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Abstract

This work falls within the framework of mathematical modeling and that of
numerical analysis and scientific calculation. This article aims to identify the
diffusion parameter µ in the model of the heat equation of solution u = u(x, t).
In this work, we solved the heat equation numerically by Explicit Euler ,
Implicit Euler and Cranck-Nicholson methods. We studied the analytical stability
in L∞([0, 1]) and L2([0, 1]) while calculating the truncation errors of these
methods. We also studied the convergence of these methods. Then, we compared
numerically in norm L2([0, 1]) the solutions obtained during the resolution of
said equation by these different methods. The differentiability of the solution
u with respect to the parameter µ has been demonstrated. Finally we defined
an optimization problem of least square type and then used the gradient descent
algorithm with fixed steps to identify the thermal conductivity parameter µ of the
heat equation. These numerical resolution technics were implemented in Scilab.
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1. INTRODUCTION

Parameter identification techniques have been the subject of numerous studies due
to their frequent occurrences in several applications in physics, biology, medicine,
engineering, signal processing, control theory, finance and other different sciences
(see [5], [1], [6], [7], [10], [14] and [13] ). These techniques are usually read
through mathematical models that are often represented by partial derivatives equations,
ordinary differential equations or system of equations. The right hand side of these
models is not always continuous. The result is less regular solutions and difficulties
in adjusting model parameters, including using differentiable optimal control and
optimization methods. For example, to adjust the thermal scattering parameter in the
heat equation. This article discusses numerical methods for optimally adjusting the
thermal conduction parameter of a parabolic model. We will illustrate the method of the
heat equation model (see [13], [15] and [10]), which is a model that often represents the
non-transient evolution of irreversible phenomena associated with diffusion processes.
This model allows you to study the main features of the system, namely the evolution
of the solution u(x, t) according to time, the diffusion setting µ, the conduction speed
c, etc. There is a relationship between the model’s parameter µ and the main features
of the solution,u(x, t), but the adjustment of the parameter µ based on an asymptomatic
formula is not yet automatic ( see [4], and [10] ). We present the problem of
optimal control, especially where the functional cost is related to the characteristics
of conduction speed. In this problem, the state variable is the solution of partial
derivatives equations of the heat equation model. Numerical methods are used to solve
this model, including Euler’s explicit, implicit and Crank-Nicholson methods, in the
loop of a differentiable optimization method. We showed that the model’s solution is
very sensitive to the parameter µ by comparing the numerical errors of the different
solutions of that model. We will show that our differentiated optimization method
(the constant step gradient method) makes it easy to retrieve the model solution by
identifying the values of the parameter µ of the heat equation model. The method is
general and can easily be applied to other parabolic models

2. MATHEMATICAL FORMULATION OF THE PROBLEM

In the context of this work, we want to compare three numerical methods including
the explicit Euler, implicit Euler and Cranck-Nicholson methods respectively, to
analytically and numerically solve the heat equation (1) of solution u = u(x, t)

∂u

∂t
(x, t)− µ

∂2u

∂x2
(x, t) = f(x), where f(x) ∈ L2([0, 1]), (1)
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with homogeneous Dirichlet conditions

u(0, t) = u(1, t) = 0, (2)

starting from the initial condition

u(x, 0) = u0(x) = 4x(1− x). (3)

These different methods will help to describe the evolution of the solution u of the
heat equation, while comparing the errors in norm L2 of the solutions obtained. In this
work, we will also define an optimization problem in order to identify the heat diffusion
coefficient µ of the equation (1) by defining an objective function ψ = ψ(µ) which
depends on the square of the difference of the numerical and experimental celerities of
the heat propagation. The objective function ψ = ψ(µ) will be defined as follows,

ψ(µ) =
1

2
(ĉ− c∗)2, ĉ = ĉ(µ) (4)

We will look for µ∗ minimizing ψ = ψ(µ) where u is solution of (1) with boundary
conditions and initial (2) − (3), (see [13] and [5]).
All these numerical methods will be implemented with the Scilab software.

3. NUMERICAL RESOLUTION OF THE HEAT EQUATION

In this section, we solve the heat equation (1) of solution u = u(x, t) by three different
numerical methods including the explicit Euler, implicit Euler and Cranck Nicholson
methods, (see [3], [11] and [9]). For two integers M and N , we discretize in a uniform
way the intervals of space Ω = [0, 1] and of time [0, T ] by introducing the points,

xj = j∆x, j = 0, 1, ..., N + 1, (5)

tn = n∆t, n = 0, 1, ...,M, (6)

where ∆x is the discretization step in space given by ∆x =
1

N + 1
and ∆t the

discretization step in time with ∆t =
T

M
. For j = 0, 1, ..., N + 1 and n = 0, 1, ...,M ,

which define a mesh of the spatio-temporal domain [0, 1] × [0, T ], we then seek an
approximation unj ⋍ u(xj, tn) of the exact solution at nodes xj by discretizing the
derivative in space and at time tn by discretizing the derivative in time.



