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Abstract 
 

In this paper, we propose a new approach for performing edge-
preserving image filtering. This paper deals with wavelet 
decomposition, local linear Stein’s unbiased risk estimate as an 
estimator for the mean squared error from the noisy image only, we 
derive a simple explicit image filter which can filter out noise while 
preserving edges and fine-scale details. Moreover, this filter has a 6 db 
better PSNR and minimum Standard Deviation algorithm whose 
computational complexity is independent of the filtering kernel size; 
thus, it can be applied to real time image processing tasks. The 
experimental results demonstrate the effectiveness of the new filter for 
various applications, including noise reduction.  
 
Index Terms: Edge-preserving image filtering, wavelet 
decomposition, local linear Stein’s unbiased risk estimate (SURE). 
 
 

1. Introduction 
FILTERING is perhaps the most important operation of image processing and 
computer vision, and it is used extensively in a wide range of applications, including 
image smoothing and sharpening, noise removal, resolution enhancement and 
reduction, feature extraction, and edge detection. The simplest filtering should be 
explicit linear translationinvariant (LTI) filtering, which can be implemented using a 
convolution mask. For example, box filter, also known as “moving average,” is 
implemented by a local averaging operation where the value of each pixel is replaced 
by the average of all the values in the local neighborhood. Box filter is the quickest 
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blur algorithm, but its smoothing effect is often not sufficient. Another widely used 
LTI filter is Gaussian filter with the weights chosen according to the shape of a 
Gaussian function. Gaussian filter is a very good filter for removing noise drawn from 
a normal distribution. And the multi-scale space representation of an image can be 
obtained easily by Gaussian smoothing with increasing variance. Although LTI 
filtering is very simple and is used extensively in early vision processing, it also has 
some disadvantages. LTI filtering not only smooths the noise but also blurs important 
structures along with noise, and outliers exert large influence on filtered output. 

To reduce these undesirable effects of linear filtering, a variety of edge preserving 
filtering techniques have been proposed over the past few years. Since taking into 
account local structures and statistics during the filtering process, edgepreserving 
filtering is non-linear and can preserve the image details and local geometries while 
removing the undesirablenoise. Most of popular filtering techniques in this class have 
been developed based on partial differential equations (PDE’s) and variational models. 
For example, non-linear/anisotropic diffusions (AD) [1], as well as regularization 
methods based on the total variation (TV) [3], are most popular and widely used non-
linear filtering methods in signal and image processing. 

In general, an initial image is progressively approximated by filtered versions 
which are smoother or simpler in some sense. Actually, this process introduces a 
hierarchy into the image structures, thus one can use a scale-space representation for 
extracting semantically important information. These methods are very effective tools 
for edge preserving filtering, however they are implemented as an iterative process 
which is usually slow and may raise issues of stability. As a good alternative to the 
iterative algorithm, the bilateral filter was first termed by Tomasi and Manduchi [8] 
based on the work [5], [7], and later modified and improved in [9]. Since its 
formulation is simple, and method is non-iterative which achieving satisfying results 
with only a single pass, bilateral filtering has been proven to be a valuable tool in a 
variety of areas of computer vision and image processing [10]–[11]. However the 
direct implementation of bilateral filter is known to be slow. Although several 
techniques [12]–[14] are proposed to speed up the evaluation of the bilateral filter, its 
fast implementation is still a challenging problem. And it has recently been noticed that 
bilateral filter may have the gradient reversal artifacts in detail decomposition and high 
dynamic range (HDR) compression [15]. 

Recently, some novel edge-preserving smoothing filters have been proposed, 
including weighted least squares filter (WLS) [15], edge avoiding wavelets (EAW) 
[16], and domain transform (DT) method [17] to approximate geodesic distance by 
iterating 1D-filtering operations. In particular, based on a local linear model, He et al. 
[18] proposed a new filtering method - guided filter that can perform effective edge-
preserving smoothing by considering the content of a guidance image. To avoid a 
trivial solution, He et al. introduced a regularization parameter which determines the 
amount of smoothing. Although edge-preserving smoothing filters are wildly used as 
useful tools for a variety of image editing and manipulation tasks, most of them are 
originally proposed to remove noise while preserving fine details and geometrical 
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structures in the original image. It is well known that the denoising performance of an 
algorithm is often measured in terms of peak signal-to-noise ratio (PSNR). A higher 
PSNR would normally indicate that the reconstruction is of higher quality. To 
maximize the PSNR, an alternative approach is to minimize the mean square error 
(MSE) which can be estimated accurately by Stein’s unbiased risk estimate (SURE) 
from the noisy image only. As it does not depend on a priori knowledge of the 
unknown signal, SURE has already turn out to be a flexible and effective tool which 
can be applied by directly parameterizing the estimator and finding the optimal 
parameters that minimize the MSE estimate. The best-known use of the SURE for 
wavelet denoising is Donoho’s SureShrink algorithm [19]. Recently, an analytical 
form of SURE for the NLM algorithm has been derived [20] and further extended and 
studied [21]. In particular, Luisier et al. [22], [23] have proposed a very appealing 
denoising algrithm - Stein’s unbiased risk estimator-linear expansion of thresholds 
(SURE-LET) and later been extended to color images, video and mixed Poisson 
Gaussian noise condition [24], [25]. Similar idea has been early and independently 
proposed by Pesquet and his collaborators [26], [27]. Inspired by the SURE-LET 
method and He’s guided filter, we present a novel edge-preserving smoothing filter, 
called Wavelet based LLSURE filter which is based on a local linear model and the 
principle of Stein’s unbiased risk estimate (SURE)[28]. In our case, input image is 
decomposed into level 1 using Haar Wavelet and then the filtered output in a local 
window are considered as a very simple affine transform of input signal in the same 
window, and the optimal transform coefficients are determined by minimizing the 
SURE. The Wavelet Based LLSURE filter has the edge preserving smoothing property 
that can filter out noise while preserving edges and fine scale details. Moreover, it is 
very simple and has an exact linear-time algorithm which can be applied to various 
image processing tasks. 

