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Abstract

In this paper, the concepts of 2-absorbing filter and weakly 2-absorbing filter in
an almost distributive lattice are introduced and obtain certain results of these.
Further, the lattice epimorphic images and pre image of weakly (2-absorbing filter)
in an ADL is discussed.
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1. INTRODUCTION

Several researchers introduced and analyzed the 2-absorbing and weakly 2-absorbing
property in rings (especially in commutative rings), lattices, semi-groups, and modules.
Ever since in 2007, Ayami Badawi [3] was introduced the concepts of 2-absorbing
ideals on a commutative rings, which is a generalization of prime ideals and
some properties of these were studied. Following that, other researchers worked
on 2-absorbing ideals in semirings (J.N. Chuadhari [6]), on n-absorbing ideals of
commutative rings (D.F. Anderson and A. Badami [1]), on the 2-absorbing ideals (Sh.
Payrovi and S. Babali [8]), on 2-absorbing ideals and weakly 2-absorbing ideals of
lattices (M.P. Wasadikar and K.T. Gaikevad [10]), on 2-absorbing filter of lattice (S.E.
Atani and M.S. Bazari [2]), on weakly 1-absorbing primary ideals of commutative
rings (A. Badawi and E. Y. Celikel [5]), on 1-absorbing ideals of commutative rings
(A. Yassine, M.J. Nikmehr and R. Nikandish [11]), on weakly 2-absorbing ideals of
commutative rings (A. Badawi and A.Y. Darani [4]) and prime and weakly prime ideals
in semirings (M.K. Dubey [7]).
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In 1981, Swamy and Rao [9] was introduced the concept of an Almost Distributive
Lattice (ADL) as a common abstraction to most of the existing ring theoretic
generalizations of a Boolean algebra and which is an algebra (A,∧,∨, 0) satisfies all the
axioms of distributive lattice, except possibly the commutativity of the operations ∧ and
∨. It is known that, in any ADL the commutativity of ∨ is equivalent to that of ∧ and
also to the right distributivity of ∨ over ∧. It is well known that, for any lattice (L,∧,∨),
interchanging the operations ∧ and ∨ again yields a lattice, known as the dual of L. An
ideal of the dual (L,∨,∧) is known as a filter of a lattice (L,∧,∨). Unlike the case of
a lattice, by interchanging the operations ∧ and ∨ in an ADL (A,∧,∨, 0), we do not
get an ADL again. In this paper, we introduce and study 2-absorbing filter in an ADL
which need not be a prime filter in general. Essentially, it is proved that a proper filter
J of an ADL is 2-absorbing filter if and only if A−J is a 2-absorbing ideal of an ADL.
Also, it shown that J×A and A×J are 2-absorbing filters if J is a 2-absorbing filter in
an ADL. Further, we introduce the concept of n-absorbing filters and their properties.
On the other hand, we introduce the concept of weakly 2-absorbing filter in an ADL
and obtain the inter relationship between this and 2-absorbing filters. It is proved that
if J × F is a weakly 2-absorbing filter, then J and F are 2-absorbing filters and the
converse of this is not true. Also, it shown that J is a 2-absorbing filter in an ADL A if
and only if J × A is a weakly(2-absorbing filter) of A × A. Finally, we prove that the
image and inverse image of a 2-absorbing filter (resp. weakly 2-absorbing filter) of an
ADL is again a 2-absorbing filter (resp. weakly 2-absorbing filter) of an ADL.

Throughout this paper, A stands for an ADL A = (A,∧,∨, 0) with a maximal element.

2. PRELIMINARIES

In this section, we recall definitions and important results from [9].

Definition 2.1. An algebra A = (A,∧,∨, 0) of type (2, 2, 0) is called an Almost
Distributive Lattice (abbreviated as ADL) if it satisfies the following conditions for
all a, b and c ∈ A.

1. 0 ∧ a = 0

2. a ∨ 0 = a

3. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

4. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

5. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
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6. (a ∨ b) ∧ b = b

Each of the axioms (1) through (6) above is independent from the others. The element
0 is called the zero element.

Any bounded below distributive lattice is an ADL.

Example 2.2. Let X be a non-empty set. Fix an arbitrary element x0 ∈ X . For any
x, y ∈ X , define ∧ and ∨ on X by,

x ∧ y =

y if x ̸= x0

x0 if x = x0

and x ∨ y =

x if x ̸= x0

y if x = x0

Then (X,∧,∨, x0) is an ADL with x0 as its zero element. This ADL is called the
discrete ADL.

