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Abstract

This paper deals with a class of backward doubly stochastic differential equation
driven by fractional Brownian motion with Hurst parameter H greater than 1/2.
We essentially establish existence and uniqueness of a solution in the case of
Lipschitz coefficients and integral-Lipschitz coefficients. The stochastic integral
used throughout the paper is the divergence type integral.
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1. INTODUCTION

Backward stochastic differential equations (BSDEs in short) were first introduced by
Pardoux and Peng [8]. They proved the celebrated existence and uniqueness result
under Lipschitz assumption. This pioneer work was extensively used in many fields
like stochastic interpretation of solutions of PDEs and financial mathematics.

Few years later, several authors investigated BSDEs with respect to fractional Brownian
motion

(
BH
t

)
t≥0

with Hurst parameter H . Since BH is not a semimartingale when
H ̸= 1

2
, we cannot use the beautiful classical theory of stochastic calculus to define

the fractional stochastic integral. It is a significant and challenging problem to extend
the results in the classical stochastic calculus to this fractional Brownian motion.

server
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Essentially, two different types of integrals with respect to a fractional Brownian motion
have been defined and studied. The first one is the pathwise Riemann-Stieltjes integral
(see Young [11]). This integral has a proprieties of Stratonovich integral, which leads
to difficulties in applications. The second one, introduced in Decreusefond [4] is the
divergence operator (or Skorohod integral), defined as the adjoint of the derivative
operator in the framework of the Malliavin calculus. Since this stochastic integral
satisfies the zero mean property and it can be expressed as the limit of Riemann
sums defined using Wick products, it was later developed by many authors. Recently,
new classes of BSDEs driven by both standard and fractional Brownian motions were
introduced by Fei et al [5]. They established the existence and uniqueness of solutions.

In this paper, our aim is to generalize the result established in [5] to the following
equation called Backward doubly stochastic differential equations driven by fractional
Brownian motion:

Yt = ξ +

∫ T

t

f(s, ηs, Ys, Zs)ds+

∫ T

t

g(s, ηs, Ys, Zs)dWt −
∫ T

t

ZsdB
H
t , t ∈ [0, T ],

(1.1)
where the integral with respect to

(
BH
t

)
t≥0

is a divergence-type integral and the integral
with respect to (Wt)t≥0 is a standard Itô integral. Inspired by the works of Aidara and
Sow [1], we prove that under integral-Lipschitz coefficients, the solution of the above
Backward doubly stochastic differential equations exists uniquely.

The paper is organized as follows: In Section 2, we introduce some preliminaries,
before studying the solvability of our equation under Lipschitz conditions on the
generator in Section 3. Using this result, we prove existence and uniqueness of the
solution with a coefficient satisfying integral-Lipschitz conditions in Section 4.

2. PRELIMINARIES

2.1. Fractional Stochastic calculus
Let Ω be a non-empty set, F a σ−algebra of sets Ω, P a probability measure defined
on F . The triplet (Ω,F ,P) defines a probability space. Suppose that the process(
BH
t

)
t≥0

and (Wt)t≥0 be two mutually independent processes, where
(
BH
t

)
t≥0

is a
one-dimensional fractional Brownian motion with Hurst parameter H ∈ (1/2, 1) and
(Wt)t≥0 is a one-dimensional standard Brownian motion.

We consider the family (Ft)0≤t≤T given by

Ft = FBH

t ∨ FW
t,T , 0 ≤ t ≤ T,

where for any process {ϕt}t≥0, F ϕ
s,t = σ{ϕr − ϕs, s ≤ r ≤ t} ∨ N , F ϕ

t = F ϕ
0,t.
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N denotes the class of P−null sets of F . Note that (Ft)0≤t≤T does not constitute a
classical filtration.

Denote ϕ(t, s) = H(2H − 1)|t − s|2H−2, (t, s) ∈ R2. Let ξ and η be measurable
functions on [0, T ]. Define

⟨ξ, η⟩t =
∫ t

0

∫ t

0

ϕ(u, v)ξ(u)η(v)dudv and ∥ξ∥2t = ⟨ξ, ξ⟩t.