 
 

2. Problem Formulation 
2.1. Digital images and noise 
The need for efficient image restoration methods has grown with the massive 
production of digital images and movies of all kinds, often taken in poor conditions. 
No matter how good cameras are, an image improvement is always desirable to extend 
their range of action. 

A digital image is generally encoded as a matrix of grey level or color values. In 
the case of a movie, this matrix has three dimensions, the third one corresponding to 
time. Each pair (i; u(i)) where u(i) is the value at i is called pixel, for \picture element". 
In the case of grey level images, i is a point on a 2D grid and u(i) is a real value. In the 
case of classical color images, u(i) is a triplet of values for the red, green and blue 
components. All of what we shall say applies identically to movies, 3D images and 
color or multispectral images..The two main limitations in image accuracy are 
categorized as blur and noise. Blur is intrinsic to image acquisition systems, as digital 
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images have a finite number of samples and must satisfy the Shannon-Nyquist 
sampling conditions. The second main image perturbation is noise. 

 
2.2 Problem Setting 
We consider the measurement model 

 
 yi = xi + ni , i = 1, . . . , N 

where xi is the underlying latent signal of interest at a position i , yi is the noisy 
measured signal (pixel value), and ni is the corrupting zero-mean white Gaussian noise 
with variance σ2. The standard simplified denoising problem is to find a reasonably 
good estimate ˆx of x = [x1, . . . , xN ]T from the corresponding data set y = [y1, . . . , 
yN ]T . To restate the problem more concisely, the complete measurement model in 
vector notation is given by 

 
 y = x + n. 

 
2.3 Signal to Noise ratio 
A good quality photograph (for visual inspection) has about 256 grey level values, 
where 0 represents black and 255 represents white. Measuring the amount of noise by 
its standard deviation,  , one can define the signal noise ratio (SNR) as 
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∑ ூאሺ݅ሻ௜ݑ  is the average grey level value. The standard deviation of the 
noise can also be obtained as an empirical measurement or formally computed when 
the noise model and parameters are known. 

The mean squared error (MSE) of the denoised image with respect to its noise-free 
version is 
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Where  is the Euclidean norm. 
In denoising applications, the performance is often measured in terms of peak 

signal-to noise ratio (PSNR), which can be defined as follows: 
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The higher the PSNR is, the better the performance of denoising algorithm. Since x 
is the noise-free signal which does not affect the value of PSNR in any algorithm, 
maximizing PSNR is equivalent to minimizing MSE. However, one cannot 
approximate MSE without the original signal x. 

 
 

3. Proposed Method 
Basic steps for the proposed algorithm are as follows:- 

Step-1 Image Acquisition 
Step-2 RGB to Gray Scale Conversion 
Step-3 Perform Discrete Wavelet  
 Transform ie. Haar Wavelet 
Step-4 Local Linear windowing 
Step-5 Perform Thresholding using Sure  
 shrink. 
Step-6 Perform IDWT  
Step-7 Edge detection 
Step-8 Final Denoised Image 

 
3.1 Haar Wavelet 
Wavelets are functions generated from a single function by its dilations and 
translations. The Haar transform forms the simplest compression process of this kind. 
In 1-dimension, the corresponding algorithm [2] transforms a 2-element vector [x(1), 
x(2)]T into [y(1), y(2)]T by relation: 
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is an orthonormal matrix as its rows are orthogonal to each other (their dot 

products are zero). Therefore T−1 = TT and it is possible [4] to recover x from y by 
relation 
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In 2-dimensions x and y become 2 × 2 matrices. We can transform at first the 
columns of x, by pre-multiplying by T, and then the rows of the result by post-
multiplying [4] by TT to find y = TxTT and in the next step x = TT yT (3) 

To show more clearly what is happening we can use a specific matrix x of the form 
x =ቂܽ ܾ
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imlying that 
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These operations correspond to the following filtering processes: 
Top left: 2-D lowpass filter (Lo-Lo). 
Top right: horizontal highpass and vertical lowpass filter (Hi-Lo). 
Lower left: horizontal lowpass and vertical highpass filter (Lo-Hi). 
Lower right: 2-D highpass filter (Hi-Hi). 
To apply this transform to a complete image grouping of pixels into 2 × 2 blocks is 

done . 
 
