Weakly 2-Absorbing Filters in ADLs

Natnael Teshale Amare¹ and K. Ramanuja Rao*²

¹Department of Mathematics, College of NCS, University of Gondar, Ethiopia.

²Department of Mathematics and Statistics, Fiji National University, Lautoka, Fiji.

Abstract

In this paper, the concepts of 2-absorbing filter and weakly 2-absorbing filter in an almost distributive lattice are introduced and obtain certain results of these. Further, the lattice epimorphic images and pre image of weakly (2-absorbing filter) in an ADL is discussed.

2010 AMS Subject Classification: 13A15, 13C05.

Keywords: Almost Distributive Lattice(ADL), prime filter, Weakly prime filter, 2-absorbing filter, weakly 2-absorbing filter.

1. INTRODUCTION

Several researchers introduced and analyzed the 2-absorbing and weakly 2-absorbing property in rings (especially in commutative rings), lattices, semi-groups, and modules. Ever since in 2007, Ayami Badawi [3] was introduced the concepts of 2-absorbing ideals on a commutative rings, which is a generalization of prime ideals and some properties of these were studied. Following that, other researchers worked on 2-absorbing ideals in semirings (J.N. Chuadhari [6]), on n-absorbing ideals of commutative rings (D.F. Anderson and A. Badami [1]), on the 2-absorbing ideals (Sh. Payrovi and S. Babali [8]), on 2-absorbing ideals and weakly 2-absorbing ideals of lattices (M.P. Wasadikar and K.T. Gaikevad [10]), on 2-absorbing filter of lattice (S.E. Atani and M.S. Bazari [2]), on weakly 1-absorbing primary ideals of commutative rings (A. Badawi and E. Y. Celikel [5]), on 1-absorbing ideals of commutative rings (A. Badawi and R. Nikandish [11]), on weakly 2-absorbing ideals of commutative rings (A. Badawi and A.Y. Darani [4]) and prime and weakly prime ideals in semirings (M.K. Dubey [7]).

Email: yenatnaelau@yahoo.com, ramanuja.kotti@fnu.ac.f

^{*}Corresponding: P.O.Box 5529, Lautoka, Fiji.

In 1981, Swamy and Rao [9] was introduced the concept of an Almost Distributive Lattice (ADL) as a common abstraction to most of the existing ring theoretic generalizations of a Boolean algebra and which is an algebra $(A, \wedge, \vee, 0)$ satisfies all the axioms of distributive lattice, except possibly the commutativity of the operations \(\lambda \) and \vee . It is known that, in any ADL the commutativity of \vee is equivalent to that of \wedge and also to the right distributivity of \vee over \wedge . It is well known that, for any lattice (L, \wedge, \vee) , interchanging the operations \wedge and \vee again yields a lattice, known as the dual of L. An ideal of the dual (L, \vee, \wedge) is known as a filter of a lattice (L, \wedge, \vee) . Unlike the case of a lattice, by interchanging the operations \wedge and \vee in an ADL $(A, \wedge, \vee, 0)$, we do not get an ADL again. In this paper, we introduce and study 2-absorbing filter in an ADL which need not be a prime filter in general. Essentially, it is proved that a proper filter J of an ADL is 2-absorbing filter if and only if A - J is a 2-absorbing ideal of an ADL. Also, it shown that $J \times A$ and $A \times J$ are 2-absorbing filters if J is a 2-absorbing filter in an ADL. Further, we introduce the concept of n-absorbing filters and their properties. On the other hand, we introduce the concept of weakly 2-absorbing filter in an ADL and obtain the inter relationship between this and 2-absorbing filters. It is proved that if $J \times F$ is a weakly 2-absorbing filter, then J and F are 2-absorbing filters and the converse of this is not true. Also, it shown that J is a 2-absorbing filter in an ADL A if and only if $J \times A$ is a weakly(2-absorbing filter) of $A \times A$. Finally, we prove that the image and inverse image of a 2-absorbing filter (resp. weakly 2-absorbing filter) of an ADL is again a 2-absorbing filter (resp. weakly 2-absorbing filter) of an ADL.

Throughout this paper, A stands for an ADL $A = (A, \land, \lor, 0)$ with a maximal element.

2. PRELIMINARIES

In this section, we recall definitions and important results from [9].

Definition 2.1. An algebra $A = (A, \land, \lor, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following conditions for all a, b and $c \in A$.

- 1. $0 \land a = 0$
- 2. $a \lor 0 = a$
- 3. $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- 4. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- 5. $(a \lor b) \land c = (a \land c) \lor (b \land c)$

6.
$$(a \lor b) \land b = b$$

Each of the axioms (1) through (6) above is independent from the others. The element 0 is called the zero element.

Any bounded below distributive lattice is an ADL.

