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1. INTRODUCTION

The growth of an entire function f(z) =
∑∞

n=0 anz
n can be measured in terms of

the order ρ defined by

ρ = lim sup
r→∞

log logM(r, f)

log r

where M(r, f) := sup|z|≤r |f(z)|. If the order is a positive real number the type T of
the function is defined by

T = lim sup
r→∞

logM(r, f)

rρ
.

A function has slow growth if the order is equal to 0. For entire functions there is
a large literature concerning the growth of this topic (see e.g. [1-3], [7-9], [11-12],
[15-16], [18-20]) and others.
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The concept of order and type was generalized in the literature (see e.g. Seremeta
[13 ], Shah [14]), in particular to discuss subclasses of entire function of order ρ = 0

(functions of slow growth). Here one replaces the log function in the above formulae
by more general functions α, β defined on an interval (r0,∞), which are assumed to be
positive, strictly increasing and tending to infinity as r → ∞, and satisfying properties
of class L0 and Λ defined below:

Let a function h(x) is defined on [a,∞) for some a ≥ 0 and it is strongly monotonically
increasing and tends to ∞ as x → ∞. According to Seremeta [13], this function
belongs to the class L0 if, for any real function ϕ such that ϕ(x) → ∞ as x → ∞, the
equality

(i) limx→∞
h[(1+ 1

ϕ(x)
)x]

h(x)
= 1.

It belongs to the class Λ if, for all c, 0 < c < ∞,
(ii) limx→∞

h(cx)
h(x)

= 1.

By using functions α and β from the classes L0 and Λ, by analogy with [13], the
generalized order of an entire function f(z) is given by the formula:

ρ(α, β, f) = lim sup
r→∞

α[logM(r, f)]

β[log r]
= lim sup

n→∞

α(n)

β(− 1
n
log |an|)

.

Further, for α(x), β−1(x) and γ(x) ∈ L0, the generalized type of an entire
transcendental function f(z) is given by

T (α, β, f) = lim sup
r→∞

α[logM(r, f)]

β[{γ(r)}ρ]
= lim sup

n→∞

α(n
ρ
)

β[{γ(e
1
ρ |an|−

1
n )}ρ]

,

where 0 < ρ < ∞.

The historical background of my work is an old result of Bernstein characterization
when a continuous real-valued function f on the interval [-1,1] can be extended to an
entire (holomorphic) function in terms of the best approximation by polynomials of
degree ≤ n. In 1968, Varga [20] has obtained results giving the order and type of the
entire extension.

Let g : CN , N ≥ 1, be an entire transcendental function. For z = (z1, z2, . . . , zN) ∈
CN , we put S(r, g) = sup{|g(z)| : |z1|2 + |z2|2 + · · · + |zN |2 = r2}, r > 0. Then we
define the generalized order and generalized type of g(z) as:

ρ(α, β, g) = lim sup
r→∞

α[logS(r, g)]

β[log r]
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and

T (α, β, g) = lim sup
r→∞

α[logS(r, g)]

β[{γ(r)}ρ]
.

Let K be a compact set in CN and let ||.||K denote the supnorm on K. The function
ΦK(z) = sup[|p(z)| 1n : p− polynomial, deg.p ≤ n, ||p||K ≤ 1, n = 1, 2, . . . and z ∈
CN ], is called Siciak extremal function of the compact set K (see [5] and [6]). Given a
function f defined and bounded on K, we put for n = 1, 2, . . .

E1
n(f,K) = ||f − tn||K ;

E2
n(f,K) = ||f − ln||K ;

E3
n+1(f,K) = ||ln+1 − ln||K

where tn denotes the nth Chebyshev polynomial of the best approximation to f on K

and ln denotes the nth Lagrange interpolation polynomial for f with nodes at extremal
points of K.

Janik ([4],[6]), investigated the order and generalized order of entire functions in terms
of the approximation errors defined above. Srivastava and Kumar [17] obtained the
characterizations of generalized type. For N = 1 these results were obtained by
Shah [14]. All these results mentioned above were obtained under certain conditions
which fail to hold if α = β = γ. To overcome this difficulty, we will use here the
concept of slow growth introduced by Kapoor and Nautiyal [10] and investigate the
generalized type in terms of approximation and interpolation errors defined above in
several complex variables.

