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Abstract

The study examines the dynamics of a delay-logistic model incorporated with

proportionate harvesting on weighted average population function. The stability of

our model is compared with the existing model. The existing model is found to be

highly unstable and shows no signs of convergence. However, when the harvested

part is replaced with a weighted average population function with harvest, the

oscillations are reduced drastically. In the neighborhood of the maximum harvest

rate set for the systems; as the time-space is extended, while our model converges

to the actual population value, the existing model on the other hand, exhibits its

worst chaotic state and could not predict the expected fish population size. In

conclusion, the new model estimates the expected growth of the fish population

in a short period with precision while the existing model has to be adjusted to

be able to provide estimates near the ones projected from the new model. It is

recommended that physical systems with a long inherent gestation period should

be modeled by our model rather than the existing model as it fails to estimate the

expected population size precisely.

Keywords: delay differential equation, logistic model, stability analysis, positive
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1. INTRODUCTION
Understanding the dynamics of mathematical formulations on population has been a
major concern in areas such as cell biology, genetics and demography. Most of the
mathematical models on growth and development of population are highly simplified
in nature. Analytic solutions to most of these models have been established, yet the
solutions to these models differ from the real situations described by the models [1].
This is serving as a motivation for this study to revisit some specific population models
that have been considered in many researches and yet researchers have failed to identify
specific deficiency associated with them. Thus, the purpose of the study is to point out
the best method of estimating expected growth in population model with little error.
Verhulst in [2] proposed a simpler logistic model for population growth given by

x′(t) = rx(t)
(

1 − x(t)
c

)
, f or x (t0) = x0, (1)

where c is a carrying capacity which is the stable population level: if the population x(t)
(at time t) goes beyond c, then it will decrease, but if it stays below it the population
increases. The r is a constant which defines the growth rate.
Another interesting model is where the carrying capacity is considered as a function
of the population in time past which captures the delay the population adjust to its
environment. This paved way for the well-known Hutchinson equation for population
growth expressed by

x′(t) = rx(t)
(

1 − x(t − τ)

c

)
, for t > 0 (2)

x(t) = φ(t), for t ∈ [−τ, 0],

where r, τ, c are positive numbers, with x(t) = φ(t), where φ(t) ∈ ([−τ, 0], R) as the

initial history function [3].
Piotrowska and Bodnar in [4] and Bodnar in [5] introduced another time delay
parameter on the growth rate to transform equation (2) to the following form

x′(t) = rx(t − τ)

(
1 − x(t − τ)

c

)
, (3)

where r the growth rate, c the population carrying capacity, and τ time delay are all
positive constants.
The assumptions under which logistic equation is operating can also affect its
dynamics especially when we incorporate in the logistic models outside interfering
factors including harvesting, drugs for treatment, poaching just to mention a few
[6]. Usually, logistic growth equations are modeled with constant-rate harvest and
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density- dependent harvest or proportional harvesting. Assuming population modeled
by equation (1) is affected by proportional harvesting then the model introduces the

term hx(t), where h ≥ 0 is the harvest proportionality constant, yielding the system of

the form [6-7],

x′(t) = rx(t)
(

1 − x(t)
c

)
− hx(t). (4)

Holling’s studies in [8] identified three basic types of outside influencing factors on
population in the form:

TypeI(linear) : E(N, t) = αN + β,

TypeI I(cyrtoid) : E(N, t) = αN/(N + β),

TypeI I I(sigmoid) : E(N, t) = αN2/(γ2 + β2), (α, β, and γ are positive functions of

t),
that stand out as the most comprehensive population outside affected factors and have

been used in different forms in several researches including Berezansky et al. in [9]

who incorporated h(t) in equation (2) and obtained the following equation

x′(t) = rx(t)
(

1 − x(t − τ)

c

)
− h(t)x(t − τ), t ∈ [0, τ]. (5)

In this model, h(t) is the rate at which individual in the population at time t − τ is

harvested. Thus the model supports the arguments that any interacting species in the
system are dependent on amassed resources and hunting or harvesting effects in the
past.
Similarly, Piotrowska and Bodnar in [4] and Cooke et al. in [10] used the model below

by introducing time delay on the growth rate rx(t) to postulate that the intrinsic growth

rate depends on past time (t − τ), where τ, the developmental time of the population

is in the system with model given by

x′(t) = rx(t − τ)

