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Abstract 
 

In this paper on-chip square spiral inductors are designed using ANN 
modeling techniques. Layout geometries form the input of the ANN 
model and electrical quantities forms the output . The dependency of 
inductor performances such as inductance (L), quality factor (Q) and 
self-resonance frequency (SRF) on geometric dimensions are 
described. Spirals of wide range of RF applications are studied. In our 
ANN based synthesis approach on-chip spiral inductor layout 
parameters such as spiral outer diameter(D), width of metal trace(W), 
number of turns in spiral(N), spacing between the adjutants metal 
traces(S) are taken as input and Inductance ,Q-factor and Self 
resonance frequency are the output of our model. Further a PSO based 
searching algorithm is applied with ANN model for optimization of 
layout parameters for the electrical parameters. We present several 
synthesis results which show good accuracy with respect to full-wave 
electromagnetic (EM) simulations. Since the proposed procedure does 
not require a time consuming EM simulation in the synthesis loop, it 
substantially reduces the cycle time in RF-circuit design optimization.  
 
Keywords: Artificial neural networks (ANNs), On-chip inductor, 
Spiral inductor optimization, Inductance, Q-factor, Self Resonance 
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1. Introduction 
Wireless communication systems has stimulated research in low-cost, low-power, and 
high-performance CMOS RF integrated-circuit (IC) components for system-on-chip 
solutions .On chip spiral inductors represents one of the major components of the RF 
ICs that dominates circuit performance and most frequently used passive devices in 
modern RFICs. The lack of an accurate model for on-chip inductors presents one of the 
most challenging problems for silicon- based radio-frequency integrated circuits (RF 
IC’s) designers. In conventional IC technologies, inductors are not considered as 
standard components like transistors, resistors, or capacitors, whose equivalent circuit 
models are usually included in the process description. However, this situation is 
rapidly changing as the demand for RF IC’s continues to grow [1,8]. Various 
approaches for modeling inductors on silicon have been reported in past several years 
[2,3]. Most of these models are based on numerical techniques [13], curve fitting [11], 
or empirical formulae [12], and therefore are relatively inaccurate or not scalable over 
a wide range of layout dimensions and process parameters. EM simulations are now 
widely used for analysis of wide ranges of layout dimensions and process parameters 
in the RFIC design. Artificial neural network (ANN) is a new technique [14,15] and 
efficient alternative to above mentioned conventional modeling techniques. It is 
popular due to its capability of learning any arbitrary nonlinear input–output 
relationship from corresponding data and also because it produces smooth 
approximation results from discrete data. The I/O relationships of the model make a 
closed form expression, and also due to the low latency trained network gives an 
almost instant output. Neural models are, therefore, much faster than physics/EM 
models and have a higher accuracy than analytical and empirical models. For deciding 
the optimal inductor-layout geometries that give maximum quality factor at a particular 
operating frequency and inductance value within a predefined design space long 
running simulations are required. We apply the particle-swarm optimization (PSO) 
algorithm [5] to search the layout space for optimization. In exploration, the ANN 
model is used to compute the inductance (L), Q, and SRF of each spiral.  
 
 
2. ANN Design 
2.1 ANN Model Structure 
Multilayer perceptron (MLP) feed forward network is one of the most effective neural 
network structures[6,9] .We consider four inductor-layout parameters, namely, outer 
diameter (d), number of turns (n), metal width (w), and spacing between metal traces 
(s), forms input of our neural model. The output layer of NN model represents 
electrical attributes of the inductor which are L, Q, and SRF. Number of hidden layers 
and neurons in each hidden layer are decided on the platform of best performance of 
and Quality of the neural model. Wide combinations of hidden layers with neurons in 
each hidden layer are employed and the best combination is chosen out. We used 
hyperbolic-tangent activation function for hidden layers and linear activation function 
for output neurons. For the generation of training and testing data sets, planar square 
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spiral inductors were constructed in the range of geometric dimensions. Out of all the 
theoretically possible combinations, we have considered a large number of inductors 
(400 realizable spirals) have been designed and simulated using commercially 
available high frequency structure simulator[10]. 
 