Theorem 2.3. Let (A,∧,∨, 0) be an ADL. For any a and b ∈ A, we have
(1) a ∧ 0 = 0 = 0 ∧ a and a ∨ 0 = a = 0 ∨ a

(2) a ∧ a = a = a ∨ a

(3) (a ∧ b) ∨ b = b

(4) a ∨ (b ∧ a) = a

(5) a ∧ (a ∨ b) = a

(6) a ∧ b = a ⇔ a ∨ b = b

(7) a ∧ b = b ⇔ a ∨ b = a

(8) a ∨ (b ∨ a) = a ∨ b.

Definition 2.4. Let (A,∧,∨, 0) be an ADL. For any a and b ∈ A, define
a ≤ b if a = a ∧ b (equivalently a ∨ b = b).

Then ≤ is a partial order on A.

Theorem 2.5. The following hold good for any elements a, b, c and d of an ADL
(A,∧,∨, 0).
(1) a ∧ b ≤ b ≤ b ∨ a

(2) a ≤ b ⇒ a ∧ b = a = b ∧ a and a ∨ b = b = b ∨ a

(3) (a ∨ b) ∧ c = (b ∨ a) ∧ c

(4) (a ∧ b) ∧ c = a ∧ (b ∧ c) (i.e., ∧ is associative on A)
(5) a ∧ b ∧ c = b ∧ a ∧ c

(6) The set {x ∧ a : x ∈ A} = {y ∈ A : y ≤ a} is a bounded distributive lattice
under the induced operations ∧ and ∨ with 0 as the smallest element and a as the largest
element
(7) a ∨ b = b ∨ a whenever a ∧ b = 0
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(8) a ∧ b = 0 ⇔ b ∧ a = 0

(9) a ≤ b ⇒ a ∧ c ≤ b ∧ c and c ∧ a ≤ c ∧ b

(10) a ≤ b ⇒ c ∨ a ≤ c ∨ b

(11)
(
a ∨ (b ∨ c)

)
∧ d =

(
(a ∨ b) ∨ c

)
∧ d.

Theorem 2.6. For any elements a and b of an ADL (A,∧,∨, 0), the following are
equivalent to each other.
(1) (a ∧ b) ∨ a = a

(2) a ∧ (b ∨ a) = a

(3) a ∧ b = b ∧ a

(4) a ∨ b = b ∨ a

(5) Sup{a, b} exists in (A,≤) and is equal to a ∨ b

(6) There exists x ∈ A such that a ≤ x and b ≤ x

(7) inf{a, b} exists in (A,≤) is equal to a ∧ b.

Theorem 2.7. The following are equivalent to each other for any ADL A.
(1) a ∧ b = b ∧ a for all a, b ∈ A

(2) a ∨ b = b ∨ a for all a, b ∈ A

(3) (A,∧,∨) is a distributive lattice bounded below
(4) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) for all a, b, c ∈ A

(5) b ∧ (a ∨ b) = b (i.e, b ≤ a ∨ b) for all a, b ∈ A

(6) (a ∧ b) ∨ a = a (i.e, a ∧ b ≤ a) for all a, b ∈ A

(7) For any a, b, c ∈ A, a ≤ b ⇒ a ∨ c ≤ b ∨ c.

An element m ∈ A is said to be maximal if, for any x ∈ A, m ≤ x implies m = x. It
can be easily observed that m is maximal if and only if m ∧ x = x for all x ∈ A.

Definition 2.8. A non-empty subset J of an ADL A = (A,∧,∨, 0) is called a filter of
A if for any a, b ∈ J and x ∈ A, a ∧ b ∈ J and x ∨ a ∈ J .

As a consequence, if J is a filter of A, then a ∨ x ∈ J for any a ∈ J and x ∈ A.

Theorem 2.9. Let A = (A,∧,∨, 0) be an ADL and ∅ ≠ X ⊆ A and

[X⟩ =
{
a ∨

( n∧
i=1

xi

)
: n > 0, xi ∈ X and a ∈ A

}
.

Then [X⟩ is the smallest filter of A containing X and call it the filter generated by X in
A.

Theorem 2.10. For any ADL A = (A,∧,∨, 0), (F(A),⊆) is a distributive lattice in
which, for any F1 and F2 ∈ F(A),
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F1 ∧ F2 = F1 ∩ F2 and
F1 ∨ F2 = [F1 ∪ F2⟩ = {a ∧ b : a ∈ F1 and b ∈ F2}.