Example 2.2. Let X be a non-empty set. Fix an arbitrary element $x_0 \in X$. For any $x, y \in X$, define \wedge and \vee on X by,

$$x \wedge y = \begin{cases} y & \text{if } x \neq x_0 \\ x_0 & \text{if } x = x_0 \end{cases} \quad \text{and} \quad x \vee y = \begin{cases} x & \text{if } x \neq x_0 \\ y & \text{if } x = x_0 \end{cases}$$

Then (X, \wedge, \vee, x_0) is an ADL with x_0 as its zero element. This ADL is called the **discrete ADL**.

Theorem 2.3. Let $(A, \land, \lor, 0)$ be an ADL. For any a and $b \in A$, we have

- (1) $a \wedge 0 = 0 = 0 \wedge a$ and $a \vee 0 = a = 0 \vee a$
- (2) $a \wedge a = a = a \vee a$
- (3) $(a \wedge b) \vee b = b$
- (4) $a \lor (b \land a) = a$
- (5) $a \wedge (a \vee b) = a$
- (6) $a \wedge b = a \Leftrightarrow a \vee b = b$
- (7) $a \wedge b = b \Leftrightarrow a \vee b = a$
- (8) $a \lor (b \lor a) = a \lor b$.

Definition 2.4. Let $(A, \wedge, \vee, 0)$ be an ADL. For any a and $b \in A$, define $a \le b$ if $a = a \wedge b$ (equivalently $a \vee b = b$).

Then \leq is a **partial order** on A.

Theorem 2.5. The following hold good for any elements a, b, c and d of an ADL $(A, \land, \lor, 0)$.

- (1) $a \wedge b \leq b \leq b \vee a$
- (2) $a \le b \Rightarrow a \land b = a = b \land a \text{ and } a \lor b = b = b \lor a$
- (3) $(a \lor b) \land c = (b \lor a) \land c$
- (4) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ (i.e., \wedge is associative on A)
- (5) $a \wedge b \wedge c = b \wedge a \wedge c$
- (6) The set $\{x \land a : x \in A\} = \{y \in A : y \le a\}$ is a bounded distributive lattice under the induced operations \land and \lor with 0 as the smallest element and a as the largest element
- (7) $a \lor b = b \lor a$ whenever $a \land b = 0$

- (8) $a \wedge b = 0 \Leftrightarrow b \wedge a = 0$
- (9) $a \le b \Rightarrow a \land c \le b \land c$ and $c \land a \le c \land b$
- (10) $a \le b \Rightarrow c \lor a \le c \lor b$
- $(11) (a \lor (b \lor c)) \land d = ((a \lor b) \lor c) \land d.$

Theorem 2.6. For any elements a and b of an ADL $(A, \land, \lor, 0)$, the following are equivalent to each other.

- (1) $(a \wedge b) \vee a = a$
- $(2) \ a \wedge (b \vee a) = a$
- (3) $a \wedge b = b \wedge a$
- (4) $a \lor b = b \lor a$
- (5) $Sup\{a, b\}$ exists in (A, \leq) and is equal to $a \vee b$
- (6) There exists $x \in A$ such that $a \le x$ and $b \le x$
- (7) $inf\{a,b\}$ exists in (A, \leq) is equal to $a \wedge b$.

Theorem 2.7. The following are equivalent to each other for any ADL A.

- (1) $a \wedge b = b \wedge a$ for all $a, b \in A$
- (2) $a \lor b = b \lor a$ for all $a, b \in A$
- (3) (A, \land, \lor) is a distributive lattice bounded below
- (4) $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$ for all $a, b, c \in A$
- (5) $b \wedge (a \vee b) = b$ (i.e, $b \leq a \vee b$) for all $a, b \in A$
- (6) $(a \wedge b) \vee a = a$ (i.e, $a \wedge b \leq a$) for all $a, b \in A$
- (7) For any $a, b, c \in A$, $a \le b \Rightarrow a \lor c \le b \lor c$.

An element $m \in A$ is said to be maximal if, for any $x \in A$, $m \le x$ implies m = x. It can be easily observed that m is maximal if and only if $m \land x = x$ for all $x \in A$.

Definition 2.8. A non-empty subset J of an ADL $A = (A, \land, \lor, 0)$ is called a filter of A if for any $a, b \in J$ and $x \in A$, $a \land b \in J$ and $x \lor a \in J$.

As a consequence, if J is a filter of A, then $a \lor x \in J$ for any $a \in J$ and $x \in A$.

Theorem 2.9. Let $A = (A, \land, \lor, 0)$ be an ADL and $\emptyset \neq X \subseteq A$ and

$$[X\rangle = \{a \lor (\bigwedge_{i=1}^n x_i) : n > 0, x_i \in X \text{ and } a \in A\}.$$

Then [X] is the smallest filter of A containing X and call it the filter generated by X in A.

Theorem 2.10. For any ADL $A = (A, \land, \lor, 0)$, $(\mathcal{F}(A), \subseteq)$ is a distributive lattice in which, for any F_1 and $F_2 \in \mathcal{F}(A)$,

$$F_1 \wedge F_2 = F_1 \cap F_2$$
 and $F_1 \vee F_2 = [F_1 \cup F_2) = \{a \wedge b : a \in F_1 \text{ and } b \in F_2\}.$

Theorem 2.11. Let $A = (A, \land, \lor, 0)$ be an ADL and a and $b \in A$. Then the following hold good.