Note that, for any t ∈ [0, T ], ⟨ξ, η⟩t is a Hilbert scalar product. Let H be the completion
of the set of continuous functions under this Hilbert norm ∥·∥t and (ξn)n be a sequence
in H such that ⟨ξi, ξj⟩T = δij . Let PH

T be the set of all polynomials of fractional
Brownian motion. Namely, PH

T contains all elements of the form

F (ω) = f

(∫ T

0

ξ1(t)dB
H
t ,

∫ T

0

ξ2(t)dB
H
t , . . . ,

∫ T

0

ξn(t)dB
H
t

)
where f is a polynomial function of n variables. The Malliavin derivative DH

t of F is
given by

DH
s F =

n∑
i=1

∂f

∂xi

(∫ T

0

ξ1(t)dB
H
t ,

∫ T

0

ξ2(t)dB
H
t , . . . ,

∫ T

0

ξn(t)dB
H
t

)
ξi(s) 0 ≤ s ≤ T.

Similarly, we can define the Malliavin derivative DtG of the Brownian functional

G(ω) = f

(∫ T

0

ξ1(t)dWt,

∫ T

0

ξ2(t)dWt, . . . ,

∫ T

0

ξn(t)dWt

)
.

The divergence operator DH is closable from L2(Ω,F ,P) to L2(Ω,F ,P,H). Hence
we can consider the space D1,2 is the completion of PH

T with the norm

||F ||21,2 = E|F |2 + E||DH
s F ||2T .

Now we introduce the Malliavin ϕ-derivative DH
t of F by

DH
t F =

∫ T

0

ϕ(t, s)DH
s Fds.

Let us recall the following result which is a useful tool in our work (see [[6] , Proposition
6.25])
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Theorem 2.1. Let F : (Ω,F ,P) −→ H be a stochastic processes such that

E

(
∥F∥2T +

∫ T

0

∫ T

0

|DH
s Ft|2dsdt

)
< +∞.

Then, the Itô-Skorohod type stochastic integral denoted by
∫ T
0
FsdB

H
s exists in

L2 (Ω,F ,P) and satisfies

E

(∫ T

0

FsdB
H
s

)
= 0 and E

(∫ T

0

FsdB
H
s

)2

= E

(
∥F∥2T +

∫ T

0

∫ T

0

DH
s FtDH

t Fsdsdt

)
.

We now give the fractional Itô formula of an Itô type process involving the stochastic
integral with respect to both standard and fractional Brownian motions.

Theorem 2.2. Let σ1, σ2 ∈ H be deterministic continuous functions. Denote

Xt = X0 +

∫ t

0

α(s)ds+

∫ t

0

σ1(s)dWs +

∫ t

0

σ2(s)dB
H
s ,

where X0 is a constant, α(t) is a deterministic function with
∫ t
0
|α(s)|ds < +∞.

Let F (t, x) be continuously differentiable with respect to t and twice continuously
differentiable with respect to x. Then

F (t,Xt) = F (0, X0) +

∫ t

0

∂F

∂s
(s,Xs)ds+

∫ t

0

∂F

∂x
(s,Xs)dXs

+
1

2

∫ t

0

∂2F

∂x2
(s,Xs)

[
σ2
1(s) +

d

ds
∥σ2∥2s

]
ds, 0 ≤ t ≤ T.

Let us finish this section by giving a fractional Itô chain rule (see [[5], Theorem 3.2]).

Theorem 2.3. Assume that the processes µ, α1, α2, µ′, α′
1 and α′

2, satisfy

E

[∫ T

0

µ(s)ds+

∫ T

0

α1(s)ds+

∫ T

0

α2(s)ds+

∫ T

0

µ′(s)ds+

∫ T

0

α′
1(s)ds+

∫ T

0

α′
2(s)ds

]
< +∞.

Suppose that Dtα1(s), Dtα
′
1(s), DH

t α2(s) and DH
t α

′
2(s) are continuously differentiable

with respect to (s, t) ∈ [0, T ]2 for almost all ω ∈ Ω. Let Xt and Yt be two processes
satisfying

Xt = X0 +

∫ t

0

µ(s)ds+

∫ t

0

α1(s)dWs +

∫ t

0

α2(s)dB
H
s , 0 ≤ t ≤ T,

Yt = Y0 +

∫ t

0

µ′(s)ds+

∫ t

0

α′
1(s)dWs +

∫ t

0

α′
2(s)dB

H
s , 0 ≤ t ≤ T.
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If the following conditions hold:

E

[∫ T

0

∫ T

0

|Dtα1(s)|2dsdt
]
< +∞, E

[∫ T

0

∫ T

0

|DH
t α2(s)|2dsdt

]
< +∞,

E

[∫ T

0

∫ T

0

|Dtα
′
1(s)|2dsdt

]
< +∞, E

[∫ T

0

∫ T

0

|DH
t α

′
2(s)|2dsdt

]
< +∞,

then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs

+

∫ t

0

[
α1(s)DsYs + α′

1(s)DsXs + α2(s)DH
s Ys + α′

2(s)DH
s Xs

]
ds,

which may be written formally as

d (XtYt) = XtdYt+YtdXt+
[
α1(t)DtYt + α′

1(t)DtXt + α2(t)DH
t Yt + α′

2(t)DH
t Xt

]
dt.