Theorem 2.11. Let A = (A,∧,∨, 0) be an ADL and a and b ∈ A. Then the following
hold good.

(1) ⟨a] ∩ ⟨b] = ⟨a ∧ b]

(2) ⟨a] ∨ ⟨b] = ⟨a ∨ b]

(3) [a⟩ ∩ [b⟩ = [a ∨ b⟩

(4) [a⟩ ∨ [b⟩ = [a ∧ b⟩.

Corollary 2.12. For any a and b in an ADL A,

(1) ⟨a ∧ b] = ⟨b ∧ a]

(2) ⟨a ∨ b] = ⟨b ∨ a]

(3) [a ∧ b⟩ = [b ∧ a⟩

(4) [a ∨ b⟩ = [b ∨ a⟩.

Definition 2.13. Let A1 and A2 be ADLs. A mapping f : A1 → A2 is called a
homomorphism if the following are satisfied, for any x, y, z ∈ A1.
(1). f(x ∧ y ∧ z) = f(x) ∧ f(y) ∧ f(z)

(2). f(x ∨ y ∨ z) = f(x) ∨ f(y) ∨ f(z)

(3). f(0) = 0.

Definition 2.14. Let R be a commutative ring with 1 ̸= 0. A nonzero proper ideal I of
R is called a 2-absorbing ideal of R if for any a, b, c ∈ R and abc ∈ I , then ab ∈ I or
ac ∈ I or bc ∈ I .

3. 2-ABSORBING FILTER

The concept of 2-absorbing filters is analogous to that of 2-absorbing ideals. In the case
of a lattice, we have the duality principle through which we used to prove a result by
interchanging the operations ∧ and ∨. However, in an ADL we do not have the duality
principle. This necessitates a separate study of 2-absorbing filter in an ADL.

Definition 3.1. Let A = (A,∧,∨, 0) be an ADL. A proper filter J of A is said to be a
2-absorbing filter of A if for any x, y, z ∈ A



488 Weakly 2-Absorbing Filters in ADLs

x ∨ y ∨ z ∈ J ⇒ either x ∨ y ∈ J or y ∨ z ∈ J or x ∨ z ∈ J .

The next two lemmas are routine verifications.

Lemma 3.2. Let J be a 2-absorbing filter of A. For all x, y, z ∈ A whenever
x ∨ y ∨ z ∈ J implies either y ∨ x ∈ J or z ∨ y ∈ J or z ∨ x ∈ J .

Lemma 3.3. Let F and G be filters of A and J a 2-absorbing filter of A. Then the
following hold, for any x, y ∈ A.
(1). [x ∨ y⟩ ∩ F ⊆ J ⇒ [x ∨ y⟩ ⊆ J or [x⟩ ∩ F ⊆ J or [y⟩ ∩ F ⊆ J

(2). [x⟩ ∩ (F ∩G) ⊆ J ⇒ [x⟩ ∩ F ⊆ J or [x⟩ ∩G ⊆ J or F ∩G ⊆ J .

Definition 3.4. A proper ideal J of A is said to be a 2-absorbing ideal of an ADL A if
for any x, y, z ∈ A, x ∧ y ∧ z ∈ J implies x ∧ y ∈ J or y ∧ z ∈ J or x ∧ z ∈ J .

The following theorem derives necessary and sufficient conditions for 2-absorbing filter
of an ADL’s to become 2-absorbing ideals.

Theorem 3.5. Let J be a proper filter of A. Then the following are equivalent to each
other.
(1). For filters F,G,H of A, F ∩G∩H ⊆ J ⇒ F ∩G ⊆ J or F ∩H ⊆ J or G∩H ⊆ J

(2). For filters F,G,H of A, J = F ∩G∩H ⇒ J = F ∩G or J = F ∩H or J = G∩H
(3). J is a 2-absorbing filter of A
(4). A− J is a 2-absorbing ideal of A.

Proof. (1) ⇒ (2) : It is clear (refer theorem 2.10).
(2) ⇒ (3): Assume the condition (2). We are given that J is a proper filter of A.