- $(1) \langle a | \cap \langle b | = \langle a \wedge b |$
- $(2)\ \langle a] \lor \langle b] = \langle a \lor b]$
- $(3) [a\rangle \cap [b\rangle = [a \vee b\rangle$
- (4) $[a] \lor [b] = [a \land b]$.

Corollary 2.12. For any a and b in an ADL A,

- $(1) \langle a \wedge b \rangle = \langle b \wedge a \rangle$
- $(2) \langle a \vee b | = \langle b \vee a |$
- $(3) [a \wedge b\rangle = [b \wedge a\rangle$
- $(4) [a \lor b\rangle = [b \lor a\rangle.$

Definition 2.13. Let A_1 and A_2 be ADLs. A mapping $f: A_1 \to A_2$ is called a homomorphism if the following are satisfied, for any $x, y, z \in A_1$.

- (1). $f(x \wedge y \wedge z) = f(x) \wedge f(y) \wedge f(z)$
- $(2). f(x \lor y \lor z) = f(x) \lor f(y) \lor f(z)$
- (3). f(0) = 0.

Definition 2.14. Let R be a commutative ring with $1 \neq 0$. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if for any $a,b,c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$.

3. 2-ABSORBING FILTER

The concept of 2-absorbing filters is analogous to that of 2-absorbing ideals. In the case of a lattice, we have the duality principle through which we used to prove a result by interchanging the operations \land and \lor . However, in an ADL we do not have the duality principle. This necessitates a separate study of 2-absorbing filter in an ADL.

Definition 3.1. Let $A=(A,\wedge,\vee,0)$ be an ADL. A proper filter J of A is said to be a 2-absorbing filter of A if for any $x,y,z\in A$

 $x \lor y \lor z \in J \Rightarrow \text{ either } x \lor y \in J \text{ or } y \lor z \in J \text{ or } x \lor z \in J.$

The next two lemmas are routine verifications.

Lemma 3.2. Let J be a 2-absorbing filter of A. For all $x, y, z \in A$ whenever $x \lor y \lor z \in J$ implies either $y \lor x \in J$ or $z \lor y \in J$ or $z \lor x \in J$.

Lemma 3.3. Let F and G be filters of A and J a 2-absorbing filter of A. Then the following hold, for any $x, y \in A$.

- (1). $[x \lor y] \cap F \subseteq J \Rightarrow [x \lor y] \subseteq J \text{ or } [x] \cap F \subseteq J \text{ or } [y] \cap F \subseteq J$
- (2). $[x\rangle \cap (F\cap G)\subseteq J\Rightarrow [x\rangle \cap F\subseteq J \text{ or } [x\rangle \cap G\subseteq J \text{ or } F\cap G\subseteq J.$

Definition 3.4. A proper ideal J of A is said to be a 2-absorbing ideal of an ADL A if for any $x, y, z \in A$, $x \wedge y \wedge z \in J$ implies $x \wedge y \in J$ or $y \wedge z \in J$ or $x \wedge z \in J$.

The following theorem derives necessary and sufficient conditions for 2-absorbing filter of an ADL's to become 2-absorbing ideals.

Theorem 3.5. Let J be a proper filter of A. Then the following are equivalent to each other.

- (1). For filters F, G, H of $A, F \cap G \cap H \subseteq J \Rightarrow F \cap G \subseteq J$ or $F \cap H \subseteq J$ or $G \cap H \subseteq J$
- (2). For filters F, G, H of $A, J = F \cap G \cap H \Rightarrow J = F \cap G$ or $J = F \cap H$ or $J = G \cap H$
- (3). J is a 2-absorbing filter of A
- (4). A J is a 2-absorbing ideal of A.

Proof. $(1) \Rightarrow (2)$: It is clear (refer theorem 2.10).

- $(2)\Rightarrow (3)$: Assume the condition (2). We are given that J is a proper filter of A. Now, let x,y and $z\in A$ such that $x\vee y\notin J, y\vee z\notin J$ and $x\vee z\notin J$. Consider the principal filter $[x\vee y\rangle,\ [y\vee z\rangle$ and $[x\vee z\rangle$ generated by $x\vee y,\ y\vee z$ and $x\vee z$ respectively. Then $[x\vee y\rangle\not\subseteq J,\ [y\vee z\rangle\not\subseteq J$ and $[x\vee z\rangle\not\subseteq J.$ By (2), we get that $[x\vee y\vee z\rangle=[x\rangle\cap[y\rangle\cap[z\rangle\not\subseteq J.$ This implies that $x\vee y\vee z\notin J.$ Thus, J is a 2-absorbing filter of A.
- (3) \Rightarrow (4): Assume (3). Since J is a proper filter of A, P is a non-empty subset of A and hence A-J is a non-empty proper subset of A. For any x and $y \in A$,

$$x, y \in A - J \Rightarrow x \notin J \text{ and } y \notin J$$

 $\Rightarrow x \lor y \notin J \quad \text{(Since } J \text{ is a filter)}$
 $\Rightarrow x \lor y \in A - J$

and $x \in A - J$ and $a \in A \Rightarrow x \land a \in A - J$ (for, otherwise $x \land a \in J$ and $x = x \lor (x \land a)$).

