Simulation of Cable Overloading Problem on a University Distribution System

Vijaya Rai and Akul Sharma

(Power System), Electrical & Electronics Engineering Department, Amity University, Noida, Utter Pradesh, INDIA.

Abstract

This paper presents the cable overloading analysis on the distribution system of the Amity University, Noida campus. The MiPower software was used in modelling the distribution components and simulating the process of load flow analysis. The simulation results were analysed and compared with relevant standards for evaluating the problem of cable overloading in distribution system.

Keywords: Distribution system; cable overloading; system modelling and simulation.

1. Introduction

The evaluation of the suitability of electric power cables and the overload protection are very important. In reference to the prospective actual load profile of each circuit, this feeling is very useful for the designer to presuppose how much the power cable size will be allowable and for the maintenance operator to presume during the life of the circuits. The objective of this paper is to formulate the model of University distribution system components and simulate several processes related to cable overloading problems with the help of MiPower software. The power distribution system of the Amity University consists of one 33kv and two 11 kV substations, approximately 8 km of underground power cable with a maximum load level of 4MW with total backup capacity 8200 KVA. The distribution system is supplied by the local utility UPPCL through a 33KV substation, which is located on the University campus.

2. Component Models

One of the typical feeders in the distribution system was chosen for this study, which involve Substations 1 and 2. The load pattern of the distribution system mainly includes- air conditioners, fluorescent lighting, PC'S, heaters, motors, etc. Some power cable overloading disturbances were reported in the University distribution system over the past few years mainly due to tripping of motors in the central chillers plant. To find the location of cable overloading this simulation is performed.

2.1 Transformer Model

The transformer is modelled with series impedance for the windings together with a shunt magnetising branch of the core. For a overloading study, the resistance and leakage inductance of the transformer windings are frequency-dependent, modelling them as constant R and L is generally acceptable for typical overloading studies. Basic transformer parameters (as supplied by a local manufacturer) used to generate input data for transformer models are shown in Table 1.

Tuble 1. Transformer busic parameters.									
Sr No	Trans Rating (kV)	Capacity (kVA)	I _o (%)	ΔP_{nl} (kW)	$\Delta P_{\rm sh} (kW)$	Z (%)			
1	33/11	3,000	0.25	10.0	75.0	6.25			
2	33/0.415	3,000	0.25	10.0	9.0	5.0			
3	33/0.415	1,500	0.85	0.8	7.1	5.0			
4	11/0.415	1,500	0.80	0.25	0.85	4.0			

Table 1: Transformer basic parameters

2.2 Underground power cable model

A cable equivalent circuit with PI circuit was used to construct the three-phase underground cable models. First, the unit-length series impedance and shunt admittance parameters are computed according to the geometrical and physical arrangement of the cable with the earth return effect is taken into account. Underground line parameters are on the basis of single line diagrams provided by Quality department of campus which are shown in Table 2.

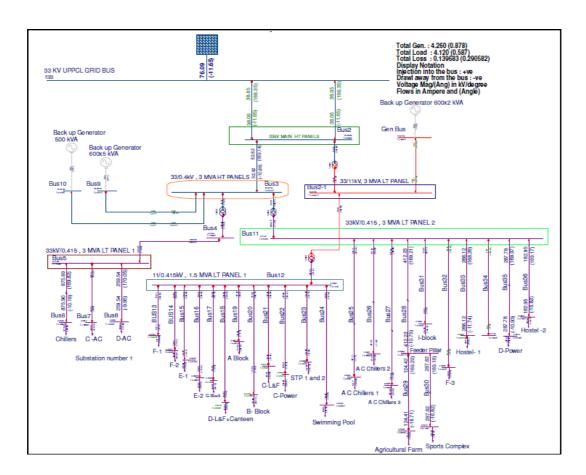
Name	Lengt	Cable	Current	Electrici	Name of	Lengt	Cable	Current	Electrici
of	h of	size	Rating	ty	Block	h of	size	Rating	ty
Block	Cable	(in sq	(in	consum		Cable	(in sq	(in	consum
	(in	mm)	ampere	ed (in		(in	mm)	ampere	ed (in
	meter		s)	KW)		meter		s)	KW)
	s)					S			
A	140	3.5x1	235	24.83	AC	230	3.5x3	305	16.22
Block		85			Chillers		00		

Table 2: Underground Cable Line parameters.