Now, let x, y and z ∈ A such that x ∨ y /∈ J, y ∨ z /∈ J and x ∨ z /∈ J . Consider
the principal filter [x ∨ y⟩, [y ∨ z⟩ and [x ∨ z⟩ generated by x ∨ y, y ∨ z and x ∨ z

respectively. Then [x ∨ y⟩ ⊈ J, [y ∨ z⟩ ⊈ J and [x ∨ z⟩ ⊈ J . By (2), we get that
[x ∨ y ∨ z⟩ = [x⟩ ∩ [y⟩ ∩ [z⟩ ⊈ J . This implies that x ∨ y ∨ z /∈ J . Thus, J is a
2-absorbing filter of A.
(3) ⇒ (4): Assume (3). Since J is a proper filter of A, P is a non-empty subset of A
and hence A− J is a non-empty proper subset of A. For any x and y ∈ A,

x, y ∈ A− J ⇒ x /∈ J and y /∈ J

⇒ x ∨ y /∈ J (Since J is a filter)
⇒ x ∨ y ∈ A− J

and x ∈ A − J and a ∈ A ⇒ x ∧ a ∈ A − J (for, otherwise x ∧ a ∈ J and
x = x ∨ (x ∧ a)).
Therefore, A− J is a proper ideal of A. Further, for any x, y, z ∈ A,



Natnael T.A. and K. Ramanuja 489

x ∧ y ∧ z ∈ A− J ⇒ x ∧ y ∧ z /∈ J

⇒ x ∧ y /∈ J or z /∈ J , or x /∈ J or y ∧ z /∈ J (since J is a filter)
⇒ x ∧ y ∈ A− J or z ∈ A− J , or x ∈ A− J or y ∧ z ∈ A− J .

Thus, A− J is a 2-absorbing ideal of A.
(4) ⇒ (1): Assume the condition (4). Let F, G and H be filters of A such that
F ∩G ⊈ J, G∩H ⊈ J and F ∩H ⊈ J . Now choose a ∈ (F ∩G)−J , b ∈ (G∩H)−J

and c ∈ (F ∩H)−J. Then a ∈ F ∩G, b ∈ G∩H, c ∈ F ∩H and a, b, c ∈ A−J . Since
A−J is a 2-absorbing ideal of A, we get that a∨ b∨ c ∈ A−J. Now since F, G and H

are filters, a ∈ F ∩G, b ∈ G∩H and c ∈ F ∩H , it follows that a∨ b∨ c ∈ F ∩G∩H .
Since a ∨ b ∨ c /∈ J , we have F ∩G ∩H ⊈ J . Hence the result.

Definition 3.6. Let A and B be ADLs and form the set A×B by
A × B = {(a, b) : a ∈ A and b ∈ B}. Define ∧ and ∨ in A × B by, for any
(a, b), (c, d) ∈ A×B,
(a, b)∧ (c, d) = (a∧ c, b∧ d) and (a, b)∨ (c, d) = (a∨ c, b∨ d). Then (A×B,∧,∨, 0)
is an ADL under the pointwise operations and 0 = (0, 0) is the zero element in A×B.

The relationship between the prime filter and the 2-absorbing filter will be discussed in
the following theorems. First, let us recall from [9] that a proper filter J of A is said to
be a prime filter if, for any x and y ∈ A, x ∨ y ∈ J =⇒ either x ∈ J or y ∈ J .

Theorem 3.7. Every prime filter of A is a 2-absorbing filter of A.

Proof. Suppose that J is a prime filter of A. Let x, y, z ∈ A and x ∨ y ∨ z ∈ J. Since
J is prime, either x ∨ y ∈ J or z ∈ J , or x ∈ J or y ∨ z ∈ J . Let x ∨ y ∈ J or z ∈ J .
Then clearly x∨ z ∈ J , for any x ∈ A (since J is a filter). Thus J is a 2-absorbing filter
of A.

2-absorbing filter of an ADL is not a prime filter in general. The following example
demonstrates this.

Example 3.8. Let D = {0, x, y} be a discrete ADL with 0 as its zero element defined in
2.2 and L = {0, a, b, c, 1} be the lattice represented by the Hasse diagram given below:

�
�
�

@
@

@

@
@

@

�
�
�

d
d d

d

d
c

a b

1

0
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Consider D×L = {(t, s) | t ∈ D and s ∈ L}. Then (D×L,∧,∨, 0) is an ADL (which
is not a lattice) under the pointwise operations ∧ and ∨ on D × L and 0 = (0, 0), the
zero element in D × L. Let F = {(x, 1)}. Clearly F is a 2-absorbing filter of D × L

but F is a filter of D × L which is not prime, since (x, a) ∨ (y, b) = (x, 1), for any
(x, a), (y, b) ∈ D × L. From this, we shown that all 2-absorbing filters are not prime
filter of D × L.