 
2.2 Data Generation  
Data for the ANN model input layout parameters and the output electrical parameters 
are generated from high frequency simulator tool Ansoft HFSSv.10. Data for layout 
parameters are taken in a wide range with a sufficient step sizes for each parameter. 
The step sizes are taken in such a manner to train neural network in a universal 
platform for the bounds of the parameters ranges. The range distribution via step size 
in a defined range is a cyclic process until no more error reduction level reached. This 
level is measurement of how close the ANN output is to the EM simulator output. The 
electrical quantity forms the output. We use 80% of the inductors designed by EM 
simulator for the training and 20% inductors are used for the validation, testing. We 
selected training and test data in a regular interval of five units so that both cover the 
complete range and adequately represent the original inductor behavior. 
 
2.2.1 Data Preprocessing Step 
As input parameters for building the neural model vary over a wide range. The 
corresponding output-parameter values of the inductors are also quite different. This 
introduces the requirement of an orderly preprocessing training . For this purpose the 
input and output data were normalized to [−1 1] with respect to the minimum and the 
maximum of the data range by means of linear scaling. 
 

 X’=X’min
 + (x-xmin ) *(X’max-X’min) (1) 

 (xmax-xmin) 
 
where x, xmin and xmax represent original data and X’, X’

min and X’
max represent 

scaled data. The scaled data were used for training.The scaled data is used for neural 
network training. 

 
2.3 Weights biases and NN training parameters adjustments 
During neural-network training, the weight and bias values are adjusted to minimize 
the training error which is a measure of the correlation between the ANN-model output 
and the training data. We have used the Levenberg–Marquardt method as the training 
algorithm in MATLAB’s neural-network tool for our Model [7]. We set the learning 
rate as 0.01 which is found adequate, setting it too large leads to oscillations, and 
setting it too small value results in longer training time for reaching the level of 
accuracy. The training error goal was set to 0.001. Further lowering of the error limit 
reduces the generalization capability of the model. On the other hand, setting it too 
high would lead to lower mapping accuracy. 
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3. Synthesis 
3.1 Particle Swarm optimization 
Particle swarm optimization (PSO) is a population based stochastic optimization 
technique, inspired by social behavior of bird flocking. Each particle keeps track of its 
coordinates in the problem space which are associated with the best solution (fitness) it 
has achieved so far [4]. (The fitness value is also stored.) This value is called pbest. 
Another "best" value that is tracked by the particle swarm optimizer is the best value, 
obtained so far by any particle in the neighbors of the particle. This location is called 
local best when a particle takes all the population as its topological neighbors, the best 
value is called global best. The particle swarm optimization concept consists of, at each 
time step, accelerating each particle toward its pbest and lbest locations. Acceleration is 
weighted by a random term, with separate random numbers being generated for 
acceleration toward pbest and  lbest locations. PSO has been successfully applied in 
many research and application areas. It is demonstrated that PSO gets better results in a 
faster, cheaper way compared with other methods. 
 
3.2 Synthesis Methodology 
As it is obvious, a target-inductance value can be realized by many different 
combinations of layout parameters. For a RF designer out of these combinations, only 
the set of inductor-layout parameters that meet all the design constraints is considered. 
We have developed a spiral-inductor-synthesis procedure that helps the designer to 
make a tradeoff analysis between the competing objectives, namely, Q, SRF, and outer 
diameter, for a given L. Our synthesis procedure uses ANN and PSO. The PSO 
optimizer generates a swarm of particles, each representing a combination of layout 
parameters in the given design space. The ANN takes each combination of layout 
parameters and produces L, Q, and SRF as output. Cost function is computed using 
these electrical parameter values. Particles of the optimizer are then updated according 
to the minimum cost. This process continues until a desired cost function objective is 
achieved or the maximum number of iterations executed. Typically the spiral inductor 
design and optimization problem is formulated to maximize the Q value for a target 
inductance subject to certain constraints. Since, in this synthesis procedure, our aim is 
to find a set of layout parameters which will give the desired inductance value within 
acceptable error, the cost function is to  

 Minimize LT – LANN subject to Nmin ≤ N ≤ Nmax, Dmin ≤ D≤ Dmax, Wmin ≤ W 
≤ Wmax, Smin ≤ S ≤ Smax 

Here, LT, LANN, are the target inductance, the inductance computed from the trained 
ANN, and the given minimum SRF, respectively. Nmin, Nmax, Dmin, Dmax, Wmin, 
Wmax, Smin, and Smax are the minimum and the maximum bounds of the 
corresponding optimization variables. PSO algorithm provides multiple solutions of 
layout parameters for a target-inductance value due to the random initialization of 
particles and the random variables associated with the velocity and position-update 
process during our synthesis. The search process is terminated if the objective function 
is less than an acceptable error value or if the number of iterations reaches the 
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maximum. For the synthesis of our spiral inductors, we set the error value is set to 10% 
and the maximum number of iterations is taken up to be 1000.  

