
Advance in Electronic and Electric Engineering.
ISSN 2231-1297, Volume 3, Number 7 (2013), pp. 817-826
© Research India Publications
http://www.ripublication.com/aeee.htm

Fault Models and Test Generation for Covalidation
Techniques in Hardware & Software

Deepti Rajput

Teerthanker Mahaveer University, Moradabad.

Abstract

This paper describes the different types of test generation methods,
different type of fault models. Basically it describes the fault models
and their hardware software implementation. This paper focuses on the
test generation process for hardware software systems as well as the
fault models and fault coverage analysis techniques which support test
generations. Automatic test generation techniques have been presented
which are applicable to large scale designs, but until the underlying
fault models are accepted, the techniques will not be applied in
practice. A useful techniques Obstacle the widespread acceptance of
available techniques is the lack in correlation between covalidation
fault models and real design errors. Fault models must be evaluated by
identifying a correlation between fault coverage and detection of real
design errors. There is mandatory to evaluate the compilation of design
errors produced by real designers. Once covalidation fault models are
empirically evaluated we can expect to see large increases in
covalidation productivity through the automation of test generation.

Keywords: Fault Models, Covalidation Techniques, Design Errors.

1. Introduction
Hardware-software systems are pervasive in the electronics systems industry. The
widespread use of these systems in cost-critical and life-critical applications motivates
the need for a systematic approach to verify functionality. Several obstacles to the
verification of hardware-software systems make this a challenging problem. To
manage the complexity of the problem, covalidation techniques in which functionality
is verified by simulating (or emulating) a system description with a given test input

Deepti Rajput

818

sequence are being considered. Hardware-software systems are built from separate
components which are not globally synchronized. As a result, hardware-software
systems are vulnerable to inter-process synchronization problems resulting from timing
problems between processes. In previous work we have developed a fault model to
describe these timing-induced errors [1] and we have presented a test generation
approach for the fault model [2]. Requirements upon VLSI designs are continuously
increasing towards faster and larger circuits, leading to area and timing optimized
designs, and raising demands for testing. Testing should be thorough, to confirm high
specifications, but should not require area expensive Design for Testability circuitry.
This calls for test pattern generation for more realistic fault models as the widely used
stuck at fault model, like the delay fault model [3].Hardware verification complexity
alone has increased to the cost of design. So to manage the complexity of the problem,
many researchers are investigating covalidation techniques, in which functionality is
verified by simulating (or emulating) a system description with a given test input
sequence. In contrast, formal verification techniques have been explored which verify
functionality by using formal techniques (i.e. model checking, equivalence checking,
automatic theorem proving) to precisely evaluate properties of the design. The
tractability of covalidation makes it the only practical solution for many real designs.

2. Fault Models and Coverage Evaluation
The accurateness of testing depends upon an accurate behavioral description of the
circuits on chips containing physical failure. A great body of research exists
concerning fault models and their applications. The result of early studies the
abstraction logic level with the stuck at fault model provides the basis for fault
simulation, test generation and other testing analysis application. So its popularity, the
stuck at fault model does not describes the behaviour of all physical Failures. Eldred
suggested an efficient test generation approach that targets hardware faults rather than
the function. This is done by creating test patterns for specific faults. Commonly
occurring physical faults are represented by logical fault models. Logical faults
represent the effect of physical faults on the behaviour of the digital circuit. Then,
input stimuli are created to distinguish between the fault-free and faulty circuits. Test
pattern generation based on the logical fault model assumes the presence of a single
fault in the circuit at a given time. Test patterns derived under the single-fault
assumption are generally considered useful for detecting multiple faults because a test
derived for an individual single fault can detect a multiple fault containing that single
fault as a component. There are, however, specific multiple faults where the
components can mask each other and detection by a single fault test is not guaranteed
.The evaluation of covalidation fault models depends on following two individuals
1.accurateness in terms of design defects 2. Efficiency in terms of the number of faults
in a design. Hardware software covalidation designs are based on a top down design
methodology which begins with a behavioural system description. So the covalidation
fault models are behavioural level fault models. Existing covalidation fault models can

