
Advance in Electronic and Electric Engineering.
ISSN 2231-1297, Volume 3, Number 8 (2013), pp. 977-982
© Research India Publications
http://www.ripublication.com/aeee.htm

Design of a Two-Way Set-Associative Cache

1Karthik Ghanta and 2Srikanth Parikibandla

Sreenidhi Institute of Science & Technology, Hyderabad, Andhra Pradesh, INDIA.

Abstract

The principle of locality applies at many levels of memory, and taking
advantage of this locality improves performance in the hierarchy.
Based on the same principle, cache is a small but very fast memory
held near to the processor. So a block, multiple-words of memory, of
recently used memory values was moved into it for this performance
enhancement. In addition, to examine which address the block
corresponds to, a tag is also included. Placement of this block in the
cache is important and among such the most popular scheme is set
associativity. The cache placement referred as n-way set associative if
it has n blocks of sets. Absence of required copy of memory, a cache
miss, needs to make a transfer from its lower level. Thus, the interface
of the cache with its slave memory, a lower level memory, is also
critical.
For customized embedded interfaces ARM has released a bus
specification AMBA advanced extensible interface, AXI4. This
interface is also a technology independent methodology helpful in the
design, implementation and test of highly integrated modular
interfacing. Features for faster sub-micron interconnect mainly include:
only start address issued transactions, byte strobes for unaligned data
transfers, dedicated control, address and data interfacing signals.
This work aims in developing such 2-way set associative cache of
32kB size with 64-bit lines. Data for cache, to be read or written,
assumed to be given by the master and, read or written to a particular
address location of slave using AMBA AXI protocol. In this work
cache and slave are modeled in Verilog.

Keywords: Cache, set- associative cache, AMBA, AXI, Verilog.

Karthik Ghanta & Srikanth Parikibandla

978

1. Introduction
With the increase in technological advancements the performance of a processor is
steadily increasing. Though similar advancements in memory storage technologies are
available, but are still far behind with the performance rates compared to processors.
Arrangement of entire memory with such comparable speeds escalates the design cost
to a large amount. Also urge for higher bit-width computations is also on demand. This
led to deployment of faster but small-scale memory onto the processor core along with
the regular optimum speed mammoth-sized main memory [2][3].

This memory, called as Cache, is small but very fast and is held near to the
processor. A piece of information in cache is accessed based on its location and this
becomes the base for it to hold the data. Recently used bits or a chunk of required
amount of bits for further operation are stored here. In addition, to examine which
address these chunk of bits corresponds to, a portion of the actual address, known as
tag, is also held in the cache. These tag bits are compared with the incoming address of
the required content address, if success, known as hit, indicating availability of data
with cache and so a faster transaction is made. Otherwise, known as miss, transfer of
bits from the main memory is to be made leading to the additional cost of tag-compare
time than the usual access time of main memory [4]. To reduce this additional delay or
reducing the miss rates associativity of the cache memory can be used. However the
higher associativity results in higher cost and large die-space [2], a proper choice is
thus to be entertained as per the need.

Not just providing the additional piece of memory, the availability of better
interface with the processor is also desired [1]. Considering this ARM has released a
bus specification AMBA AXI4, AMBA advanced extensible interface. This interface
is also a technology independent methodology helpful in the design, implementation
and test of highly integrated modular interfacing. The work done in this paper follows
with the introduction to set-associative cache, AMBA AXI, proposed work and its
corresponding simulation results.

2. Set Associative Cache
Holding the same index and different tags, Set-associative mapping allows a limited
number of blocks in the cache. This division of cache into parts is referred to as "sets"
of blocks. The number of blocks in a set is known as the associativity or set size. Each
block in each set has a stored tag which, together with the index, completes the
identification of the block. A 2-way set-associative cache is illustrated in Figure 1.

Design of a Two-Way Set-Associative Cache 979

Figure 1: Two-way set-associative cache organization.

The set-associative approach extends beyond 2-way up to any degree of

associativity, but in practice the benefits of going beyond 4-way associativity are small
and do not warrant the extra complexity incurred [8] [10].

3. AMBA AXI Protocol
This Advanced eXtensible Interface AXI is a technology independent methodology
helpful in the design, implementation and test of highly integrated modular interfacing
[7]. Features for faster sub-micron interconnect mainly include: only start address
issued transactions, byte strobes for unaligned data transfers, dedicated control, address
and data interfacing signals [6].

To achieve all these features AMBA makes use of 5 channels [9]. Each of these
five independent channels consists of a set of information signals and uses a two-way
VALID and READY handshake mechanism.

The information source uses the VALID signal to show when valid data or control
information is available on the channel. The destination uses the READY signal to
show when it can accept the data. Both the read data channel and the write data
channel also include a LAST signal to indicate when the transfer of the final data item
within a transaction takes place.

3.1 Read and write address channels
Read and write transactions each have their own address channel. The appropriate
address channel carries all of the required address and control information for a
transaction.

Karthik Ghanta & Srikanth Parikibandla

980

3.2 Read data channel
The read data information and any read response information is given by save to the
master. The read data channel includes the data bus, which can be 8, 16, 32, 64, 128,
256, 512, or 1024 bits wide, the completion status indication of the read transaction.