 
 
3.2 Threshold Estimation 
A great challenge in the wavelet shrinkage process is to find an adequate threshold 
value. A small threshold will hold the majority of the coefficients associated with the 
noisy signal, then resulting a signal that may still be noisy. On the other hand, a large 
threshold will shrink more coefficients, which leads to a smoothing of the signal that 
may suppress important features of the image. 

Three threshold estimation criteria, called VisuShrink, SureShrink and 
BayesShrink, are described as follows. 

VisuShrink is a thresholding scheme that uses a single universal threshold 
proposed by Donoho and Johnstone [4], defined as 

 
λv=ߪොnoise√2logL 

 
where (ߪොnoise )2is the estimated noise deviation and L = M ×N is the number of 

pixels in the image. The same threshold is applied to all levels of decomposition. Al-
though the resulting image is very smooth and has a pleasant visual appearance, it is 
known that VisuShrink tends to oversmooth the signal [14]. 

SureShrink is a thresholding scheme that applies a subband adaptive threshold [6]. 
A separate threshold is computed for each subband based on Stein's unbiased risk 
estimator (SURE) 

λS = arg min௧ஹୀ଴ ,ݐሺܧܴܷܵ   ሻݏܩ
 
which minimizes the risk 

SURE(t,GS) = NS - 2[1 : NS]  
 + ∑ ሾminሺݕݔܩ, ሻሿே௦ݐ

௫,௬ୀଵ
2 

 
Adaptive Edge-Preserving Image Denoising Using Wavelet Transforms (7) where 

GS is the detail coefficients from subband S and NS is the number of coefficients Gxy 
in {GS}. As pointed out by Donoho and Johnstone [4], when the coefficients are not 
very sparse, then SureShrink is applied, if not, universal threshold is applied. 

BayesShrink uses a Bayesian mathematical framework and assumes generalized 
Gaussian distribution for the wavelet coefficients in each detail subband to find the 
threshold that minimizes the Bayesian risk [3, 20], expressed as 
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and NS is the number of wavelet coefficients Gxy on the subband under 

consideration. As it can be observed in the previous equations, most thresholding 
algorithms require an estimate of the noise variance. 

For images, the noise level can be estimated from the highest frequency 
coefficients. A robust estimate of noise variance uses the median absolute value of the 
wavelet coefficients [32], which is insensitive to isolated outliers of potentially high 
amplitudes, defined as 

ොnoise = ୫ୣୢ୧ୟ୬ሺୋ୶୷ሻߪ
଴.଺଻ସହ

 and Gxy ε subband HH  
 

where Gxy are the HH wavelet coefficients that form the finest decomposition 
level. It is assumed that the noise follows a Gaussian distribution with zero mean and 
variance σ2. 

 
 

4. Experimental Results 
The simulation is done on MATLAB with Intel Pentium V Processor and 4 GB RAM. 
Three image denoising algorithms are carried out in these experiments: Bayes shink 
algorithm, LLSURE and the proposed method. To measure the perceptual quality of 
images, the signal-to noise ratio (SNR) and standard deviation can be well used. PSNR 
will be measure in dB. 

The results shown hereafter are obtained from previously described algorithms 
applied to noisy images. Many images have been tested , the result for each image in 
terms of PSNR and standard deviation is tabulated below: 

 
 

Sr. No Methods Standard 
Deviation 

PSNR 

1. LLSURE 0.0871 36.3701 
2. Bayes shrink 0.15856 36.5824 
3. Proposed Method 0.0857 42.215 

 
 

Sr. No Methods Standard 
Deviation 

PSNR 

1. LLSURE 0.0316 60.840 
2. Bayes Shrink 0.12473 40.2545
3. Proposed Method 0.0334 68.835 
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Input Image 1 

 
Denoised image1 using LLSURE 

 
Denoised image1 using Bayes shrink 

 

 
Denoised image1 using proposed method 

 
 
 

Input Image 2 

 
Denoised image 2 using LLSURE 

 
Denoised image 2 using Bayes shrink 

 

Denoised Image

denoised image

Original Image

Denoised Image
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Denoised image 2 using proposed method 

 
5. Conclusion 
The presented algorithm has shown a good response on preserving the edges on the 
input images. Further, the SURE based estimate is applied in HH sub-band of the 
wavelet decomposed image, the image is denoised as well. The high value of PSNR 
and low value of SD indicate that the resultant image is vary close to the original one 
and therefore information loss is minimum.  
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