2.2. Definitions and notations
Let us consider

ηt = η0 +

∫ t

0

b(s)ds+

∫ t

0

σ1(s)dWs +

∫ t

0

σ2(s)dB
H
s , 0 ≤ t ≤ T

where the coefficients η0, b, σ1 and σ2 satisfy:

• η0 is a given constant,

• b, σ1, σ2 : [0, T ] → R are deterministic continuous functions, σ1 and σ2 are

differentiable and σ1(t) ̸= 0, σ2(t) ̸= 0 such that σ̂2(t) =

∫ t

0

ϕ(t, v)σ2(v)dv

and

∥σ2∥2t = H(2H − 1)

∫ t

0

∫ t

0

|u− v|2H−2σ2(u)σ2(v)dudv.

The next Remark will be useful in the sequel

Remark 2.4. There exists a constant C0 such that inf0≤t≤T
σ̂2(t)
σ2(t)

≥ C0.

We introduce the following sets (where E the mathematical expectation with respect to
the probability measure P):

• L2 (FT ,R) =
{
ξ : Ω → R

∣∣ξ isFT − measurable,E
[
|ξ|2

]
< +∞

}
;

• V[0,T ] =
{
Y = ψ(·, η) : ψ ∈ C 1,2

pol ([0, T ]×R), ∂ψ
∂t

is bounded, t ∈ [0, T ]
}
,
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• ṼH[0,T ] the completion of V[0,T ] under the following norm (β > 0)

∥Y ∥β =

(∫ T

0

eβtE|Yt|2dt
)1/2

=

(∫ T

0

eβtE|ψ(t, ηt)|2dt
)1/2

.

• B2
H(0, T ) = Ṽ

1
2

[0,T ] × Ṽ
1
2

[0,T ] is a Banach space with the norm

∥(Y, Z)∥B2 =

(
E

∫ T

0

eβt(|Yt|2 + |Zt|2)dt
)1/2

.

Let f : Ω× [0, T ]×R3 → R and g : Ω× [0, T ]×R3 → R. We are interested
in the following BDSDEs driven by fractional Brownian motion (BDSDEF):

Yt = ξ +

∫ T

t

f(s, ηs, Ys, Zs)ds+

∫ T

t

g(s, ηs, Ys, Zs)dWs −
∫ T

t

ZsdB
H
s , 0 ≤ t ≤ T.

(2.1)

Definition 2.5. A triplet of processes (Yt, Zt)0≤t≤T is called a solution to BDSDEF
(2.1) if (Y, Z) ∈ B2

H(0, T ) and satisfies (2.1).

The next proposition will be useful in the sequel.

Proposition 2.6. Let (Yt, Zt)0≤t≤T be a solution of the BDSDEF (2.1). Then, we have
the stochastic representation

DH
t Yt =

σ̂2(t)

σ2(t)
Zt, 0 ≤ t ≤ T,

Proof. Since (Yt, Zt) satisfies the BDSDEF (2.1) then we have Y ∈ Ṽ1/2
[0,T ]. This implies

Y = ψ(·, η) where ψ ∈ C 1,2

pol([0, T ] × R). Note that YT = ξ = ψ(T, ηT ). Applying
Itô’s formula, we obtain

ψ(t, ηt)− ξ = −
∫ T

t

ψ′
s(s, ηs)ds−

∫ T

t

ψ′
x(s, ηs)b(s)ds−

∫ T

t

ψ′
x(s, ηs)σ1(s)dWs

−
∫ T

t

ψ′
x(s, ηs)σ2(s)dB

H
s − 1

2

∫ T

t

ψ′′
xx(s, ηs)σ

2
1(s)ds−

1

2

∫ T

t

ψ′′
xx(s, ηs)

d

ds
∥σ2∥2s ds

= −
∫ T

t

(
ψ′
s(s, ηs) + ψ′

x(s, ηs)b(s) +
1

2
ψ′′
xx(s, ηs)σ1(s) +

1

2
ψ′′
xx(s, ηs)

d

ds
∥σ2∥2s

)
ds

−
∫ T

t

ψ′
x(s, ηs)σ1(s)dWs −

∫ T

t

ψ′
x(s, ηs)σ2(s)dB

H
s .