Fault Models and Test Generation for Covalidation Techniques in Hardware 819

be classified by the style of behavioral description upon which the models are based.
Textual languages, such as VHDL and ESTEREL are specified the system behaviours
and converted into an internal behavioural format for use in co design and
cosimulation. Many different internal behavioral formats are possible (1). Hardware
software designs have the origins in either the hardware (2) or the software (3)
domains and it is currently applied for the covalidation fault models. To explain the
covalidation fault models we are using here an example given in figure 1. In this figure
there are two parts figure 1a and figure 1b. In figure 1a the behaviour of the system has
been shown while in figure 1b the corresponding control-data flow charts (CDFG) has
been represented. Figure 1 is composed of only a single process and it there is no
signals which are used to model real time in most hardware description languages.
There are so many limitations until the example is adequate to describe the relevant
characteristics of many covalidation fault model.[4]

Figure 1: Behavioral Descriptions, (a) Textual Description,
(b) Control-Dataflow Graph (CDFG)

2.1 Textual Fault Modelling
The fault models which are directly applied to original textual behaviour description
are known as textual fault model. The simplest textual fault model is the statement
coverage metric introduced in software testing [5] which associates a potential fault
with each line of code, and requires that each statement in the description be executed
during testing. The result of this model is excellent because in this model the number
of potential fault is equal to the number of lines of codes. In branch coverage metric
the efficiency can be completed by analyzing a single co simulation output trace due to
which its efficiency is high. The researchers has been used branch coverage metric for
behavioral validation for coverage evaluation and test generation [6,7,8] and some

Deepti Rajput

820

other researchers have been also studied the accuracy of branch coverage to find its
ability to cover design defects.

2.2 Control Data Flow Fault Models
Any automated procedure requires that input data being provided is in some predefined
format. Also, the models used to represent the inputs and transformations (changes of
the input) should be efficient for execution of the procedure. For example, in case of
HLS the input specifications are generally in some Hardware Definition Language
(HDSs) like Verilog, VHDL, and System C etc. here we are use the VHDL language.
The HDL specifications are represented using several modeling paradigms like Control
and Data Flow Diagram (CDFG) , DeJong’s hybrid flow graph, SSIM flow graph,
Finite state machine with data etc., which are suitable for scheduling, allocation and
binding procedures. Sometimes timing constrains (on execution of steps) are also
given in the specifications, which are modelled by the above paradigms, however, with
timing parameter included e.g., CDFG with timing, DF with timing and CF with
timing. CDFG is one of the most widely used modelling paradigm and the others
mentioned above are not much different. In general, the nodes in a CDFG can be
classified into one of the following types:

• Operational nodes: These are responsible for arithmetic, logical or relational
operations (or computations); e.g., addition, equality checking etc.

• Control nodes: These nodes are responsible for control operations like
conditions, loop constructs etc.; e.g., case statements, while loop etc.

• Storage nodes: These nodes represent assignment operations associated with
variables and signals; e.g., reading an input value to register etc.

The edges in a CDFG represent Transfer of values (in variables that are changed
due to processing in Operational and storage nodes). A node needs data generated by
its predecessor nodes and generates new data needed by its successors. Nodes operate
on the data of the incoming edges. The resulting data is put on the outgoing edges.

• Control flow from one node to another: An edge can also represent a condition,
e.g., while implementing loop constructs, if/case statements etc. In dataflow
testing, each variable occurrence is classified as either a definition occurrence
or a use occurrence. Some variables are connected to select Paths. For example
node1 in Figure 1b, define the signal a and nodes 2, 5, and 6 contain uses of
signal a. And the paths 1, 2, 4, 5 and 1, 2, 4,6 must be executed in order to
cover both of these definition-use pairs. The dataflow testing criteria have also
been applied to behavioral hardware descriptions [9].