3.3 Write data channel
The write data channel conveys the write data from the master to the slave and
includes the data bus, which can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide,
indication for the corresponding byte of data bus byte lane strobe for every eight data
bits. To perform operation without slave acknowledgement for prior write the write
data channel information is always treated as buffered.

3.4 Write response channel
The write transactions response is provided for the slave using this channel. Instead of
sending completion signal for every data transfer, signal after each burst is used.

4. Proposed Work
The cache memory that is to be designed under this project is a 32kB size two-way set-
associative cache memory. The three portions of the cache address are shown below in
Figure 9, namely Tag, Index and Byte Offset.

In this design, as of present day requirement, a 64-bit memory is to be considered,
with the processor considered to be 32-bit. This requires accessing of 8 8-bit (Byte)
memory locations for an address specified by the 32-bit address. In order to see the
functionality of the cache, a slave memory is also designed to interface along with the
cache.

The 32-bit address is split in the following way to have the organization of the
cache memory:

• To locate one of the 8 Bytes of memory 3 memory bits are to be considered,
namely B2-B0.

• And in order to address a 32KB memory a total of 4k locations are needed with
each location capable of holding 8 Bytes. These 4k (22x210=212) locations need
12 bits to hold the value and so using B14-B3 of the address bits for that
purpose.

• The remaining 17 bits i.e. B31-B15, along with a valid bit, act as tag lines for
the memory locations.

Figure 9: The three portions of an address in the proposed cache.

Design of a Two-Way Set-Associative Cache 981

5. Simulation
In order to see the functionality of this cache, a slave memory is also designed to
interface along with the cache. This is interfaced to cache using the above mentioned
AXI protocol. This work is done using Verilog [10] HDL language in Xilinx Plan
Ahead software [11].

A. Simulation for a cache-miss
An input for the data addressed at a location 0057ea10h is accessed which is not

residing in the cache. This makes the slave to be accessed which can be seen in
corresponding signals like araddr, arlen, etc., are obtained accordingly as 0057ea00h,
fh respectively.

Figure Simulation showing a cache-miss access.

B. Simulation for a cache-hit
An input for the data addressed at a location 00578f60h is accessed which is already
resided in the cache. This makes the slave not to be accessed which can be seen in
corresponding signals like araddr, arlen, etc., are made 0’s.

Figure Simulation showing a hit access.

Karthik Ghanta & Srikanth Parikibandla

982

6. Conclusion
This high speed data transfer interfacing helps in better way of transaction. Like
reduction in completion signals by sending them at the end of the burst transfer instead
of having after every byte. This design can be used to cater the needs of lower level of
caches, L2 and subsequent levels having interface with the main memory. However
this is achieved by an additional burden of few signals than regular interface signals.

References

[1] Math, Shaila S., and R. B. Manjula, "Survey of system on chip buses based on
industry standards," in conference on Evolutionary Trends in Information
Technology (CETIT), Bekgaum, Karnataka, India, p. 52. 2011.

[2] M. Powell, A. Agrawal, T. N. Vijaykumar, B. Falsafi, and K. Roy, “Reducing
set-associative cache energy via selective direct-mapping and way prediction”,
In Proc. of 34th Annual Int’l Symp. on Microarchitecture (MICRO), Dec.
2001, pp. 54-65.

[3] Min, Rui, Wen-Ben Jone, and Yiming Hu. "Location cache: a low-power L2
cache system." In Low Power Electronics and Design, 2004. ISLPED'04.
Proceedings of the 2004 International Symposium on, pp. 120-125. IEEE,
2004.

[4] John L Henessey, David A Petterson, “Computer Architecture: A Qualitative
Approach”, Fourth Edition, Elsevier, MK Publishers.

[5] Chang, J. H., H. Chao, and Kimming So. "Cache design of a sub-micron
CMOS system/370." In Proceedings of the 14th annual international
symposium on Computer architecture, pp. 208-213. ACM, 1987.

[6] M. Siva Prasad Reddy, B. Babu Rajesh, TVS Gowtham Prasad, “A
Synthesizable Design of AMBA-AXI Protocol for SoC Integration,” IJEI
Journal, vol 1 issue 3, pp: 19-26.

[7] Chien-Hung Chen, Jiun-Cheng Ju, and Ing-Jer Huang, “A Synthesizable AXI
Protocol Checker for SoC Integration”, IEEE transl, ISOCC, Vol 8, pp.103-
106, 2010

[8] C.-L. Su and A. M. Despain, “Cache design trade-offs for power and
performance optimization: A case study”, In Proc. of 1995 In’l Symp. on Low
Power Electronics and Design (ISLPED), 1995, pp. 63-68.

[9] ARM, AMBA. "AMBA AXI and ACE Protocol Specification." (2013).
[10] Samir Palnitkar, Verilog HDL: A Guide to Digital Design and synthesis, 2nd

ed, Prentice Hall PTR Pub, 2003
[11] PlanAhead Design and Analysis Tool -User Guide, www.xilinx.com