Using eq. (2.1), we derive that the hand right side is equal to∫ T

t

f (s, ηs, Ys, Zs) ds+

∫ T

t

g (s, ηs, Ys, Zs) dWs −
∫ T

t

ZsdB
H
s , 0 ≤ t ≤ T.
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We deduce that g (s, ηs, Ys, Zs) = ψ′
x(t, ηt)σ1(t) and Zt = ψ′

x(t, ηt)σ2(t). Then we can
write

DH
t Yt =

∫ T

0

ϕ(t− r)DH
r ψ(t, ηt)dr

= ψ′
x(t, ηt)

∫ T

0

ϕ(t− r)σ2(r)dr

= σ̂2(t)ψ
′
x(t, ηt)

=
σ̂2(t)

σ2(t)
Zt.

We are now in position to move on to study our main subject. First we investigate the
case of Lipschitz coefficients.

3. THE CASE OF LIPSCHITZ COEFFICIENTS

We assume that the coefficients f and g of the BDSDEF are continuous functions and
satisfy the following assumption (H1):

(H1.1): There exists a constant L > 0 such that for any (ω, t) ∈ Ω × [0, T ], x ∈ R,
(y, y′) ∈ R2 and (z, z′) ∈ R2; we have

∣∣∣∣f (t, x, y, z)− f (t, x, y′, z′)

∣∣∣∣2 ∨ ∣∣∣∣g (t, x, y, z)− g (t, x, y′, z′)

∣∣∣∣2
≤ L

(
|y−y′|2 + |z − z′|2

)

(H1.2): There exists β > 0 and a function h with bounded derivative ξ = h(ηT ),
E
(
eβT |ξ|2

)
< +∞

The main result of this section is the following theorem:

Theorem 3.1. Let the assumptions (H1) be satisfied. Then the BDSDEF (2.1) has a
unique solution (Y, Z) in the space B2([0, T ],R).

Proof. Let us consider the mapping Ψ : B2([0, T ],R) → B2([0, T ],R) driven by
(U, V ) 7−→ Ψ(U, V ) = (Y, Z).
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We will show that the mapping Ψ is a contraction, where (Y, Z) is a solution of the
following BDSDEF:

Yt =

∫ T

t

f(s, ηs, Us, Vs)ds−
∫ T

t

g(s, ηs, Us, Vs)dWs −
∫ T

t

ZsdB
H
s , t ∈ [0, T ].

(3.1)
Let us define for a process δ ∈ {Y, Z, U, V }, δ = δ − δ′ and the functions

∆f(t)=f(t,ηt, Ut, Vt)− f(t,ηt, U
′
t , V

′
t ).

∆g(t)=g(t,ηt, Ut, Vt)− g(t,ηt, U
′
t , V

′
t ).

Then, the couple (Y , Z) solves the BDSDEF

Y t =

∫ T

t

∆f(s)ds−
∫ T

t

∆g(s)dWs −
∫ T

t

ZsdB
H
s , t ∈ [0, T ]. (3.2)

By the fractional Itô chain rule, we have

|Y t|2 = 2

∫ T

t

Y s∆f(s)ds+ 2

∫ T

t

∆g(s)DsY sds− 2

∫ T

t

ZsDH
s Y sds

+ 2

∫ T

t

Y s∆g(s)dWs − 2

∫ T

t

Y sZsdB
H
s .

Applying Itô formula to eβt|Y t|2, we obtain that

eβt|Y t|2 = 2

∫ T

t

eβsY s∆f(s)ds+ 2

∫ T

t

eβs∆g(s)DsY sds− 2

∫ T

t

eβsZsDH
s Y sds

+ 2

∫ T

t

eβsY s∆g(s)dWs − 2

∫ T

t

eβsY sZsdB
H
s − β

∫ T

t

eβs|Y s|2ds.