2.3 Gate-Level Fault Models
For decades, traditional IC test generation has been at the gate level based on the gate-
level netlist. The stuck-at fault model can easily be applied for which many ATPG and
fault simulation tools are commercially available. Very often the stuck at fault model is
also employed to evaluate the effectiveness of the input stimuli used for simulation-
based design verification. As a result, the design verification stimuli are often also used

Fault Models and Test Generation for Covalidation Techniques in Hardware 821

for fault detection during manufacturing testing. In addition to the stuck-at fault model,
delay fault models and delay testing have been traditionally based on the gate-level
description. While bridging faults can be modelled at the gate level, practical selection
of potential bridging fault sites requires physical design information. The gate-level
description has advantages of functionality and tractability because it lies between the
RTL and physical levels; however, it is now widely believed that test development at
the gate level is not sufficient for deep submicron designs.

2.4 Stuck At Fault Models
A stuck-at fault is a particular fault model used by fault simulators and automatic test
pattern generation (ATPG) tools to mimic a manufacturing defect within an integrated
circuit. Individual signals and pins are assumed to be stuck at Logical '1', '0' and 'X'.
For example, an output is tied to a logical 1 state during test generation to assure that a
manufacturing defect with that type of behavior can be found with a specific test
pattern. Likewise the output could be tied to a logical 0 to model the behavior of a
defective circuit that canno switch its output pin. Not all faults can be analyzed using
the stuck-at fault model. Compensation for static hazards, namely branching signals,
can render a circuit untestable using this model. Also, redundant circuits cannot be
tested using this model, since by design there is no change in any output as a result of a
single fault. Stuck at fault model is as convenient to show the complexity of analyzing
multiple fault model. This result in 3n -1 possible faulty circuit to consider. So the
stuck at fault models is time and input variant

2.5 Bridging Faults
Different types of models have been proposed to describe the unintentional connection
between two nodes. So the bridging faults stems both the insufficiency occurrence of
interconnect shorts. So the bridging fault is dependent upon the technology, the failure
mechanism and the target application or simulator. Bridging fault may be modelled as
a logical fault, which change the logic value on a node or as an electrical fault so the
voltage and current change within the circuit.

2.6 Design Faults
There are three major types of design faults in a system those “inherited” the system,
made by human designers, and the other made by the computers that aid in the design
process [10]. Inherited faults are existing before starting the design process. For
example, conflicting specifications are inherited faults considered. These faults cannot
be completely eliminated because no system is completely new. Human design faults
two types: data preparation faults and transcription faults. Data preparation faults
usually result from making wrong decisions, miscalculations, etc. Transcription faults
are transferring data from one medium to another without changing its content. Faults
due to mistakes in keying design data into a computer are considered transcription
faults. Human design faults must be detected as early as possible because it costs a lot

Deepti Rajput

822

to detect and correct them later. They can happen at any stage of the design process
and can remain undiscovered throughout the lifetime of the system.

2.7 Fabrication Faults
These are not directly involved to human error; instead they are from an imperfect
manufacturing process. For example, shorts and opens are common defects in the
manufacture of very large-scale integrated (VLSI) circuits using CMOS technology,
the industry standard. These defects can have a severe effect on the behavior of an IC.
CMOS fabrication defects include incorrect transistor threshold voltage, improper
doping profiles, mask alignment errors, and poor encapsulation. Accurate
identification of fabrication defects is important in improving the manufacturing yield.
[11]

2.8 Operational Faults
Most of the operational faults are caused by external disturbance during the normal
operation of the digital system. There are some Common sources of operational faults
are electromagnetic interference, operator mistakes, environmental extremes, and wear
out. For example, if a digital system is subjected to extreme temperature variations, the
system can give us incorrect results. Moreover, excessive temperature and humidity
accelerate the aging of components. Some operational faults arise due to the movement
of the system, especially in mobile applications. Also, some IC faults are due to
electron migration, where metal connectors inside an IC package thin out with time
and break. Operator mistakes are considered in this class because an operator may
provide incorrect commands which lead to system failure. Operational faults are
classified according to their duration:

• Permanent faults remain in existence indefinitely if no corrective action is
taken. Many of these are residual design or manufacturing faults. Those that are
not most frequently occur during changes in system operation, for instance,
after system start-up or shutdown, or as a result of a catastrophic environmental
disturbance such as a collision.