Kapoor and Nautiyal [10] defined generalized order ρ(α, f) of slow growth with the
help of general functions as:

Let Ω be the class of functions h(x) defined above and

(iii) there exists a δ(x) ∈ Ω and x0, C1 and C2 such that

0 < C1 ≤
d(h(x))

d(δ(log x))
≤ C2 < ∞

for all x > x0, δ(x) ∈ Ω.

Let Ω be the class of functions h(x) and

lim
x→∞

d(h(x))

d(log x)
= C, 0 < C < ∞.
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It has been shown [10] that classes Ω and Ω are contained in Λ. Further Ω∩Ω = ϕ and
they defined the generalized order ρ(α, f) of entire function f(z) of slow growth as

ρ(α, f) = lim sup
r→∞

α[logM(r, f)]

α[log r]
,

where α(x) either belongs to Ω or Ω.

We define the generalized type T (α, g) of an entire function g(z) having finite
generalized order ρ(α, g) as

T (α, g) = lim sup
r→∞

α[logM(r, g)]

[α[log r]]ρ

where α(x) either belongs to Ω or Ω.

To the best of our knowledge, coefficient characterization for generalized type in terms
of approximation and interpolation errors defined above for slow growth have not been
obtained so far. In this paper, we have tried to fill this gap.

Notations:
1. F [x;T , ρ] = α−1{T [α(x)]

1
ρ} where ρ is fixed number, 0 < ρ < ∞ and T = T + ε.

2. E[F [x;T , ρ]] is an integer part of the function F .

2. AUXILLIARY RESULTS

Lemma 2.1. Let K be a compact set in CN such that ΦK is locally bounded in CN . For
all T, 0 < T < ∞,
(i) If α(x) ∈ Ω, then

dF [x;T, ρ]

d log x
= O(1) as x → ∞.

Let (pn)n∈N be a sequence of polynomials in CN such that
(ii) deg.pn ≤ n, n ∈ N.

(iii) there exists n0 ∈ N such that

||pn|| ≤ [exp{(ρ− 1

ρ
)nF [

n

ρ
;
1

T
, ρ− 1]}]−1

where T = T + ε for small ε > 0.
Then

∑∞
n=0 pn is an entire function and the generalized type σ(α,

∑∞
n=0 pn) of this

entire function satisfies

σ(α,
∞∑
n=0

pn) ≤ T
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provided
∑∞

n=0 pn is not a polynomial.
Proof. By assumption, we have

||pn||rn ≤ rn[exp{(ρ− 1

ρ
)nF [

n

ρ
;
1

T
, ρ− 1]}]−1

The inequality

(||pn||rn)
1
n ≤ r[exp{−(

ρ− 1

ρ
)F [

n

ρ
;
1

T
, ρ− 1]}] ≤ 1

2
(2.1)

is fulfilled beginning with some n = n(r). Then

∞∑
n=n(r)+1

||pn||Krn ≤
∞∑

n=n(r)+1

1

2n
≤ 1. (2.2)

Now from inequality (2.1) we have

2r ≤ exp{(ρ− 1

ρ
)nF [

n

ρ
;
1

T
, ρ− 1]},

we can take n(r) = E[ρα−1{T (α(log r + log 2))ρ−1}].
Let us consider the function

φ(x) = rx[exp{−(
ρ− 1

ρ
)xF [

x

ρ
;
1

T
, ρ− 1]}].

The maximum of φ(x) is attained for a value of x by x∗(r) where

φ(x∗(r)) = max
n0≤x≤n1(r)

φ(x),

x∗(r) = ρα−1{T (α(log r − a(r)))ρ−1},

where A > 0 and

−A < a(r) =
dF [x

ρ
; 1
T
, ρ− 1]

d log x
|x=x∗(r) < A.

Further

||pn||Krn = max
n0<x<n1(r)

φ(x) =
rρα

−1{T (α(log r−a(r)))ρ−1}

eρα−1{T (α(log r−a(r)))ρ−1}(log r−a(r))

= exp{a(r)ρα−1{T (α(log r − a(r)))ρ−1}}
≤ exp{Aρα−1{T (α(log r + A))ρ−1}}, n > n0, r > 0.