Therefore, we can write

E
[
eβt|Y t|2

]
+ βE

[∫ T

t

eβs|Y s|2ds
]
+ 2E

[∫ T

t

eβsZsDH
s Y sds

]
= 2E

[∫ T

t

eβsY s∆f(s)ds

]
+ 2E

[∫ T

t

eβs∆g(s)DsY sds

]
It is know that, by Proposition 2.6, DH

s Y s =
σ̂2(s)
σ2(s)

Zs. Then, we have

E
[
eβt|Y t|2

]
+ βE

[∫ T

t

eβs|Y s|2ds
]
+ 2E

[∫ T

t

eβs
σ̂2(s)

σ2(s)
|Zs|2ds

]
= 2E

[∫ T

t

eβsY s∆f(s)ds

]
+ 2E

[∫ T

t

eβs|∆g(s)|2ds
]

(3.3)
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Using standard estimates 2ab ≤ a2

ϵ
+ ϵb2 (where a, b, ϵ > 0) and asumption (H1.1), we

obtain that

E
[
eβt|Y t|2

]
+ βE

[∫ T

t

eβs|Y s|2ds
]
+ 2E

[∫ T

t

eβs
σ̂2(s)

σ2(s)
|Zs|2ds

]
≤ 2L

ϵ
E

∫ T

t

eβs|Y s|2ds+
(4L+ ϵ)

2
E

[∫ T

t

eβs(|U |2 + |V |2)ds
]

Taking β such that β ≥ 2C0 +
2L
ϵ

, we get

E

∫ T

0

eβs
(
|Y s|2 + |Zs|2

)
ds ≤

(
4L+ ϵ

4C0

)
E

∫ T

0

eβs
∣∣U s|2 + |V s|2

)
ds. (3.4)

Hence, if we choose ϵ = ϵ0 satisfying C0 =
ϵ0+4L

3
, we have

E

∫ T

0

eβs
(
|Y s|2 + |Zs|2

)
ds ≤ 3

4
E

∫ T

0

eβs
∣∣U s|2 + |V s|2

)
ds. (3.5)

Thus, the mapping (U, V ) 7−→ Ψ(U, V ) = (Y, Z) determined by the fractional
BDSDEs (2.1) is a strict contraction on B2([0, T ],R). Using the fixed point principle,
we deduce the solution to the fractional BDSDEs (2.1) that exists uniquely. This
completes the proof.

4. THE CASE OF INTEGRAL-LIPSCHITZ COEFFICIENTS

We assume that the coefficients f and g of the BDSDEFs are continuous functions and
satisfy the following assumption (H2) :
(H2.1) : There exists K>0 s.t. for 0≤ t≤ T , (y, y′) ∈ R2, (z, z′) ∈ R2, x ∈ R,

|f(t, x, y, z)− f(t, x, y′, z′)|2 ∨ |g(t, x, y, z)− g(t, x, y′, z′)|2 ≤ ρ(t, |y − y′|2) +K|z − z′|2

where ρ(t, v) : [0, T ]×R+ → R+ satisfies

• For fixed t ∈ [0, T ], ρ(t, ·) is a continuous, concave and nondecreasing s.t.

ρ(t, 0) = 0, and ∀α > 0, αρ(t, v) = ρ(t, αv).

• The ordinary differential equation

v′(t) = −ρ(t, v(t)), v(T ) = 0, (4.1)

has a unique solution v(t) = 0, 0 ≤ t ≤ T .
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• There exists two continuous and non-negative functions a and b such that

ρ(t, v) ≤ a(t) + b(t)v and
∫ T

0

[a(t) + b(t)]dt < +∞.

(H2.2) : the integrability condition holds

E

(
|ξ|2 +

∫ T

0

|f(s, ηs, 0, 0)|2ds
)
< +∞.

Our strategy in the proof of existence of solutions of the fractional BDSDEs (2.1) is
to use the Picard approximate sequence. To this end, we consider now the sequence
(Y n

t , Z
n
t )n≥0 given by

Y 0
t = 0;

Y n
t = ξ +

∫ T

t

f(s, ηs, Y
n−1
s , Zn

s )ds+

∫ T

t

g(s, ηs, Y
n−1
s , Zn

s )dWs −
∫ T

t

Zn
s dB

H
s , n ≥ 1.

(4.2)
In what follows, we establish two results which will be useful in the sequel.

Lemma 4.1. Let the assumption (H2) be satisfied. Then, for n, m ≥ 1 we have

E
(
|Y n+m
t − Y n

t |2
)
≤ 2C0

K
e

2K(T−t)
2C0−2K−1

∫ T

t

ρ
(
s,E[|Y n+m−1

s − Y n−1
s |2]

)
ds, 0 ≤ t ≤ T

Proof. Let us define for a process δ ∈ {Y, Z}, n,m ≥ 1, δ
n,m

= δn+m − δn and the
functions

∆f (n,m)(s) = f(s, ηs, Y
n+m−1
s , Zn+m

s )− f(s, ηs, Y
n−1
s , Zn

s ),

∆g(n,m)(s) = g(s, ηs, Y
n+m−1
s , Zn+m

s )− g(s, ηs, Y
n−1
s , Zn

s ).