Therefore, A-J is a proper ideal of A. Further, for any $x,y,z\in A$,

$$x \wedge y \wedge z \in A - J \Rightarrow x \wedge y \wedge z \notin J$$

 $\Rightarrow x \wedge y \notin J \text{ or } z \notin J, \text{ or } x \notin J \text{ or } y \wedge z \notin J \text{ (since } J \text{ is a filter)}$
 $\Rightarrow x \wedge y \in A - J \text{ or } z \in A - J, \text{ or } x \in A - J \text{ or } y \wedge z \in A - J.$

Thus, A - J is a 2-absorbing ideal of A.

 $(4) \Rightarrow (1) \text{: Assume the condition (4). Let } F, \ G \ \text{and } H \ \text{ be filters of } A \ \text{such that } F \cap G \not\subseteq J, \ G \cap H \not\subseteq J \ \text{and } F \cap H \not\subseteq J. \ \text{Now choose } a \in (F \cap G) - J, b \in (G \cap H) - J \ \text{and } c \in (F \cap H) - J. \ \text{Then } a \in F \cap G, \ b \in G \cap H, \ c \in F \cap H \ \text{and } a, b, c \in A - J. \ \text{Since } A - J \ \text{is a 2-absorbing ideal of } A, \ \text{we get that } a \vee b \vee c \in A - J. \ \text{Now since } F, \ G \ \text{and } H \ \text{are filters, } a \in F \cap G, \ b \in G \cap H \ \text{and } c \in F \cap H, \ \text{it follows that } a \vee b \vee c \in F \cap G \cap H. \ \text{Since } a \vee b \vee c \not\in J, \ \text{we have } F \cap G \cap H \not\subseteq J. \ \text{Hence the result.}$

Definition 3.6. Let A and B be ADLs and form the set $A \times B$ by

 $A \times B = \{(a,b) : a \in A \text{ and } b \in B\}$. Define \land and \lor in $A \times B$ by, for any $(a,b),(c,d) \in A \times B$,

 $(a,b) \land (c,d) = (a \land c, b \land d)$ and $(a,b) \lor (c,d) = (a \lor c, b \lor d)$. Then $(A \times B, \land, \lor, 0)$ is an ADL under the pointwise operations and 0 = (0,0) is the zero element in $A \times B$.

The relationship between the prime filter and the 2-absorbing filter will be discussed in the following theorems. First, let us recall from [9] that a proper filter J of A is said to be a prime filter if, for any x and $y \in A$, $x \lor y \in J \Longrightarrow$ either $x \in J$ or $y \in J$.

Theorem 3.7. Every prime filter of A is a 2-absorbing filter of A.

Proof. Suppose that J is a prime filter of A. Let $x, y, z \in A$ and $x \vee y \vee z \in J$. Since J is prime, either $x \vee y \in J$ or $z \in J$, or $x \in J$ or $y \vee z \in J$. Let $x \vee y \in J$ or $z \in J$. Then clearly $x \vee z \in J$, for any $x \in A$ (since J is a filter). Thus J is a 2-absorbing filter of A.

2-absorbing filter of an ADL is not a prime filter in general. The following example demonstrates this.

Example 3.8. Let $D = \{0, x, y\}$ be a discrete ADL with 0 as its zero element defined in 2.2 and $L = \{0, a, b, c, 1\}$ be the lattice represented by the Hasse diagram given below:

Consider $D \times L = \{(t,s) \mid t \in D \text{ and } s \in L\}$. Then $(D \times L, \wedge, \vee, 0)$ is an ADL (which is not a lattice) under the pointwise operations \wedge and \vee on $D \times L$ and 0 = (0,0), the zero element in $D \times L$. Let $F = \{(x,1)\}$. Clearly F is a 2-absorbing filter of $D \times L$ but F is a filter of $D \times L$ which is not prime, since $(x,a) \vee (y,b) = (x,1)$, for any $(x,a),(y,b) \in D \times L$. From this, we shown that all 2-absorbing filters are not prime filter of $D \times L$.

Theorem 3.9. The intersection of any two prime filters of A is a 2-absorbing filter of A.

Proof. Let F and G be prime filters of A. Clearly $F \cap G$ is a prime filter of A. Let $x, y, z \in A$ and $x \vee y \vee z \in F \cap G$. Since $F \cap G$ is prime, either $x \vee y \in F \cap G$ or $z \in F \cap G$, or $x \in F \cap G$ or $y \vee z \in F \cap G$. Let $z \in F \cap G$. Since $F \cap G$ is a filter, so $x \vee z \in F \cap G$, for any $x \in A$. Therefore, $F \cap G$ is a 2-absorbing filter of A.