• Intermittent faults appear, disappear, and reappear repeatedly. They are
difficult to predict, but their effects are highly correlated. Most intermittent
faults are due to marginal design or manufacturing. The system works well
most of the time, but fails under atypical environmental conditions.

• Transient faults appear and disappear quickly, and are not correlated with each

3. Automatic Test Pattern Generation
Due to the imperfect manufacturing process, defects may be introduced during
fabrication, resulting in chips that could potentially malfunction. The objective of test
generation is the task of producing a set of test vectors that will uncover any defect in
chip. Generating effective test patterns efficiently for a digital circuit is thus the goal of

Fault Models and Test Generation for Covalidation Techniques in Hardware 823

any automatic test pattern generation (ATPG) system. In this paper our discussion
based upon the types of ATG methods

3.1 Gate-Level test Generation
The most studied approaches to test generation employ gate level structural models;
nearly all commercial test generators do so. The most widely known gate-level test
generation algorithms are the D-algorithm and PODEM (Path Oriented Decision
Making) [12].If a line in a circuit is 0 (1) when it should be 1 (0), the error signal value
on that line is represented by the symbol D (D) for discrepancy. The D-Algorithm uses
a greedy value assignment policy—it assigns signal values at the earliest opportunity.
This reduces the number of signal evaluations but this makes the decision-making
more vulnerable to conflicts and hence increases backtracking. The PODEM test
generation algorithm avoids this problem by backtracking only at primary inputs.
PODEM does not justify internal values explicitly, as in the D-algorithm. To satisfy an
internal objective such as a D or D on some internal line, a value is assigned to a
primary input and the circuit is simulated. If the simulation proves that the assignment
does not satisfy the objective, PODEM assigns another input value. If during
simulation, two values conflict on a line, the algorithm backtracks by changing the
value of the last assigned input. When both values have been tried unsuccessfully, the
algorithm backtracks to the next-to-last assigned input. In this way, PODEM can
exhaustively explore all possible circuit states, but only implicitly [13].A number of
test generation techniques have been developed that extend PODEM. Their goal is to
reduce the number of backtracks by identifying choices a test generation algorithm
might make that cannot lead to a solution, without actually pursuing every decision.

High-level test generation high complexity of gate-level test generation and the
hierarchical nature of the design process, several high-level or functional test
generation methods have been introduced.. High-level test generation has the
following advantages:

• Fast module evaluation: Since modules are described at the functional level,
they can be evaluated faster than their gate-level equivalents.

• .• High-level implication: Implication at the high level may lead to finding
values of signals

• Unique sensitization: At the high level, efficient procedures can be developed
to determine the signals necessary to propagate fault effects at the inputs of a
high level module to its outputs. So the propagation of check routine may also
be developed to anticipate conflicts earlier and hence reduce the number of
backtracks.

• Reduced backtracking: This is due to the following: (1) high-level descriptions
enclose reconvergent fan-out and hence leads to fewer poor decisions, and (2)
module-level decision making leads to improved global implication and
consequently conflicts are detected earlier and alternatives are tried
sooner.[14][15]

Deepti Rajput

824

3.2 On-Line Testing
On-line testing addresses the detection of operational faults, and is found in computers
that support critical or high-availability applications. The aim of on-line testing is to
detect fault effects, that is, errors, quickly and take appropriate corrective action. For
example, in some safety-critical applications, the computer system is shut down after
an error is detected. In other applications, error detection triggers a reconfiguration
mechanism that allows the system to continue its operation, perhaps with some
degradation in performance. On-line testing can be performed by external or internal
monitoring using either hardware or software; internal monitoring is referred to as self-
testing. Monitoring is internal if it takes place on the same substrate as the circuit under
test (CUT). This is

Usually considered to be inside an IC.