(
1 − x(t − τ)

c

)
− h(t)x(t), t ∈ [0, τ], (6)

where h is constant function at a step time t.
Doust and Saraj [11] on the other hand used the following logistic model

x′(t) = rx(t)
(

1 − x(t)
c

)
− f (x), (7)

where f (x) = h( x
1+x ) is the rate of outside influence which is inversely related to the

density of the population at time t.
From the literature reviewed so far one can observe that no author has yet considered the
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rate of outside interference on the population in the form of weighted average of current

and previous population as g(x) = h(γx(t) + (1 − γ)x(t − τ)), where 0 < γ < 1 in

any given logistic model as given by

x′(t) = rx(t − τ)

(
1 − x(t − τ)

c

)
− g(x), t ∈ [0, τ] (8)

x(t) = φ(t), for t ∈ [−τ, 0],

where a, τ are positive numbers, with x(t) = φ(t), as the initial history function.

In this study, we will also explore the possible effects of changing the model parameters
as means to compare the stability of equation (8) to the existing equation (5). We

will also fix g(x) in place of the harvesting part in the equation (5) and compare their

estimated population sizes with our model. We will discuss the stability of these models

through numerical simulations using different values of the outside interference h ≥ 0
which will be noted as the harvest rate. Thus we will use the harvest rate as bifurcation
parameter so that by its variation we will be able to determine the state of the models
and estimate the expected population size right.
The paper is structured as follows: Section 2 discusses the existence, stability, and
bifurcation of equation (8). The section will also consider conditions for the positivity
of the solution in equation (8). In Section 3, detailed numerical solutions and stability
analyses will be done comparing model (8) to model (5) and its transformation when

the function g(x) is incorporated into it using the same parameter values. Section 4

outlines the findings and conclusions derived from the analyses of the models.

2. MATERIALS AND METHODS
2.1 Stability Analysis of Equation (8)
As we normalize the system, then we can observe that if h < r, the two possible

equilibrium of equation (8) will be xe = 0 and xe = c(r − h)/r. The second part

xe = c(r − h)/r, is stable for say c = 1 and so for any initial condition x0 > 0,

all solutions of equation (8) will converge towards it as t → ∞. We let ch denote the

positive equilibrium of the equation (8) to emphasize the fact that h is the bifurcation
parameter of the system as stated in the objective of this study. On the other hand if

h ≥ r, then all solutions will be attracted to the former equilibrium point xe = 0 as
the only solution of equation (8). This means the population should be driven towards
extinction.
In order to understand the overview of stability given the equilibrium points above, we

linearize the equation (8) in the neighbourhood of the equilibrium point xe = x(t) =
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x(t − τ) and obtain the following expression

x′(t) + αx(t) + βx(t − τ) = 0, (9)

where the constants α = hγ, β = r − 2rxe − h(1 − γ), with τ > 0. The actual

values of β will be determined by either xe = 0 or xe = c(r − h)/r as shown in

the expression for β depending on the value of the carrying capacity. Now, we seek

for nontrivial solution of equation (9) in the form of x(t) = κeλt, κ ̸= 0 where λ is

complex and κ a constant. In substituting x(t) = κeλt into equation (9) we obtain the

corresponding characteristic equation (10) from which the stability of equation (9) is

determined through the locations of its eigenvalues λ. The characteristic equation is
derived as follows

λ + α + βe−λτ = 0. (10)

If we let τ = 0, then for λ = −(α+ β) < 0 the steady state xe is asymptotically stable.

However, when we assume that τ > 0 then there exists λ = iω with ω > 0 such that
the characteristic equation (10) is broken down into real and imaginary parts as given
by {

α + β cos ωτ = 0,
ω − β sin ωτ = 0. (11)

Separating the constants and the circular functions to either side of the equations, then
by adding the squares of resulting equations provides the following expression

ω2 = (β + α)(β − α). (12)

The necessary condition for stability change should be |α| ≤ |β|. From equation (12),

if β ≤ α, then it contradicts the fact that ω > 0, which implies that the delay parameter

is harmless.

Theorem 2.1: If β ≤ α, then steady state of equation (8) is asymptotically stable

for any positive value of τ.