In the following, we prove that the homomorphic image and inverse image of a 2-absorbing filter of an ADL is again a 2-absorbing filter.

Theorem 3.10. Let A and B be ADLs and $h: A \to B$ a lattice homomorphism. Let F and G be 2-absorbing filters of A and B respectively. Then h(F) and $h^{-1}(G)$ are 2-absorbing filters of B and A respectively if B is an epimorphism.

Proof. Let h be an epimorphism and F a 2-absorbing filter of A. Let $x,y,z\in A$ such that $h(x)=a,\ h(y)=b$ and h(z)=c, for all $a,b,c\in B$ and suppose $a\vee b\vee c\in h(F)$. Then $a\vee b\vee c=h(x)\vee h(y)\vee h(z)=h(x\vee y\vee z)\in h(F)$ (since h is homomorphism). As $x\vee y\vee z\in F$ and F is a 2-absorbing filter of A, then either $x\vee y\in F$ or $y\vee z\in F$ or $x\vee z\in F$. Which implies that $a\vee b=h(x\vee y)\in h(F)$ or $b\vee c\in (F)$ or $a\vee c\in h(F)$. Thus h(F) is a 2-absorbing filter of B. Let G be a 2-absorbing filter of B and set $h^{-1}(G)=\{a\in A:h(a)\in G\subseteq B\}$. Let $x,y,z\in A$ and $x\vee y\vee z\in h^{-1}(G)$. Since G is a 2-absorbing filter of B, $h(x)\vee h(y)\vee h(z)=h(x\vee y\vee z)\in G$ implies that $h(x\vee y)\in G$ or $h(y\vee z)\in G$ or $h(x\vee z)\in G$. So that, $x\vee y\in h^{-1}(G)$ or $y\vee z\in h^{-1}(G)$ or $x\vee z\in h^{-1}(G)$. Therefore, $h^{-1}(G)$ is a 2-absorbing filter of A. \square

Theorem 3.11. Let A and B be ADLs and let J and F be 2-absorbing filters of A and B respectively. Then $A \times F$ and $J \times B$ are 2-absorbing filters of $A \times B$.

Proof. Let F be a 2-absorbing filter of B and $(a,x) \lor (a,y) \lor (a,z) \in A \times F$, for any $(a,x),(a,y),(a,z) \in A \times B$. Then $(a,x) \lor (a,y) \lor (a,z) = (a,x \lor y \lor z) \in A \times F$ implies that $(a,x \lor y) \in A \times F$ or $(a,y \lor z) \in A \times F$ or $(a,x \lor z) \in A \times F$ (since

 $x \lor y \lor z \in F$ implies $x \lor y \in F$ or $y \lor z \in F$ or $x \lor z \in F$ and $a \in A$). Hence $A \times F$ is a 2-absorbing filter of $A \times B$. Similarly, $J \times B$ is a 2-absorbing filter of $A \times B$ if J is a 2-absorbing filter of A.

In the following, we introduce the concept of n-absorbing filter of an ADL A.

Definition 3.12. Let J be a proper filter of A and $n \in Z^+$. Then J is an n-absorbing filter of A if whenever $x_1 \vee x_2 \vee ... \vee x_{n+1} \in J$, for $x_i \in A$, $1 \le i \le n+1$, then there are n of the $x_i's$ whose join is in J.

Lemma 3.13. Let J be a proper filter of A and $n, m \in Z^+$. Then J is n-absorbing filter if and only if whenever $x_1 \vee x_2 \vee ... \vee x_m \in P$, for $x_1, ..., x_m \in A$ with m > n, then there are n of the x_i' s whose join is in P. Also, if J is n-absorbing filter, then J is an m-absorbing filter, for all m > n.

Lemma 3.14. Let $g: A \to B$ be a lattice homomorphism. Let J and F be n-absorbing filters of A and B respectively. Then $g^{-1}(F)$ and g(J) are n-absorbing filters of B and A respectively if g is an isomorphism.

Theorem 3.15. If $\{J_{\alpha}\}_{{\alpha}\in\Delta}$ is a non-empty chain of n-absorbing filter of A, then $\bigvee_{{\alpha}\in\Delta}J_{\alpha}$ is an n-absorbing filter of A.