It is easily seen that the pair of processes (Y
n,m

t , Z
n,m

t )0≤t≤T solves the BDSDEF

Y
n,m

t =

∫ T

t

∆f (n,m)(s)ds+

∫ T

t

∆g(n,m)(s)dWs −
∫ T

t

Z
n,m

s dBH
s , 0 ≤ t ≤ T.

Applying again Itô’s formula to |Y n,m

t |2, we obtain for n,m ≥ 1 and 0 ≤ t ≤ T ,

|Y n,m

t |2 = 2

∫ T

t

Y
n,m

s ∆f (n,m)(s)ds+

∫ T

t

Y
n,m

s ∆g(n,m)(s)dWs + 2

∫ T

t

|∆g(n,m)(s)|2ds

− 2

∫ T

t

Y
n,m

s Z
n,m

s dBH
s − 2

∫ T

t

DH
s Y

n,m

s Z
n,m

s ds. (4.3)
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Hence we deduce from (4.3)

E

(
|Y n,m

t |2 + 2

∫ T

t

DH
s Y

n,m

s Z
n,m

s ds

)
= 2E

∫ T

t

Y
n,m

s ∆f (n,m)(s)ds+ 2

∫ T

t

|∆g(n,m)(s)|2ds (4.4)

Using standard estimates and assumption (H2.1), we have

2Y
n,m

s ∆f (n,m)(s) ≤ ϵ
∣∣Y n,m

s

∣∣2 + 1

ϵ
ρ
(
s, |Y n+m−1

s − Y n−1
s |2

)
+
K

ϵ
|Zn,m

s |2,

and

2
∣∣∆g(n,m)(s)

∣∣2 ≤ 2ρ
(
s, |Y n+m−1

s − Y n−1
s |2

)
+ 2K|Zn,m

s |2,

Putting pieces together, we deduce from eq. (4.4),

E

(
|Y n,m

t |2 + 2C0

∫ T

t

|Zn,m

s |2ds
)

(4.5)

≤
∫ T

t

E

(
ϵ
∣∣Y n,m

s

∣∣2 + (1 + 2ϵ)

ϵ
ρ
(
s, |Y n+m−1

s − Y n−1
s |2

)
+
K(1 + 2ϵ)

ϵ
|Zn,m

s |2
)
ds

which implies

E

(
|Y n,m

t |2 + 2C0ϵ−K(1 + 2ϵ)

ϵ

∫ T

t

|Zn,m

s |2ds+
)

(4.6)

≤ ϵE

∫ T

t

|Y n,m

s |2ds+ (1 + 2ϵ)

ϵ

∫ T

t

E[ρ
(
s, |Y n+m−1

s − Y n−1
s |2

)
]ds.

Choosing ϵ = K
2C0−2K−1

, we obtain

E

(
|Y n,m

t |2 +
∫ T

t

|Zn,m

s |2ds+
)

(4.7)

≤ K

2C0 − 2K − 1
E

∫ T

t

|Y n,m

s |2ds+ (2C0 − 1)

K

∫ T

t

E[ρ
(
s, |Y n+m−1

s − Y n−1
s |2

)
]ds.

Applying Gronwall’s lemma and Jensen inequality (since ρ(t, ·) is concave), we obtain

E
(
|Y n,m

t |2
)
≤ (2C0 − 1)

K
e

K(T−t)
2C0−K−1

∫ T

t

ρ
(
s,E[|Y n+m−1

s − Y n−1
s |2]

)
ds

≤ 2C0

K
e

2K(T−t)
2C0−2K−1

∫ T

t

ρ
(
s,E[|Y n+m−1

s − Y n−1
s |2]

)
ds.
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Lemma 4.2. Let the assumption (H2) be satisfied. Then there exist Γ > 0 and
0 ≤ T1 < T not depending on ξ and such that

∀n ≥ 1, E
(
|Y n
t |2

)
≤ Γ, T1 ≤ t ≤ T.

Proof. Using the same method as in the the proof of Lemma 4.1, we have

|Y n
t |2 = |ξ|2 + 2

∫ T

t

Y n
s f(s, ηs, Y

n−1
s , Zn

s )ds+ 2

∫ T

t

Y n
s g(s, ηs, Y

n
s )dWs

− 2

∫ T

t

Y n
s Z

n
s dB

H
s − 2

∫ T

t

DH
s Y

n
s Z

n
s ds+ 2

∫ T

t

|g(s, ηs, Y n−1
s , Zn

s )|2ds. (4.8)

Assumption (H2.1) and the same computations as before imply

E(|Y n
t |2) ≤

2C0

K

[
µt + E

∫ T

t

ρ(s, |Y n−1
s |2)ds

]
+

2K

2C0 − 2K − 1
E

∫ T

t

|Y n
s |2ds

(4.9)

where

µt =

[
K

2C0

E[|ξ|2] + E

∫ T

t

|f(s, ηs, 0, 0)|2ds
]
.