On the contrary if β > α, then we can define ω > 0 from equation (12) as follows

ω =
√
(β + α) (β − α). (13)

When equation (13) is substituted into the first of the pairwise equation (11) we obtain
the threshold value of the delay parameter τ̂:

τ̂ =
[cos−1(− α

β )]√
(β2 − α2)

. (14)
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2.1.1 Stability Switches and Hopf Bifurcation of (8)
We now determine the direction of the stability switch. Assuming the roots of equation
(10) are continuous function of the time delay parameter, then by taking derivative of

the equation (10) with respect to the time delay τ and solving for dλ
dτ we arrive at the

following results (
dλ

dτ

)−1

=
1 − τβe−λτ

λβe−λτ
. (15)

Then

[
dλ
dτ

]−1

λ=iω
= Re

(
1−τβe−λτ

λβe−λτ

)
λ=iω[

d(Reλ)
dτ

]−1

λ=iω
= Re

(
−1

λ(λ+α

)
λ=iω

= Re
(

ω(ω+iα)
ω2(ω2+α2)

)
= 1

ω2+α2 .

Therefore [
d(Reλ)

dτ

]−1

λ=iω
> 0. (16)

The results in equation (16) indicate that at iω on the imaginary axis, all roots of the
characteristic equation (10) near the critical value τ̂, will cross from left to right as the
delay parameter τ varies continuously from a number less than τ̂ to that greater than τ̂.

Furthermore, we partially differentiate equation (14) with respect to the values α and β

to determine the critical value of the delay as follows

δτ̂

δα
=

[(β2 − α2)1/2 + αcos−1(− α
β )]

(β2 − α2)3/2 > 0. (17)

with

δτ̂

δβ
= −

[α(β2 − α2)1/2 + β2cos−1(− α
β )]

β(β2 − α2)3/2 < 0. (18)

Therefore, as δτ̂
δα > 0 and δτ̂

δα < 0 then it implies that by increasing the value of α

and decreasing the value of β, the stability switching curves is shifted upwards. Thus

the variation of the parameters in the directions indicated have significant effects on
stability. Theorem 2.1.1. summaries this assertion as follows:

Theorem 2.1.1: If α + β < 0 and α < β, then there exists τ̂ > 0 such that the

steady state xe of equation (8) is asymptotically stable for 0 < τ < τ̂, loses stability at
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τ = τ̂ and becomes unstable or bifurcates to a limit cycle if τ > τ̂.
For proof see [12,13].

2.1.2 Existence and Uniqueness Solution of (8)

From equation (8), if we let x̄(t) = γr
r−h x(t), then we transform it into the following

initial value problem after dropping the bars on the new variable x̄

x′(t) = ax(t − τ)[k − ρx(t − τ)]− µx(t), for t > 0 (19)

x(t) = φ(t), for t ∈ [−τ, 0],

where a = (r − h), τ, µ = hγ, k = a+µ
a and ρ = 1

γc are positive numbers, with

x(t) = φ(t), as the initial history function. From the interval [0, τ] we generate a

non-negative solution to equation (19) from an equivalent expression given by

x(t) = φ(0) +
∫ t

0
[ax(s − τ)(k − ρx(s − τ))− µx(s)]ds.

Since φ(0) ≥ 0 and a > 0, the solution exists and it is unique and non-negative

in the neighbourhood considered. Again in the interval t ∈ [(n − 1)τ, nτ], if we let

xn : [(n− 1)τ, nτ] → R+ be the solution of equation (19) then for t ∈ [nτ, (n+ 1)τ],
it implies that

x(t) = xn(nτ) +
∫ t

nτ
[axn(s − τ)(k − ρx(s − τ))− µx(s)]ds.

Thus, it is observed that for every non-negative initial function φ(t), the solution of

equation (19) is defined for t ≥ 0 in t ∈ [nτ, (n + 1)τ].

2.1.3 Existence and Positivity Solution of (8)
We now study the conditions which will guarantee non-negative solutions of equation

(19) for every positive initial function φ(t), since as a consequence of the Theorem

1.2 in [5], there is a possibility of solution of (19) having negative values for a positive
initial condition. This study is very important due to biological reasons. If we had
let every variable for substitution in equation (19) to have the delay parameter τ as a

result of letting t = t̄τ, then by dropping the bar, equation (19) would have been in the
following form

x′(t) = aτx(t − 1)[k − ρx(t − 1)]− µx(t), for t > 0, (20)

x(t) = φ(t), for t ∈ [−1, 0].