B	250	3.5x1	235	27.91	F3 Block	150	3.5x2	275	14.27
Block	20.5	85	225	0.161	11 . 10	1.40	40	1.65	40.52
C	285	3.5x1	235	0.161	Hostel 2	140	3.5x9	165	40.53
Block		85					5		
AC									
C	230	3.5x1	235	2.03	I Block	120	3.5x1	235	39.51
Power		85					85		
G	70	3.5x5	100	8.07	Feeder	180	3.5x1	235	22.36
Block		0			Pillars		85		
D	180	3.5x1	235	0.32	Chillers	200	3.5x2	275	33.12
Block		85					40		
AC									
D	180	3.5x3	305	31.37	Agricultu	50	3.5x3	92	45.72
Block		00			ral Farm		5		
+									
Cante									
en									
D	285	3.5x1	235	66.31	Sports	75	3.5x9	165	21.9
Power		85			1		5		
E1	300	3.5x3	305	96.62	Swimmin	70	3.5x1	210	16.12
Block		00			g Pool		50		
E2	380	3.5x2	275	56.66	STP (1 +	40	3.5x1	210	19.71
Block		40			2)		50		
F1	230	3.5x1	235	13.34	RO Water	150	3.5x9	165	17.79
Block		85			System		5		
F2	210	3.5x2	275	29.02	Hostel 1	280	3.5x1	235	49.09
Block		40					85		

2.3 Generalised linear load model

Linear loads are represented by parallel R and L elements. The value of R and L can be computed by the active power P and reactive power Q of the load according to the following formula and monthly consumption block wise shown in Table 2.


$$R = V^2/P$$
; $L = V^2/(2\pi f_0 Q)$

2.4 System source and capacitor bank model

The 33kV system source is modelled as a standard voltage source with the equivalent system impedance, which is converted from the three-phase short circuit strength at the 33kV bus. The capacitor bank is represented by a standard EMTP capacitor component with the three phase kVAR rating converted to mF value.

3. Simulation Results

Based on the collected data model which is shown below was drawn using the software we had conducted a general load flow analysis on the system to check the voltage drops, current flows through the line/cable feeders and have found that some of the cable were carrying the more Amps based on the existing capacity. This showed that the cables were not having sufficient amount of power to carry for the load. An improvement in the system was suggested to overcome the problem. The issues on the cables such as overloading had to be cleared by proposing a change in such a way that once their is a load increase it should be able to carry sufficient amount of power so that the insulation remains intact and also for future growth of loads. The simulation results show that at substation 1 bus no 6 and at substation 2 bus 28, bus 33 and bus 35 are facing cable overloading problem.

4. Lt Power Cable Sizing Criteria

Comparing the simulation result of cable overloading with IEC standard, the cable sizing reqirements were not meeting and line loading limit was found to exceed the IEC requirements at bus 6, 28, 33 and bus 35. One commonly used method for limiting

the cable overloading is to use LT power cable sizing criteria. Some calculations are performed for the buses facing overloading problem as per method of cable sizing given below and improvements were suggested to quality department.

```
Step - 1 : Inputs ( Load Data )
Connected Load Power = 90 KW
System Voltage = 415 Volts
Length of the load from panel = 250 Mtrs.
```

Step - 2 : Caculation for Full load current (IFL)
Full Load current (Amps) =
$$\frac{\text{Connected load power}}{1.732 \text{ x System voltage x power factor}} = 156.515 \text{ Amps}$$

Step - 3 : Inputs from Cable catalogue Current carrying capacity of the cable = 257Amps Resistance of the cable =
$$0.324 \Omega / \text{km}$$
 Reactance of the cable = $0.0712 \Omega / \text{km}$

Step - 4 : Calculation of Derated Current of the cable

De-rated current of the cable = Current carrying capacity of the cable x de-rating factor

De-rated current of the cable = 154.2 Amps

Step - 5 : Calculation of Number of cable runs required Number of runs =
$$\frac{\text{Connected load power}}{1.732 \text{ x System voltage x power factor}} = 1.015$$
Actual Number of cable runs required = 2

Step - 6 : Calculation of %Voltage drop

% Voltage drop at Starting =
$$\frac{1.732 \times IFL \times 6 \times ((R \times cospi) + (X \times sinpi))}{Actual number of cable runs x System voltage} \times 100 = 6.593$$

% Voltage drop at Running =
$$\frac{1.732 \times IFL \times ((R \times cospi) + (X \times sinpi))}{Actual number of cable runs x System voltage} \times 100 = 2.465$$

Result: Number of cables runs required is 2 or 3. The suggestions for increasing number of cable runs at bus 2, 28, 33 and bus 35 were given to the existing maintenance engineers who will later on test it according to the loadings.

5. Conclusion

The failure of underground cables due to heating caused by long term overload conditions is easily prevented by proper cable sizing. This is based on information

provided by cable manufacturers, circuit configuration, and operating conditions. When combined with a SCADA system, can be used to track the amount of time the cable is exposed to overload, allowing for estimates of the remaining life of the cable. Load shedding, operation, rated capacity operation of transformer is must needed for efficient operation of lines. In this paper, the capacity of overloaded cable is increased by using double circuit line. Double circuits can carry more power. Also, double circuits introduce a level of redundancy, so that if a single circuit (half of the double circuit) fails, the other half is still intact.

References

- [1] Technical Document on Power System Studies, MiPowe Software, PRDC Bangalore
- [2] Present worth analysis by "MiPower Software", PRDC Bangalore
- [3] "Electrical Safety Hazards of Overloading Cable" from www.osha.gov
- [4] "A Primer on Cable Damage and Related Failure of Cables" from www.AmerCable.com
- [5] "XLPE Land Cable Systems User's Guide" from www.abb.com/cable