Theorem 3.9. The intersection of any two prime filters of A is a 2-absorbing filter of
A.

Proof. Let F and G be prime filters of A. Clearly F ∩ G is a prime filter of A. Let
x, y, z ∈ A and x ∨ y ∨ z ∈ F ∩ G. Since F ∩ G is prime, either x ∨ y ∈ F ∩ G or
z ∈ F ∩G, or x ∈ F ∩G or y ∨ z ∈ F ∩G. Let z ∈ F ∩G. Since F ∩G is a filter, so
x ∨ z ∈ F ∩G, for any x ∈ A. Therefore, F ∩G is a 2-absorbing filter of A.

In the following, we prove that the homomorphic image and inverse image of a
2-absorbing filter of an ADL is again a 2-absorbing filter.

Theorem 3.10. Let A and B be ADLs and h : A → B a lattice homomorphism. Let
F and G be 2-absorbing filters of A and B respectively. Then h(F ) and h−1(G) are
2-absorbing filters of B and A respectively if h is an epimorphism.

Proof. Let h be an epimorphism and F a 2-absorbing filter of A. Let x, y, z ∈ A such
that h(x) = a, h(y) = b and h(z) = c, for all a, b, c ∈ B and suppose a∨ b∨ c ∈ h(F ).
Then a∨b∨c = h(x)∨h(y)∨h(z) = h(x∨y∨z) ∈ h(F ) (since h is homomorphism).
As x∨ y ∨ z ∈ F and F is a 2-absorbing filter of A, then either x∨ y ∈ F or y ∨ z ∈ F

or x ∨ z ∈ F . Which implies that a ∨ b = h(x ∨ y) ∈ h(F ) or b ∨ c ∈ (F ) or
a∨ c ∈ h(F ). Thus h(F ) is a 2-absorbing filter of B. Let G be a 2-absorbing filter of B
and set h−1(G) = {a ∈ A : h(a) ∈ G ⊆ B}. Let x, y, z ∈ A and x ∨ y ∨ z ∈ h−1(G).
Since G is a 2-absorbing filter of B, h(x) ∨ h(y) ∨ h(z) = h(x ∨ y ∨ z) ∈ G implies
that h(x ∨ y) ∈ G or h(y ∨ z) ∈ G or h(x ∨ z) ∈ G. So that, x ∨ y ∈ h−1(G) or
y ∨ z ∈ h−1(G) or x∨ z ∈ h−1(G). Therefore, h−1(G) is a 2-absorbing filter of A.

Theorem 3.11. Let A and B be ADLs and let J and F be 2-absorbing filters of A and
B respectively. Then A× F and J ×B are 2-absorbing filters of A×B.

Proof. Let F be a 2-absorbing filter of B and (a, x) ∨ (a, y) ∨ (a, z) ∈ A× F , for any
(a, x), (a, y), (a, z) ∈ A × B. Then (a, x) ∨ (a, y) ∨ (a, z) = (a, x ∨ y ∨ z) ∈ A × F

implies that (a, x ∨ y) ∈ A × F or (a, y ∨ z) ∈ A × F or (a, x ∨ z) ∈ A × F (since
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x∨ y ∨ z ∈ F implies x∨ y ∈ F or y ∨ z ∈ F or x∨ z ∈ F and a ∈ A). Hence A× F

is a 2-absorbing filter of A× B. Similarly, J × B is a 2-absorbing filter of A× B if J
is a 2-absorbing filter of A.

In the following, we introduce the concept of n-absorbing filter of an ADL A.

Definition 3.12. Let J be a proper filter of A and n ∈ Z+. Then J is an n-absorbing
filter of A if whenever x1 ∨ x2 ∨ ... ∨ xn+1 ∈ J , for xi ∈ A, 1 ≤ i ≤ n + 1, then there
are n of the x

′
is whose join is in J .

Lemma 3.13. Let J be a proper filter of A and n,m ∈ Z+. Then J is n-absorbing
filter if and only if whenever x1 ∨ x2 ∨ ... ∨ xm ∈ P , for x1, ..., xm ∈ A with m > n,
then there are n of the x

′
is whose join is in P . Also, if J is n-absorbing filter, then J is

an m-absorbing filter, for all m ≥ n.