We adopt the condition below following the proof of Theorem 1.2 in [5]:
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Let
0 ≤ φ(t) ≤ 1, for t ∈ [−1, 0] (21)

and

φ(t) =

{
1
2 , for t ∈ [−1, 0]
1, for t = 0

(22)

then on the interval [n − 1, n], we let xn be the solution of equation (20). We can now

observe that

x1(t) = φ(0) +
∫ t

0
[aφ(s)[k − φ(s)]− µx(s)]ds.

Hence,

x1(t) = 1 +
∫ t

0

[
a(

1
2
)(k − ρ(

1
2
))− µ(

1
2
)

]
ds = 1 +

akt
2

− aρt
2

− µt
2

,

and in the next interval [1,2],

x2(t) = x1(1) +
∫ t−1

0
[ax1(s)(k − x1(s))− µx1(s)] ds,

and then

x2(t) = 1 +
ak
2
− aρ

2
− µ

2
+

∫ t−1

0
[ax1(s)(k − x1(s))− µx1(s)] ds.

In summary, we group the results of the expression under the integral according to the
degree of a as shown beneath:

a3 :
a3ρ2k

6
+

a3ρ

8
− a3ρ3

48
,

a2 : −5a2ρk
8

+
a2k2

6
+

a2ρ2

8
− a2k3

12
+

a2ρµk
12

− a2ρ2µ

12
+

a2ρµ2

12
,

a :
5ak
4

− 9aρ

8
+

aµρ

2
− akµ

4
− aµ2ρ

12
,

constant : −µ

4
.

We now drop all the variables aside a = τ(r − h) as the dynamics of the equation

(19) and for that matter equation (8) revolves around it. This gives us the following

parameters which will form the polynomial P1(a):

a3 :
a3

24
+

a3

4
− a3

48
=

13a3

48
,
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a2 : −5a2

8
+

a2

6
− a2

8
=

−a2

3
,

a :
5a
4

− 9a
8

+
a
2
− a

4
− a

12
=

7a
24

,

constant : −1
4

.

Therefore, we obtain

X(2) = X2(2) = −1
4
+

7a
24

− a2

3
+

13a3

48
= P1(a). (23)

If the condition (21) is satisfied, then the following inequality also holds:

∀t > 0, x(t) ≤ 1 +
ak
2
− aρ

2
− µ

2
If x(t) > 1, then there exists t0 < t such that x(t0) = 1, and

x(t) = x(t0) +
∫ t−1

t0−1
[ax(s)(k − x(s))− µx(s)] ds,

so that we can have

x(t) ≤ 1 +
∫ t0

t0−1
[
ak
2
− aρ

2
− µ

2
]ds = 1 +

ak
2
− aρ

2
− µ

2
,

or else we have the following after dropping all the variables with the exception of a:

x(t) ≥ 1+
∫ t0

t0−1
[a(

1
2
+

a
4
)(1+−1

2
− a

4
)− (

1
2
+

a
4
)]ds = P2(s)ds =

1
2
− a3

16
= P2(a).

(24)
Then as a consequence of Theorem 2.1 in [9], if a < r2 it implies the polynomial

P2(a) > 0 and P1(a) < 0 for a > r1, where r1 and r2 are the greatest roots of P1 and

P2 respectively. That is r1 = 1.0453 and r2 = 2.

3.0 RESULTS AND DISCUSSION
3.1 Numerical Solution: Stability Analysis of Model (8) and (25)
In this section, we will examine the stability analysis of equation (8) through numerical
simulations and then compare it with that of equation (5). We will also replace the
harvesting part of the equation (5) with the harvesting function of the weighted average
population from the current and previous population as presented below and then
compare it with our model (8). The aim is to help researchers make the appropriate
choice when modeling certain physical systems. The comparison will be done by
applying the same parameter values for the two models. It is believed that by so doing,
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we will also be able to estimate the expected fish population value right. All these
numerical simulations are done using MatLab Software.

x′(t) = rx(t)
(

1 − x(t − τ)

c

)
− h(γx(t) + (1 − γ)x(t − τ)), t ∈ [0, τ]. (25)

where h > 0 is the harvest proportionality constant and 0 < γ < 1.

Now setting the common parameter values; the growth rate r = 0.51, harvesting rate

h = 0.05, time-delay τ = 3, the weighting coefficient γ = 0.30 and the carrying

capacity c = 1, we simulate the models as shown below.