(2.3)

Put Kr = {z ∈ CN : ΦK(z) < r, r > 1}, then for every polynomial p of degree≤ n,
we have (see [6], pp. 323)

|pn(z)| ≤ ||pn||KΦn
K(z), z ∈ CN . (2.4)
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The series
∑∞

n=0 pn is convergent in every Kr, r > 1, so
∑∞

n=0 pn is an entire function.
Put

M̃(r) = sup{||pn||Krn : n ∈ N, r > 0}.

In view of inequality (2.3), for every r > 0, there exists a positive integer ν(r) such that

M̃(r) = ||pν(r)||Krν(r).

and

M̃(r) > ||pn||Krn, n > ν(r).

It is clear that ν(r) increases with r. Suppose that ν(r) → ∞ as r → ∞. Then putting
n = ν(r) in (2.3) we get for sufficiently large r

M̃(r) ≤ exp{Aρα−1{T (α(log r + A))ρ−1}}. (2.5)

Let us put

γr = {z ∈ CN : ΦK(z) = r, r > 1}

and

M(r) = sup{|
∞∑
n=0

pn(z)| : z ∈ γr}, r > 1.

Now taking into account the facts of Janik (see [6], pp. 323), we have for some positive
constant k,

S(r,
∞∑
n=0

pn) ≤ M(kr) ≤ 2M̃(2kr). (2.6)

Considering (2.5) and (2.6), we obtain

S(r,
∞∑
n=0

pn) ≤ 2 exp{Aρα−1{T (α(log r + A))ρ−1}}.

or

α[
1

Aρ
log{1

2
S(r,

∞∑
n=0

pn)}] ≤T (α(log r + A))ρ−1

≤ T (α(log r + A))ρ.

Thus, we have

α[ 1
Aρ

log{1
2
S(r,

∑∞
n=0 pn)}]

(α(log r + A))ρ
≤ T = T + ε.
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Since α(x) ∈ Ω ⊆ Λ, proceeding to limits we get

lim sup
r→∞

α[ 1
Aρ

log{1
2
S(r,

∑∞
n=0 pn)}]

(α(log r + A))ρ
≤ T.

or

σ(α,
∞∑
n=0

pn) ≤ T. (2.7)

In case ν(r) is bounded then M̃(r) is also bounded, whence
∑∞

n=0 pn reduces to a
polynomial. Hence the proof of lemma is completed.

3. MAIN RESULTS

Theorem 3.1. Let K be a compact set in CN such that ΦK is locally bounded in CN

and α(x) ∈ Ω. Then the function f , defined and bounded on K, is the restriction of an
entire function g of generalized order ρ; 1 < ρ < ∞, is of the generalized type σ(α, g)

if and only if

σ(α, g) = lim sup
n→∞

α(n
ρ
)

{α[ ρ
ρ−1

log[Es
n(f,K)]−

1
n ]}ρ−1

; s = 1, 2, 3,

provided dF [x;T,ρ]
d log x

= O(1) as x → ∞, for all T, 0 < T < ∞.

Proof. Let f has an entire function extension g of generalized type σ = σ(α, g). Put

δs = lim sup
n→∞

α(n
ρ
)

{α[ ρ
ρ−1

log[Es
n(f,K)]−

1
n ]}ρ−1

; s = 1, 2, 3.

Here Es
n ≡ Es

n(g|K , K). we have to show that σ = δs, s = 1, 2, 3. From [21] it is
known that

E1
n ≤ E2

n = (n∗ + 2)E1
n, n ≥ 0, (3.1)

E3
n ≤ 2(n∗ + 2)E1

n−1, n ≥ 1, (3.2)

where n∗ = (n+N)Cn. Using Stirling formula we have

n! ≈ e−nnn+ 1
2

√
2π,

and

n∗ ≈
nN

N !
for all large values of n.