Lemma 3.14. Let g : A → B be a lattice homomorphism. Let J and F be n-absorbing
filters of A and B respectively. Then g−1(F ) and g(J) are n-absorbing filters of B and
A respectively if g is an isomorphism.

Theorem 3.15. If {Jα}α∈∆ is a non-empty chain of n-absorbing filter of A, then
∨

α∈∆
Jα

is an n-absorbing filter of A.

Proof. Let J =
∨

α∈∆
Jα and x1, x2, ..., xn+1 ∈ A such that

n+1∨
i=1

xi ∈ P . Let xi =
∨
j ̸=i

xj

and xi /∈ J , for all 1 ≤ i ≤ n. Then for each 1 ≤ i ≤ n, there exist an n-absorbing
filter Jαi

such that xi /∈ Jαi
. Assume that Jα1 ⊆ Jα2 ⊆ ... ⊆ Jαn . Let β ∈ ∆. If

Jβ ⊆ Jα1 ⊆ ... ⊆ Jαn , then xi /∈ Jβ , for each 1 ≤ i ≤ n. Since x1∨x2∨ ...∨xn+1 ∈ P

and Jβ is n-absorbing filter of A, we have xn+1 ∈ Jβ . Again, x1 ∨x2 ∨ ...∨xn+1 ∈ Jα1

and Jα1 is n-absorbing filter of A, then xn+1 ∈ Jα1 . So, xn+1 ∈ Jβ , for every β ∈ ∆.
Thus xn+1 ∈ J . Hence the theorem.

4. WEAKLY 2-ABSORBING FILTER

In this section, we now introduce the concept of weakly 2-absorbing filters of an
ADL and obtain the relation between this and 2-absorbing filters. First, we have the
following.

Definition 4.1. A proper filter J of A is a weakly prime filter of A if for any x, y ∈ A,

1 ̸= x ∨ y ∈ J ⇒ either x ∈ J or y ∈ J.
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Theorem 4.2. Every prime filter of A is a weakly prime filter of A and the converse of
this is not true.

Example 4.3. Let D × L = {(t, s) | t ∈ D and s ∈ L} be an ADL discussed in
example 3.8. Let F = {(x, 1)}. Clearly, F is a weakly prime filter of D × L. On the
other hand, F is a filter which is not prime, since (x, a) ∨ (y, b) = (x, 1) implies that
(x, a) /∈ F and (y, b) /∈ F , for all (x, a), (y.b) ∈ D × L.

We now introduce the concept of weakly 2-absorbing filter of an ADL in the following.

Definition 4.4. A proper filter J of A is a weakly 2-absorbing filter of A if for any
x, y, z ∈ A,

1 ̸= x ∨ y ∨ z ∈ J ⇒ either x ∨ y ∈ J or y ∨ z ∈ J or x ∨ z ∈ J.

In the following discussion, we introduce the sufficient condition for weakly prime filter
and 2-absorbing filter of an ADL to become a weakly 2-absorbing filter.

Theorem 4.5. Every weakly prime filter of A is a weakly 2-absorbing filter of A.

The converse of the above corollary is not true; consider the following example.

Example 4.6. Let D = {0, x, y} be a discrete ADL with 0 as its zero element defined in
2.2 and L = {0, a, b, c, 1} be the lattice represented by the Hasse diagram given below:

�
�
�

@
@

@

@
@

@

�
�
�

d
d d

d
d

0

a b

c

1

Consider D × L = {(t, s) : t ∈ D and s ∈ L}. Then (D × L,∧,∨, 0) is an
ADL (D × L is not a lattice) under the point-wise operations ∧ and ∨ on D × L

and 0 = (0, 0), the zero element in D × L. Let F = {(x, c), (y, 1), (y, c)}. Then
(x, 1) ̸= (0, a)∨(x, b)∨(y, c) = (x, c) ∈ F implies (0, a)∨(x, b) ∈ F , (x, b)∨(y, c) ∈ F

and (0, a) ∨ (y, c) ∈ F . Thus F is a weakly 2-absorbing filter of D × L but F is a
filter which is not weakly prime, since (x, 1) ̸= (x, a) ∨ (y, b) = (x, c) ∈ F implies
(x, a) /∈ F and (y, b) /∈ F . Therefore, every weakly 2-absorbing filter is not a weakly
prime filter of D × L.

The following is a consequence of 3.8 and 3.16.
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Corollary 4.7. The intersection of any two weakly prime filters of A is also a weakly
2-absorbing filter of A.