Proof. Let $J=\bigvee_{\alpha\in\Delta}J_{\alpha}$ and $x_1,x_2,...,x_{n+1}\in A$ such that $\bigvee_{i=1}^{n+1}x_i\in P$. Let $x_i=\bigvee_{j\neq i}x_j$ and $x_i\notin J$, for all $1\leq i\leq n$. Then for each $1\leq i\leq n$, there exist an n-absorbing filter J_{α_i} such that $x_i\notin J_{\alpha_i}$. Assume that $J_{\alpha_1}\subseteq J_{\alpha_2}\subseteq ...\subseteq J_{\alpha_n}$. Let $\beta\in\Delta$. If $J_{\beta}\subseteq J_{\alpha_1}\subseteq ...\subseteq J_{\alpha_n}$, then $x_i\notin J_{\beta}$, for each $1\leq i\leq n$. Since $x_1\vee x_2\vee ...\vee x_{n+1}\in P$ and J_{β} is n-absorbing filter of A, we have $x_{n+1}\in J_{\beta}$. Again, $x_1\vee x_2\vee ...\vee x_{n+1}\in J_{\alpha_1}$ and J_{α_1} is n-absorbing filter of A, then $x_{n+1}\in J_{\alpha_1}$. So, $x_{n+1}\in J_{\beta}$, for every $\beta\in\Delta$. Thus $x_{n+1}\in J$. Hence the theorem.

4. WEAKLY 2-ABSORBING FILTER

In this section, we now introduce the concept of weakly 2-absorbing filters of an ADL and obtain the relation between this and 2-absorbing filters. First, we have the following.

Definition 4.1. A proper filter J of A is a weakly prime filter of A if for any $x, y \in A$,

$$1 \neq x \lor y \in J \Rightarrow \text{ either } x \in J \text{ or } y \in J.$$

Theorem 4.2. Every prime filter of A is a weakly prime filter of A and the converse of this is not true.

Example 4.3. Let $D \times L = \{(t,s) \mid t \in D \text{ and } s \in L\}$ be an ADL discussed in example 3.8. Let $F = \{(x,1)\}$. Clearly, F is a weakly prime filter of $D \times L$. On the other hand, F is a filter which is not prime, since $(x,a) \vee (y,b) = (x,1)$ implies that $(x,a) \notin F$ and $(y,b) \notin F$, for all $(x,a), (y,b) \in D \times L$.

We now introduce the concept of weakly 2-absorbing filter of an ADL in the following.

Definition 4.4. A proper filter J of A is a weakly 2-absorbing filter of A if for any $x, y, z \in A$,

$$1 \neq x \lor y \lor z \in J \Rightarrow \text{ either } x \lor y \in J \text{ or } y \lor z \in J \text{ or } x \lor z \in J.$$

In the following discussion, we introduce the sufficient condition for weakly prime filter and 2-absorbing filter of an ADL to become a weakly 2-absorbing filter.

Theorem 4.5. Every weakly prime filter of A is a weakly 2-absorbing filter of A.

The converse of the above corollary is not true; consider the following example.

Example 4.6. Let $D = \{0, x, y\}$ be a discrete ADL with 0 as its zero element defined in 2.2 and $L = \{0, a, b, c, 1\}$ be the lattice represented by the Hasse diagram given below:

Consider $D \times L = \{(t,s) : t \in D \text{ and } s \in L\}$. Then $(D \times L, \wedge, \vee, 0)$ is an ADL $(D \times L)$ is not a lattice) under the point-wise operations \wedge and \vee on $D \times L$ and 0 = (0,0), the zero element in $D \times L$. Let $F = \{(x,c),(y,1),(y,c)\}$. Then $(x,1) \neq (0,a) \vee (x,b) \vee (y,c) = (x,c) \in F$ implies $(0,a) \vee (x,b) \in F, (x,b) \vee (y,c) \in F$ and $(0,a) \vee (y,c) \in F$. Thus F is a weakly 2-absorbing filter of $D \times L$ but F is a filter which is not weakly prime, since $(x,1) \neq (x,a) \vee (y,b) = (x,c) \in F$ implies $(x,a) \notin F$ and $(y,b) \notin F$. Therefore, every weakly 2-absorbing filter is not a weakly prime filter of $D \times L$.

The following is a consequence of 3.8 and 3.16.

Corollary 4.7. The intersection of any two weakly prime filters of A is also a weakly 2-absorbing filter of A.

Theorem 4.8. Every 2-absorbing filter of A is a weakly 2-absorbing filter of A.

Proof. Let J be 2-absorbing filter of A and $1 \neq x \lor y \lor z \in F$, for any $x, y, z \in A$. Then either $x \lor y \in J$ or $y \lor z \in J$ or $x \lor z \in J$. From this, J is a weakly 2-absorbing filter of A.

In the following example, we show that there are weakly 2-absorbing filters of A which are not 2-absorbing filters of A.

Example 4.9. Let $D = \{0, x, y\}$ be a discrete ADL with 0 as its zero element defined in 2.2 and $L = \{0, a, b, c, d, e, f, 1\}$ be a lattice whose Hasse diagram is given below.