Applying once again Gronwall’s lemma, we deduce that

E(|Y n
t |2) ≤

2C0

K
e

2K(T−t)
2C0−2K−1

[
µt + E

∫ T

t

ρ(s, |Y n−1
s |2)ds

]
(4.10)

Let T 1 = max

T −
(2C0 − 2K − 1) ln

(
K
2C0

)
2K

, 0

.

Then we have

E
(
|Y n
t |2

)
≤ µt +

∫ T

t

ρ
(
s,E[|Y n−1

s |2]
)
ds, T 1 ≤ t ≤ T. (4.11)

Define

Γ = µ0 +

∫ T

0

a (s) ds ≥ 0. (4.12)

Arguing as in [10, Lemma 2], we choose T̂1 such that

µ0 +

∫ T

t

ρ (s,Γ) ds ≤ Γ, t ∈ [T̂1, T ]. (4.13)
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Define T1 = max
{
T 1, T̂1

}
. By inequalities (4.11) and (4.13), we have for T1 ≤ t ≤ T ,

E
[∣∣Y 1

t

∣∣2] ≤ µt +

∫ T

t

ρ (s, 0) ds ≤ µ0 ≤ Γ,

E
[∣∣Y 2

t

∣∣2] ≤ µt +

∫ T

t

ρ
(
s,E[

∣∣Y 1
s

∣∣2]) ds ≤ µ0 +

∫ T

t

ρ (s,Γ) ds ≤ Γ,

E
[∣∣Y 3

t

∣∣2] ≤ µt +

∫ T

t

ρ
(
s,E[

∣∣Y 2
s

∣∣2]) ds ≤ µ0 +

∫ T

t

ρ (s,Γ) ds ≤ Γ.

Hence by induction, one can prove that for all n ≥ 1, t ∈ [T1, T ]

E
[
|Y n
t |

2] ≤ Γ. (4.14)

We are now in position to prove our main result

Theorem 4.3. Let the assumption (H2) be satisfied. Then, the BDSDEF (2.1) has a
unique solution (Y, Z) in the space B2([0, T ],R).

Proof. Existence. Let us consider the sequence (φn)n≥1 given by

φ0(t) =

∫ T

t

ρ (s,Γ) ds, φn+1(t) =

∫ T

t

ρ (s, φn(s)) ds.

Then for all t ∈ [T1, T ], from the proof of Lemma 4.2 we have the following inequalities

φ0(t) =

∫ T

t

ρ (s,Γ) ds ≤ Γ,

φ1(t) =

∫ T

t

ρ (s, φ0(s)) ds ≤
∫ T

t

ρ (s,Γ) ds = φ0(t) ≤ Γ,

φ2(t) =

∫ T

t

ρ (s, φ1(s)) ds ≤
∫ T

t

ρ (s, φ0(s)) ds = φ1(t) ≤ Γ.

By induction, one can prove that for all n ≥ 1, φn(t) satisfies

0 ≤ φn+1(t) ≤ φn(t) ≤ ... ≤ φ1(t) ≤ φ0(t) ≤ Γ.

Then {φn(t), t ∈ [T1, T ]}n≥1 is uniformly bounded. For all n ≥ 1 and t1, t2 ∈ [T1, T ],
we obtain

|φn(t1)− φn(t2)| =
∣∣∣∣∫ t2

t1

ρ (s, φn−1(s)) ds

∣∣∣∣ ≤ ∣∣∣∣∫ t2

t1

ρ (s,Γ) ds

∣∣∣∣ .
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Since, for fixed v,
∫ T

0

ρ (s, v) ds < +∞. Therefore

sup
n

|φn(t1)− φn(t2)| → 0 as |t1 − t2| → 0,

which means that {φn(t), t ∈ [T1, T ]}n≥1 is an equicontinuous family of functions.
Therefore, by the Ascoli-Arzela theorem, we can define φ(t) the limit function of
(φn(t))n≥1. By (4.1), we have φ(t) = 0, t ∈ [T1, T ].
Now for all t ∈ [T1, T ], n,m ≥ 1 in view of Lemma 4.1 and Lemma 4.2, we have the
inequalities