Theorem 4.8. Every 2-absorbing filter of A is a weakly 2-absorbing filter of A.

Proof. Let J be 2-absorbing filter of A and 1 ̸= x ∨ y ∨ z ∈ F , for any x, y, z ∈ A.
Then either x ∨ y ∈ J or y ∨ z ∈ J or x ∨ z ∈ J . From this, J is a weakly 2-absorbing
filter of A.

In the following example, we show that there are weakly 2-absorbing filters of A which
are not 2-absorbing filters of A.

Example 4.9. Let D = {0, x, y} be a discrete ADL with 0 as its zero element defined
in 2.2 and L = {0, a, b, c, d, e, f, 1} be a lattice whose Hasse diagram is given below.

�
�
�

@
@

@

@
@

@

�
�
�

d
d d

d

d
c

a b

1

0

Consider D×L = {(t, s) | t ∈ D and s ∈ L}. Then (D×L,∧,∨, 0) is an ADL (which
is not a lattice) under the pointwise operations ∧ and ∨ on D × L and 0 = (0, 0),
the zero element in D × L. Let J = {(x, 1)}. Let (0, a), (x, b), (y, c) ∈ D × L.
Now, (0, a) ∨ (x, b) ∨ (y, c) = (x, 1) implies that (0, a) ∨ (x, b) = (x, d) /∈ J ,
(x, b) ∨ (y, c) = (x, f) /∈ J and (0, a) ∨ (y, c) = (y, e) /∈ J . Thus, J is a weakly
2-absorbing filter of D × L. But, J is not a 2-absorbing filter of D × L, since
(0, a) ∨ (x, b) ∨ (y, c) = (x, 1) ∈ J implies that (0, a) ∨ (x, b) /∈ J , (x, b) ∨ (y, c) /∈ J

and (x, a) ∨ (y, c) /∈ J .

Theorem 4.10. Let J ̸= {1} be a proper filter of A. Then J is a 2- absorbing filter of
A if and only if J is a weakly 2-absorbing filter of A.

The product of two proper filters is a weakly 2-absorbing filter, but the proper filters
themselves may not be weakly 2-absorbing filters, is derived in the following theorem.

Theorem 4.11. Let A and B be ADLs and let J and F be proper filters of A and B

respectively. If J ×F is a weakly 2-absorbing filter of A×B, then J and F are weakly
2-absorbing filters of A and B respectively.
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Proof. Let J×F is a weakly 2-absorbing filter of A×B. Let a, b, c ∈ A and x, y, z ∈ B

such that 1 ̸= x ∨ y ∨ z ∈ F . Then 1 ̸= (a, x ∨ y ∨ z) ∈ J × F implies that either
(a, x ∨ y) ∈ J × F or (a, x ∨ z) ∈ J × F or (a, y ∨ z) ∈ J × F . From this, either
x ∨ y ∈ F or x ∨ z ∈ F or y ∨ z ∈ F . Thus F is a weakly 2-absorbing filter of B.
Similarly J is a weakly 2-absorbing filter of A.

The converse of the above theorem is not true; for, consider the following example.

Example 4.12. Let A = {0, x, y, z, 1} and B = {0, a, b, c, 1} be the lattice represented
by the diagram respectively given below:
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@
@
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d
d d

d
d

0

x y

z

1

�
�
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@
@

@

@
@

@

�
�
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d
d d

d

d
c

a b

1

0

Let J = [z⟩ and F = [1⟩. Clearly J and F are weakly 2-absorbing filters of A and B

respectively. Then J × F = [(z, 1)⟩. Let (0, 1), (x, a), (y, a) ∈ A×B. We note that,
(0, 1) ∨ (x, a) ∨ (y, a) = (z, 1) ∈ J × F ⇒ (0, 1) ∨ (x, a) = (x, 1) /∈ J × F ,

(x, a) ∨ (y, a) = (z, a) /∈ J × F and (0, 1) ∨ (y, a) = (y, 1) /∈ J × F . It follows that,
J × F is not a weakly 2-absorbing filter of A×B.

In the following two theorems, we give another characterization of weakly 2-absorbing
filter of an ADL.

Theorem 4.13. Let A and B be ADLs and J (̸= {1}) be a proper filter of A. Then the
following are equivalent to each other.
(1). J ×B is a weakly 2-absorbing filter of A×B

(2). J ×B is a 2-absorbing filter of A×B

(3). J is a 2-absorbing filter of A.