 
 

4. Results and Discussion 
4.1 ANN Results 
To verify the accuracy of the neural models, statistical measures, such as the average 
relative error and the correlation coefficient between the outputs and targets were 
calculated for each output parameter. The average relative error and the correlation 
coefficients are calculated as follows: 

 

Average Relative Error = Σ
n
1(x-y)/ny (9) 

Correlation Coefficient = {(nΣxy- Σx Σy)/{[n Σx2- (Σx)2][n Σy2- (Σy2)]}0.5} (10) 
 

Here, n, x and y are the number of samples in the data set, the ANN-model output, 
and the corresponding EM simulated value, respectively. 

 
 

Table 1: Accuracy of Neural Model. 
 
ANN Operating  
Frequency(GHz)

 
Training 
Epoch 

 
Type of 
Data set 

 
% Average 
Relative Error 
L (nH) Q
SRF(GHz) 

 
Correlation 
Coefficient 
L(nH) Q
SRF(GHz) 

 
1 GHz 

 
30 

Training 
Testing 

0.9231 4.3321
1.2236 
1.0021 6.1244
4.2231 

0.9999 0.9231
0.9984 
0.9999 0.9421
0.9776 

 
3 GHz 

 
44 

 Training  
 Testing 

1.2331 4.2117
2.1453 
1.5377 3.2231
5.1123 

0.9999 0.9233
0.9833 
0.9999  0.9272 
0.9728 

 
The relative error signifies the closeness of the ANN outputs to the EM simulated 

values. The correlation coefficient is a measure of how closely the neural output fits 
with the target values. If this number is equal to 1.0, then there is a perfect fit between 
the targets and the outputs. Table 1 percentage average relative error and correlation 
coefficient of each neural-model output with respect to the EM simulated value. The 
average relative errors of L, Q, and SRF were found to be less than 5%. This indicates 
good accuracy of the neural network. In our examples, correlation coefficients are very 
close to 1.0, which indicates a good fit. 
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4.2 PSO Results 
Particle swarm optimization algorithm is used to find the layout parameters for a given 
set of constraints. Global version of PSO algorithm is implemented as it is more 
effective than local best .The synthesis based procedure provides number of sets of 
layout parameters for a given inductance value(L) and constraints which based on Q 
and SRF within acceptable error limits. Synthesis results facilitate the designer with 
more freedom for trade off analysis between objectives, such as area, L, Q, and SRF 
for inductors. In Table2, three sets of layout parameters are shown for a target 
inductance of 6 nH within ±0.3 nH accuracy. Design constraints are D= 100−300 μm, 
W = 8−24 μm, N = 2.5−6.5, AND s = 1−4 μm and SRF>6 respectively. 

 
 

Table 2 Synthesis of 6-nH Inductor with ANN and PSO. 
L(nH) D(um) W(um) N S(um) Q SRF(GHz) 
5.9881   289  9.9  3.7  3.8 11.0937 6.8041 
6.2301  234  11  5.3  2.5 8.4181 7.7816 
 5.8134  229  10.5  4.8  3.5 9.4672 7.8349 

 
 

5. Conclusion 
We have proposed fast and efficient layout synthesis system for RF on-chip spiral 
inductors. A four-layer MLP neural model has been developed. All the output 
parameters of the neural model show good matching when compared with the data 
generated by an EM simulator. The synthesis procedure is based on a PSO technique 
that evaluates the electrical parameters from the geometric parameters using the neural 
model. No EM simulation is required during the synthesis procedure thus making the 
process efficient. The synthesis procedure provides multiple solutions for a given 
design specification that helps the designer in making a tradeoff between the 
competing objectives. Several design examples have been presented using the 
proposed approach. The synthesized inductors were resimulated using the Ansoft 
HFSS (v11.0) EM solver. The results obtained by our synthesis approach show good 
agreement with the EM simulation results.  
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