4. Conclusion
In this research paper we have present a research in fault modelling and test generation
for hardware-software covalidation. The growing researchers begin to identify and
solve the problems. Covalidation has developed industrial tools point are available
which offer the practical solution for test generation. Automation tools are available
but designers are not trusted. So a important amount of manual test generation is
required for majority of design projects. By examining the state of previous work we
can identify areas which should be studied in future work in order to increase the
industrial acceptance of covalidation techniques. Hardware-software covalidation is
extended from previous research in the hardware and software domains, but
communication between hardware and software components is a problem to hardware-
software covalidation. A great deal of research in hardware-software covalidation is
extended from previous research in the hardware and software domains, but
communication between hardware and software components is a problem unique to
hardware-software covalidation. The hardware –software introduce the issues of new
design so the errors is occurred. Hardware-software communication increased the
communication complexity because the interprocessor communication is more difficult
in hardware as compare to software. Although the implementation of each primitive
may be known to be correct, the primitive itself may be used incorrectly by the
designer, resulting in design errors. We can expect to large increases in covalidation
productivity through the automation of test Generation.

References

[1] Q. Zhang and I.G. Harris, “A validation fault model for timing-induced
functional errors,” in International Test conference, October 2001.

Fault Models and Test Generation for Covalidation Techniques in Hardware 825

[2] S. Arekapudi, F. Xin, J. Peng and I.G. Harris, “Test pattern generation for
timing –induced functional errors in hardware-software systems,” in High
level Design Validation and Testing Workshop, 2000.

[3] G. van Brakel,U. Glaiser,and H.G. Kerkhofr and H.T. Vierhaus “Gate Delay
Fault Test Generation for Non-Scan Circuits” IEEE 1995 pp. 308-312.

[4] Ian G. Harris “Fault Models and Test Generation for Hardware-Software
Covalidation” National Science Foundation under grant number 0204134

[5] T. J. McCabe, “A complexity measure”, IEEE Transactions on Software
Engineering, vol. SE-2, pp. 308–320, December 1976.

[6] R. Bailey, Human Error in Computer Systems, Prentice-Hall, Englewood
Cliffs, N. J., 1981.

[7] B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems,
Addison-Wesley, Reading, Mass., 1989.

[8] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using mutant
schemata”, Proc. International Symposium on Software Testing, Analysis, and
Verification, 1993, pp. 139-148.

[9] S. Dey, A. Raghunathan, and K. D. Wagner, “Design for testability techniques
at the behavioral and register-transfer level”, Journal of Electronic Testing:
Theory and Applications(JETTA), vol. 13, pp. 7–19, October 1998.

[10] B. Beizer, Software Testing Techniques, Second Edition, VanNostrand
Reinhold, 1990.

[11] P. Narain et al., “A high-level approach to test generation”, IEEE
Transactions on Circuits and Systems. Part I, Fundamental Theory and
Applications, Vol. 40, pp. 483-492, July 1993.

[12] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic design verification via
test generation”, IEEE Transactions on Computer-Aided Design, Vol. 7, pp.
138-148,January 1988.

[13] J. D. Calhoun and F. Brglez, “A framework and method for hierarchical test
generation”, IEEE Transactions on Computer-Aided Design, Vol. 11, pp. 45-
67,January 1992.

[14] M. S. Abadir and H. K. Reghbati, “Functional testing of semiconductor
random access memories”, Computing Surveys, Vol. 15, No. 3, September
1983.

[15] D. D. Gajski and F. Vahid, “Specification and design of embedded hardware-
software systems”, IEEE Design and Test of Computers, vol. 12, pp. 53–67,
1995

Deepti Rajput

826