Hence, we have E1
n ≤ E2

n ≤ nN

N !
[1 + o(1)]E1

n and E3
n ≤ 2nN

N !
[1 + o(1)]E1

n.
Thus, δ3 ≤ δ2 ≤ δ1 and it suffices to prove that δ1 ≤ σ ≤ δ3.
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First we prove that δ1 ≤ σ. Using the definition of generalized type for ε > 0 and
r > r0(ε), we get

S(r, g) ≤ exp{α−1{σ(α(log r))ρ}},

where σ = σ + ε provided r is sufficiently large. Without loss of generality we may
suppose that

K ⊂ B = {z ∈ CN : |z1|2 + |z2|2 + · · ·+ |zN |2 ≤ 1}.

Then E1
n ≤ E1

n(g,B). Now following Janik (see [6], pp.324) we get

E1
n(g,B) ≤ r−nS(r, g), r ≥ 2, n ≥ 0,

or

E1
n ≤ r−n exp{α−1{σ(α(log r))ρ}}.

Putting r = r(n) = exp[α−1[( 1
σ
α(n

ρ
))

1
ρ−1 ]] = exp{F [n

ρ
; 1
σ
, ρ− 1]} we obtain

E1
n ≤ exp{−nF +

n

ρ
F}

or

ρ

ρ− 1
log[E1

n]
− 1

n ≥ α−1[(
1

σ
α(

n

ρ
))

1
ρ−1 ]

or

σ = σ + ε ≥
α(n

ρ
)

{α[ ρ
ρ−1

log[E1
n]

− 1
n ]}ρ−1

.

Proceeding to limits, we get

σ ≥ lim sup
n→∞

α(n
ρ
)

{α[ ρ
ρ−1

log[E1
n]

− 1
n ]}ρ−1

or
σ ≥ δ1. (3.3)

Inequality (3.3) obviously holds when σ = ∞.
Next we will prove σ ≤ δ3. Suppose that δ3 < σ. Then for every θ, δ3 < θ < σ,

α(n
ρ
)

{α[ ρ
ρ−1

log[E3
n]

− 1
n ]}ρ−1

≤ θ
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for sufficiently large n. Hence

E3
n ≤ exp{−nF [

n

ρ
;
1

θ
, ρ− 1] +

n

ρ
F [

n

ρ
;
1

θ
, ρ− 1]}.

Using Lemma 2.1, we get

σ ≤ θ

where σ = σ(α, g) is the generalized type of g(z). Since θ has been chosen less than σ,
we get a contradiction. Thus σ ≤ δ3.
Now assume that f be a function defined and bounded on K and such that for
s = 1, 2, 3,

δs = lim sup
n→∞

α(n
ρ
)

{α[ ρ
ρ−1

log[Es
n(f,K)]−

1
n ]}ρ−1

.

For every θ1 > δs and for sufficiently large n, we have

α(n
ρ
)

{α[ ρ
ρ−1

log[Es
n]

− 1
n ]}ρ−1

≤ θ1

or

Es
n ≤ exp{−nF [

n

ρ
;
1

θ1
, ρ− 1] +

n

ρ
F [

n

ρ
;
1

θ1
, ρ− 1]}.

Proceeding to limits as n → ∞, we get

lim
n→∞

[Es
n]

1
n ≤ 0.

Also, it is obvious that

lim
n→∞

[Es
n]

1
n ≥ 0.

Hence, it gives

lim
n→∞

[Es
n]

1
n = 0.

Thus, following Janik ([6], Prop. 3.1), we conclude that the function f can be
continuously extended to an entire function. Let us put

g = l0 +
∞∑
n=1

(ln − ln−1),

where {ln} is the sequence of Lagrange interpolation polynomials of f as defined
earlier.
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Now we have to show that g is the required continuation of f and σ(α, g) = δs. For
every θ1 ≥ δ3 and for sufficiently large n, we have

E3
n ≤ exp{−nF +

n

ρ
F}

or

||ln − ln−1|| ≤ exp{−nF +
n

ρ
F}.

Now in view of Lemma 2.1, we obtain

σ(α, g) ≤ θ1.

Since θ1 > δ3 is arbitrary, it gives

σ(α, g) ≤ δ3.

Taking into account the inequalities (3.1), (3.2) with the proof of first part given above,
we have σ(α, g) = δ3 as required. Hence the proof is completed.
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