
figures 1-3

Using quasi-sliding mode control, the results of simulation are presented in figures
4-6
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Figure 1: Phase plane trajectory using Figure 2 convergences of state
CSMC trajectories using CSMC.
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With Initial Condition, x;(0) =1x,(0) = —2 Simulation is done using
MATLAB and Simulink to verify the controller. The simulation results are shown in
Fig. 1, Fig. 2 and Fig. 3. From the phase plane trajectory plot, we see that the trajectory
starts from the initial points (1, -2), move towards the switching surface x;and x,,
then slide along the surface to reach the equilibrium point x = 0. According to Fig. 2,
we can see that both signal x; and x, reach 0 after about 4 seconds. Also, noted from
the x, plot, we could see that the trajectory reaches the switching surface when the
time is approximately t,. = 3.3 seconds. However, for the control signal of the system,
this control law has the drawback that the control signal chatters when the system
trajectory is moving on the switching surface (refer Fig: 1)
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Figure 3 conventional sliding mode Figure 4: phase plane trajectory using
control law u quasi-SMC
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Figure 5: Convergences of trajectories Figure 6: Quasi sliding mode controls
using QSMC
With Initial Condition, x;(0) =1x,(0) = —2 Simulation is done using

MATLAB and Simulink to verify the quasi sliding mode controller. £€=0.01. The
simulation results are shown in Fig. 4, Fig. 5 and Fig. 6. From the phase plane
trajectory plot, we see that the trajectory starts from the initial points (1, -2), move
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towards the switching surface x;and x,, then slide along the surface to reach the
equilibrium point x = 0. According to Fig, 5 we can see that both signal x; and x,
reach 0 after about 4 seconds. Chattering is considerably eliminated as seen in phase
plane trajectory figure 4 and a smooth trajectory is obtained.

3. Conclusion

This paper highlights the basics of sliding mode control, its control strategies, how it is
applied, and its outcomes. It deals with the very basics of sliding motion, the presence
of sliding surface and its control. Here most of the matter focuses on guaranteeing the
robustness of sliding mode in the presence of practical engineering constraints and
realities. Further conventional sliding mode technique can be used to design a robust
controller for any linear system which will provide an attractive feature of being
completely insensitive to parametric uncertainty and external disturbances during
sliding mode. Further quasi-sliding mode control is explained which suppress the
chattering occurring in conventional sliding mode control. An example is illustrated
and the performance of both methods has been illustrated.
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