E
[∣∣Y 1+m

t − Y 1
t

∣∣2] ≤ 2C0

K
e

2K(T−t)
2C0−2K−1

∫ T

t

ρ
(
s,E[|Y m

s |2]
)
ds ≤

∫ T

t

ρ (s,Γ) ds = φ0(t) ≤ Γ,

E
[∣∣Y 2+m

t − Y 2
t

∣∣2] ≤ 2C0

K
e

2K(T−t)
2C0−2K−1

∫ T

t

ρ
(
s,E[

∣∣Y 1+m
s − Y 1

s

∣∣2]) ds ≤ φ1(t) ≤ Γ,

E
[∣∣Y 3+m

t − Y 3
t

∣∣2] ≤ 2C0

K
e

2K(T−t)
2C0−2K−1

∫ T

t

ρ
(
s,E[

∣∣Y 2+m
s − Y 2

s

∣∣2]) ds ≤ φ2(t) ≤ Γ.

By induction, we can derive that

∀n ≥ 1, E
[∣∣Y n+m

t − Y n
t

∣∣2] ≤ φn−1(t), T1 ≤ t ≤ T

which implies in particular

sup
T1≤t≤T

E
[∣∣Y n+m

t − Y n
t

∣∣2] ≤ sup
T1≤t≤T

φn−1(t) = φn−1(T1) → 0, as n→ ∞.

We see immediately that (Y n, Zn) is a Cauchy sequence in the Banach space
B2([T1, T ],R).

Then there exists a pair of processes (Y, Z) ∈ B2([T1, T ],R) being a limit of
(Y n, Zn)n≥1 i.e.

lim
n→+∞

E

∫ T

0

|Y n
s − Ys|2ds = 0 and lim

n→+∞
E

∫ T

0

|Zn
s − Zs|2ds = 0.

It remains to show that the pair of processes (Y, Z) satisfies eq.(2.1) on the interval
[T1, T ]. We have for any t ∈ [T1, T ],

lim
n→+∞

(
− Y n

t + ξ +

∫ T

t

f(s, ηs, Y
n−1
s , Zn

s )ds+

∫ T

t

g(s, ηs, Y
n−1
s , Zn

s )dWs

)
= −Yt + ξ +

∫ T

t

f(s, ηs, Ys, Zs)ds+

∫ T

t

g(s, ηs, Ys, Zs)dWs := Φ(t) in L2(Ω,F ,P).

We show that (Y, Z)0≤t≤T satisfies eq.(2.1) on [T1, T ]. Note that from Lemma 4.2, T1
does not depend on the final value ξ. Hence one we can deduce by iteration the existence
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on [T − τ(T − T1), T ], for each τ , and therefore the existence on the whole [0, T ].

Uniqueness. Let (Y, Z) and (Ỹ , Z̃), be two solutions of eq.(2.1). Define δ = δ − δ̃ for
δ ∈ {Y, Z}. By the Itô formula, we have

E

(
|Yt|2 + 2C0

∫ T

t

|Zs|2ds
)

≤
∫ T

t

E

(
ϵ|Ys|2 +

(1 + ϵ)

ϵ
ρ
(
s, |Ys|2

)
+
K(1 + ϵ)

ϵ
|Zs|2

)
ds.

(4.15)

Using the same computations as in Lemma 4.1, we deduce that

E
[
|Yt|2

]
≤ 2C0

K
e

2K(T−t)
2C0−K−1

∫ T

t

ρ
(
s,E[|Ys|2]

)
ds, 0 ≤ t ≤ T.

Define δ =
(2C0 −K − 1) ln (K/2C0)

2K
and N = [T/δ] + 1. If (tj)0≤j≤N denotes the

uniform subdivision of [0, T ] given by T0 = 0, Tj = T − (N − j)δ, j ≥ 1, we have

E
[
|Yt|2

]
≤

∫ T

t

ρ
(
s,E[|Ys|2]

)
ds, TN−1 ≤ t ≤ T.

From the comparison theorem of ODEs, we deduce that E
(
|Yt|2

)
≤ r(t), where r(t)

is the maximum of solution of equation (4.1) on [TN−1, T ]. As a consequence, we have
Yt = Ỹt for t ∈ [TN−1, T ]. From (4.15), we deduce Zt = Z̃t for t ∈ [TN−1, T ]. Then
we can use the same argument to prove that uniqueness of the solution also holds on
[Tj, Tj+1], j = 0, . . . , N − 2. This completes the proof.
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