Proof. (1) ⇒ (2) is clear by Theorem 4.10.
(2) ⇒ (3) : Assume (2). Let x, y, z ∈ A such that x ∨ y ∨ z ∈ J . Since J × B is a
2-absorbing filter of A×B, (x∨ y ∨ z, t) ∈ J ×B, for every t ∈ B, which implies that
either (x ∨ y, t) ∈ J × B or (x ∨ z, t) ∈ J × B or (y ∨ z, t) ∈ J × B. It follows that,
x ∨ y ∈ J or x ∨ z ∈ J or y ∨ z ∈ J . Therefore, J is a 2-absorbing filter of A.
(3) ⇒ (1). Suppose J is a 2-absorbing filter and 1 ̸= (x, b) ∨ (y, b) ∨ (z, b) =

(x ∨ y ∨ z, b) ∈ J × B, for x, y, z ∈ A and b ∈ B. By (3), we have x ∨ y ∈ J
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or x∨ z ∈ J or y ∨ z ∈ J . Which implies that (x∨ y, b) ∈ J ×B or (x∨ z, b) ∈ J ×B

or (y ∨ z, b) ∈ J × B, for every b ∈ B. Thus J × B is a weakly 2-absorbing filter of
A×B.

Theorem 4.14. Let A and B be ADLs and let J (̸= {1}) and F (̸= {1}) be proper filters
of A and B respectively. Then the following are equivalent to each other.
(1). J × F is a weakly 2-absorbing filter of A×B

(2). F = B and J is a 2-absorbing filter of A or F is a prime filter of B and J is a prime
filter of A
(3). J × F is a 2-absorbing filter of A×B.

Proof. (1) ⇒ (2) : Suppose J × F is a weakly 2-absorbing filter of A × B. Then by
Theorem 3.21, J and F are weakly 2-absorbing filters of A and B respectively and,
J ̸= {1} and F ̸= {1}, so by Theorem 4.10, J and F are 2-absorbing filters of A

and B respectively. If F = B, then by Theorem 3.23 J is a 2-absorbing filter of A.
Suppose F ̸= B. Let x, y ∈ B such that x ∨ y ∈ F and let 0 ̸= t ∈ J . Then
(t, 0)∨ (0, x)∨ (0, y) = (t, x∨ y) ∈ J ×F . Since (0, x)∨ (0, y) = (0, x∨ y) /∈ J ×F ,
we conclude that either (t, 0)∨(0, x) = (t, x) ∈ J×F or (t, 0)∨(0, y) = (t, y) ∈ J×F

and hence either x ∈ F or y ∈ F . Thus F is a prime filter of B. Similarly, J is a prime
filter of A.
(2) ⇒ (3): Suppose F = B and J is a 2-absorbing filter of A. Then by the above
theorem, J × F is a 2-absorbing filter of A. Suppose also that J and F are prime
filers of A and B respectively. Then clearly J × F is a prime filter of A × B. Let
(x, y), (z, t), (a, b) ∈ A × B such that (x, y) ∨ (z, t) ∨ (a, b) ∈ J × F . Then either
(x, y)∨ (z, t) ∈ J×F or (a, b) ∈ J×F , or (x, y)∨ (a, b) ∈ J×F or (z, t) ∈ J×F , or
(x, y) ∈ J × F or (z, t)∨ (a, b) ∈ J × F . Thus J × F is a 2-absorbing filter of A×B.
(3) ⇒ (1) : Suppose J×F is a 2-absorbing filter of A×B. Let J (̸= {1}) and F ( ̸= {1})
be proper filters of A and B respectively. Then by Theorem 4.10, J × F is a weakly
2-absorbing filter of A×B.

In Theorem 3.10, we prove that the image and inverse image of a 2-absorbing filter of
an ADL is again a 2-absorbing filter. In the case of a weakly 2-absorbing ADL filter,
we have the following.

Theorem 4.15. Let A and B be ADLs, h : A → B be a lattice homomorphism and, let
F and G be weakly 2-absorbing filters of A and B respectively. Then h(F ) and h−1(G)

are weakly 2-absorbing filters of B and A respectively if h is an epimorphism.
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5. CONCLUSION

In this study, we introduce the concept of 2-absorbing filters in an almost distributive
lattice(ADL). The characterization of weakly 2-absorbing filters in an ADL is obtained.
The Hull kernel topology of the foregoing notions will be the focus of our future
research.
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