Consider $D \times L = \{(t,s) \mid t \in D \text{ and } s \in L\}$. Then $(D \times L, \wedge, \vee, 0)$ is an ADL (which is not a lattice) under the pointwise operations \wedge and \vee on $D \times L$ and 0 = (0,0), the zero element in $D \times L$. Let $J = \{(x,1)\}$. Let $(0,a),(x,b),(y,c) \in D \times L$. Now, $(0,a) \vee (x,b) \vee (y,c) = (x,1)$ implies that $(0,a) \vee (x,b) = (x,d) \notin J$, $(x,b) \vee (y,c) = (x,f) \notin J$ and $(0,a) \vee (y,c) = (y,e) \notin J$. Thus, J is a weakly 2-absorbing filter of $D \times L$. But, J is not a 2-absorbing filter of $D \times L$, since $(0,a) \vee (x,b) \vee (y,c) = (x,1) \in J$ implies that $(0,a) \vee (x,b) \notin J$, $(x,b) \vee (y,c) \notin J$ and $(x,a) \vee (y,c) \notin J$.

Theorem 4.10. Let $J \neq \{1\}$ be a proper filter of A. Then J is a 2- absorbing filter of A if and only if J is a weakly 2-absorbing filter of A.

The product of two proper filters is a weakly 2-absorbing filter, but the proper filters themselves may not be weakly 2-absorbing filters, is derived in the following theorem.

Theorem 4.11. Let A and B be ADLs and let J and F be proper filters of A and B respectively. If $J \times F$ is a weakly 2-absorbing filter of $A \times B$, then J and F are weakly 2-absorbing filters of A and B respectively.

Proof. Let $J \times F$ is a weakly 2-absorbing filter of $A \times B$. Let $a, b, c \in A$ and $x, y, z \in B$ such that $1 \neq x \vee y \vee z \in F$. Then $1 \neq (a, x \vee y \vee z) \in J \times F$ implies that either $(a, x \vee y) \in J \times F$ or $(a, x \vee z) \in J \times F$ or $(a, y \vee z) \in J \times F$. From this, either $x \vee y \in F$ or $x \vee z \in F$ or $y \vee z \in F$. Thus F is a weakly 2-absorbing filter of B. Similarly J is a weakly 2-absorbing filter of A.

The converse of the above theorem is not true; for, consider the following example.

Example 4.12. Let $A = \{0, x, y, z, 1\}$ and $B = \{0, a, b, c, 1\}$ be the lattice represented by the diagram respectively given below:

Let $J=[z\rangle$ and $F=[1\rangle$. Clearly J and F are weakly 2-absorbing filters of A and B respectively. Then $J\times F=[(z,1)\rangle$. Let $(0,1),(x,a),(y,a)\in A\times B$. We note that, $(0,1)\vee(x,a)\vee(y,a)=(z,1)\in J\times F\Rightarrow (0,1)\vee(x,a)=(x,1)\notin J\times F,$ $(x,a)\vee(y,a)=(z,a)\notin J\times F$ and $(0,1)\vee(y,a)=(y,1)\notin J\times F.$ It follows that, $J\times F$ is not a weakly 2-absorbing filter of $A\times B$.

In the following two theorems, we give another characterization of weakly 2-absorbing filter of an ADL.

Theorem 4.13. Let A and B be ADLs and $J(\neq \{1\})$ be a proper filter of A. Then the following are equivalent to each other.

- (1). $J \times B$ is a weakly 2-absorbing filter of $A \times B$
- (2). $J \times B$ is a 2-absorbing filter of $A \times B$
- (3). J is a 2-absorbing filter of A.

Proof. $(1) \Rightarrow (2)$ is clear by Theorem 4.10.

- $(2)\Rightarrow (3):$ Assume (2). Let $x,y,z\in A$ such that $x\vee y\vee z\in J.$ Since $J\times B$ is a 2-absorbing filter of $A\times B,$ $(x\vee y\vee z,t)\in J\times B,$ for every $t\in B,$ which implies that either $(x\vee y,t)\in J\times B$ or $(x\vee z,t)\in J\times B$ or $(y\vee z,t)\in J\times B.$ It follows that, $x\vee y\in J$ or $x\vee z\in J$ or $y\vee z\in J.$ Therefore, J is a 2-absorbing filter of A.
- (3) \Rightarrow (1). Suppose J is a 2-absorbing filter and $1 \neq (x,b) \vee (y,b) \vee (z,b) = (x \vee y \vee z,b) \in J \times B$, for $x,y,z \in A$ and $b \in B$. By (3), we have $x \vee y \in J$

or $x \lor z \in J$ or $y \lor z \in J$. Which implies that $(x \lor y, b) \in J \times B$ or $(x \lor z, b) \in J \times B$ or $(y \lor z, b) \in J \times B$, for every $b \in B$. Thus $J \times B$ is a weakly 2-absorbing filter of $A \times B$.

Theorem 4.14. Let A and B be ADLs and let $J(\neq \{1\})$ and $F(\neq \{1\})$ be proper filters of A and B respectively. Then the following are equivalent to each other.

- (1). $J \times F$ is a weakly 2-absorbing filter of $A \times B$
- (2). F = B and J is a 2-absorbing filter of A or F is a prime filter of B and J is a prime filter of A
- (3). $J \times F$ is a 2-absorbing filter of $A \times B$.