Figure 1: Stability Analysis of the model (5)

In figure 1, it shows that for τr = 3 ∗ 0.51 > 0 and with the other parameter values

given above such that β = −0.44 ≤ α = 0.015, the model (5) is highly unstable around

the equilibrium population of xe = 0.902 and displays no signs of convergence. The
system with time seems to oscillate more from the equilibrium point . This behaviour
contradicts the assertion in the Theorem 2.1.

Figure 2: Stability Analysis of the model (8)
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From figure 2, it complements that for τr = 3 ∗ 0.51 > 0, and with the parameters

given from which β = −0.44 ≤ α = 0.015, as stated in the Theorem 2.1, the system

should be asymptotically stable about xe = 0.902, after few oscillations.

Figure 3: Stability Analysis of the model (25)

For the same parameter values as used for model (8), it was expected that in figure
3, the system will converge to equilibrium point xe = 0.902. However, there are a
lot of oscillations that make it difficult to converge to equilibrium with the time limit
set for the system. In comparison with figure 1, there seems to be a drastic reduction
in oscillations in the same time-space. The reduction is caused by the replacement of
the second part of the model (5) with the weighted average population function with a
harvest.

Figure 4: Stability Analysis of the model (25)

In figure 4, stability has been restored for both model (8) and model (25) toward the
equilibrium point xe = 0.902 after reducing the time delay τ2 associated with the model
(25) to τ2 = 2. This means the model (25) works with only physical systems with a
short inherent gestation period.
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Figure 5: Stability Analysis of both model (8) and model (25)

In figure 5, stability has been achieved for both models at xe = 0, a condition that

satisfies Theorem 2.1 for β = −0.307 ≤ α = 0.153. However, this means that the

fish population size will be driven to extinction with time because the harvesting rate is
greater than the growing population rate. In this situation, the model (25) did not need
adjustment to be able to estimate population size precisely.

3.2. Maximum harvesting rate and expected population growth
Using the positive equilibrium fish population size ch = xe = c(r − h)/r, then for

c = 1 and r = 0.51 as applied in previous simulations, we can determine maximum
safe harvesting value and maximum population estimate through the following equation

hch = h(1 − 1.961h). (26)

Differentiating equation (26) with respect to h results in

(hch)
′ = 1 − 3.922h.

Therefore, at the critical point the optimal harvesting rate h = 0.255. By substituting

h = 0.255 in into the positive equilibrium equation, we have

ch = xe = [1 − 1.96(0.255)] = 0.5002,
which offers the expected fish population value almost half of the maximum carrying
c = 1 of the system. We now study the dynamics of the model (25) and model (8) in

the neighbourhood of the maximum harvesting rate h = 0.255.
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Figure 6: Stability Analysis of both model (8) and model (25)

For h = 0.254, 0.001 less than the maximum harvest rate of h = 0.255, in figure 6
there is chaotic behaviour emanating from the model (25) around the new expected fish
size shown by the model (8) at 0.502 which is 0.002 more than the estimated population
at 0.5002 (i.e. expected fish population value for harvest rate at h=0.255).

Figure 7: Stability Analysis of both model (8) and model (25)

In figure 7, it shows that while the model (8) converges to the maximum population
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value of 0.5002 (which is almost half of the carrying capacity) as the time-space is
extended to 3000 (compared to figure 6), the model (25) on the other hand displays the
worst chaotic state and that we cannot predict the expected fish population size.

4. CONCLUSION
The paper studied the dynamics of a delay-logistic population model with a harvesting
rate proportional to the weighted average fish population. In this paper, we used the
harvest rate as a bifurcation parameter to estimate the expected growth of the fish
population. The model (8) used in this study was found to be less oscillatory compared
to the existing model given by (5). When the harvesting part in model (5), was replaced

by the function g(x) as provided by the model (25), the two models converged to the

fish population equilibrium set for the system by reducing the time-delay parameter
associated with the model (25). This denotes that physical systems with a long gestation
period modeled by (25) will fail to estimate the expected population size correctly.

However, as the fish population is driven to extinction at zero (0), both the model (8)

and (25), moved towards the fish population equilibrium of 0 without any parameter
adjustment. In the neighbourhood of the maximum harvest rate set for the systems; as
the time-space is extended, while our model converged to the actual population value,
the existing model on the other hand, reached the worst chaotic state and we could not
use it to predict the expected fish population size. Since our logistic growth model is
less oscillatory, it is believed that the expected fish growth estimated in the study reflects
the true fish size (population).
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