Proof. $(1)\Rightarrow (2):$ Suppose $J\times F$ is a weakly 2-absorbing filter of $A\times B$. Then by Theorem 3.21, J and F are weakly 2-absorbing filters of A and B respectively and, $J\neq \{1\}$ and $F\neq \{1\}$, so by Theorem 4.10, J and F are 2-absorbing filters of A and B respectively. If F=B, then by Theorem 3.23 J is a 2-absorbing filter of A. Suppose $F\neq B$. Let $x,y\in B$ such that $x\vee y\in F$ and let $0\neq t\in J$. Then $(t,0)\vee (0,x)\vee (0,y)=(t,x\vee y)\in J\times F$. Since $(0,x)\vee (0,y)=(0,x\vee y)\notin J\times F$, we conclude that either $(t,0)\vee (0,x)=(t,x)\in J\times F$ or $(t,0)\vee (0,y)=(t,y)\in J\times F$ and hence either $x\in F$ or $y\in F$. Thus F is a prime filter of B. Similarly, J is a prime filter of A.

(2) \Rightarrow (3): Suppose F=B and J is a 2-absorbing filter of A. Then by the above theorem, $J\times F$ is a 2-absorbing filter of A. Suppose also that J and F are prime filers of A and B respectively. Then clearly $J\times F$ is a prime filter of $A\times B$. Let $(x,y),(z,t),(a,b)\in A\times B$ such that $(x,y)\vee(z,t)\vee(a,b)\in J\times F$. Then either $(x,y)\vee(z,t)\in J\times F$ or $(a,b)\in J\times F$, or $(x,y)\vee(a,b)\in J\times F$ or $(z,t)\in J\times F$, or $(x,y)\in J\times F$ or $(z,t)\vee(a,b)\in J\times F$. Thus $J\times F$ is a 2-absorbing filter of $A\times B$. (3) \Rightarrow (1): Suppose $J\times F$ is a 2-absorbing filter of $A\times B$. Let $J(\neq\{1\})$ and $F(\neq\{1\})$ be proper filters of A and B respectively. Then by Theorem 4.10, $J\times F$ is a weakly 2-absorbing filter of $A\times B$.

In Theorem 3.10, we prove that the image and inverse image of a 2-absorbing filter of an ADL is again a 2-absorbing filter. In the case of a weakly 2-absorbing ADL filter, we have the following.

Theorem 4.15. Let A and B be ADLs, $h:A\to B$ be a lattice homomorphism and, let F and G be weakly 2-absorbing filters of A and B respectively. Then h(F) and $h^{-1}(G)$ are weakly 2-absorbing filters of B and A respectively if h is an epimorphism.

5. CONCLUSION

In this study, we introduce the concept of 2-absorbing filters in an almost distributive lattice(ADL). The characterization of weakly 2-absorbing filters in an ADL is obtained. The Hull kernel topology of the foregoing notions will be the focus of our future research.

6. ACKNOWLEDGMENT

The author wishes to express their sincere appreciation to the reviewers for their helpful remarks and recommendations, which have significantly helped in the improvement of the paper's presentation.

REFERENCES

- [1] D.F. Anderson and A. Badami, On n-absorbing ideals of commutative rings, Commutative of Algebra, Vol. 39, (2011), 1646 1672.
- [2] S.E. Atani and M.S. Bazari, On 2-absorbing filter of lattice, Discussiones Mathematicae General Algebra and Applications, 36 (2016), 157-168.
- [3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math.SOC., Vol. 75, (2007), 417-429.
- [4] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston Journal of Mathematics, Vol.39, No.2,(2013) 441-452.
- [5] A. Badawi and E. Y. Celikel, On Weakly 1-Absorbing Primary Ideals of Commutative Rings, Algebra Colloquium (World Scientific Journal) Vol. 29, No. 02 (2022), pp. 189-202.
- [6] J.N. Chuadhari, 2-absorbing ideals in semirings, International journal of algebra, Vol. 6, No. 6, (2012), 265-270.
- [7] M.K. Dubey, prime and weakly prime ideals, Quasi-groups and related systems, Vol. 20, (2012), 197-202.
- [8] Sh. Payrovi and S. Babali, On the 2-absorbing ideals, International Mathematical forum, Vol. 7, No. 6, (2012), 265-271.
- [9] U.M. Swamy and G.C. Rao, Almost Distributive Lattices, J. Australian Math. Soc., (Series A), Vol. 31 (1981), 77–91.
- [10] M.P. Wasadikar and K.T. Gaikevad, On 2-absorbing ideals and weakly 2-absorbing ideals of lattice, Mathematical sciences international research journal, Vol. 4, No. 2, (2015), 82-85.
- [11] A. Yassine, M.J. Nikmehr and R. Nikandish, On 1-absorbing prime ideals of commutative rings, Journal of algebra and its application (World Scientific), (Accepted on May 22,2020).