378 Pongui Ngoma et al.

3.1. Explicit Euler scheme
By applying Taylor’s approximation, we obtain

∂u

∂t
(xj, tn) ⋍

un+1
j − unj
∆t

, (7)

∂2u

∂x2
(xj, tn) ≃

unj+1 − 2unj + unj−1

∆x2
, (8)

replacing (7) and (8) in (1) we obtain

un+1
j − unj
∆t

− µ
unj+1 − 2unj + unj−1

∆x2
= f(xj), (9)

such that f(xj) = fj , which allows to obtain

un+1
j − unj
∆t

= µ
unj+1 − 2unj + unj−1

∆x2
+ fj,

un+1
j − unj = µ

∆t

∆x2
(unj+1 − 2unj + unj−1) + ∆tfj. (10)

by posing λ = µ
∆t

∆x2
, the equation (10) becomes

un+1
j = (1− 2λ)unj + λunj+1 + λunj−1 +∆tfj. (11)

the problem (1) is then written in discretized form by
un+1
j = (1− 2λ)unj + λunj+1 + λunj−1 +∆tfj pour j = 1, · · · , N
unN+1 = un0 = 0

u0j = u0(xj) = 4xj(1− xj),

(12)

and in the matrix form by



un+1
1

un+1
2

un+1
3

...

un+1
N


=



1− 2λ λ 0 0 · · · 0

λ 1− 2λ λ 0 · · · 0

0 λ 1− 2λ λ · · · 0

...
. . . . . . λ

0 0 · · · λ 1− 2λ





un1

un2

un3

...

unN


+∆t



f1

f2

f3

...

fN



.
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Posing un+1
j =



un+1
1

un+1
2

un+1
3

...

un+1
N


, unj =



un1

un2

un3

...

unN



, Fj =



f1

f2

f3

...

fN



, and

Aλ =



1− 2λ λ 0 0 · · · 0

λ 1− 2λ λ 0 · · · 0

0 λ 1− 2λ λ · · · 0

...
. . . . . . λ

0 0 · · · λ 1− 2λ


.

The system is written in linear form

un+1
j = Aλu

n
j +∆tFj (13)

3.2. Implicit Euler scheme
We use a backward scheme of order 1 to evaluate the temporal derivative and a centered
scheme of order 2 to evaluate the second derivative in space, after calculations we obtain

un+1
j − unj
∆t

− µ
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
= fj (14)

what allows to obtain

un+1
j − unj
∆t

= µ
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+ fj,

that is to say

unj = (1 + 2λ)un+1
j − λun+1

j+1 − λun+1
j−1 −∆tfj with λ = µ

∆t

∆x2
. (15)
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We note that the unknowns with iteration n+1 are linked together by an implicit relation
(hence the name of the method).
By varying the index j = 1, ..., N of the equation (15), we have



un1

un2

un3

...

unN


=



1 + 2λ −λ 0 0 · · · 0

−λ 1 + 2λ −λ 0 · · · 0

0 −λ 1 + 2λ −λ · · · 0

...
. . . . . . −λ

0 0 · · · −λ 1 + 2λ





un+1
1

un+1
2

un+1
3

...

un+1
N


−∆t



f1

f2

f3

...

fN



.

by posing un+1
j =



un+1
1

un+1
2

un+1
3

...

un+1
N


, unj =



un1

un2

un3

...

unN



, Fj =



f1

f2

f3

...

fN



and

Bλ =



1 + 2λ −λ 0 0 · · · 0

−λ 1 + 2λ −λ 0 · · · 0

0 −λ 1 + 2λ −λ · · · 0

...
. . . . . . −λ

0 0 · · · −λ 1 + 2λ


.
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The system is written in the linear form by

unj = Bλu
n+1
j −∆tFj. (16)

3.3. Cranck-Nickolson scheme
The Crank-Nicholson scheme is based on the previous two. We evaluate the diffusion
term by taking the average of the explicit and implicit writing, which gives

un+1
j − unj
∆t

− µ

2

(
unj+1 − 2unj + unj−1

∆x2
+
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2

)
= fj. (17)

After calculations, we get

(1+λ)un+1
j −λ

2
(un+1

j+1+u
n+1
j−1 ) = (1−λ)unj +

λ

2
(unj+1+u

n
j−1)+∆tfj with λ = µ

∆t

∆x2
.

(18)
This is the Crank-Nicholson numerical scheme. By varying the index j = 1, · · · , N the
equation (18), we have

Cλu
n+1
j = Dλu

n
j +∆tFj

this allows to obtain in matrix form

un+1
j = C−1

λ Dλu
n
j + C−1

λ ∆tFj, (19)

with

Cλ =



1 + λ −λ
2

0 0 · · · 0

−λ
2

1 + λ −λ
2

0 · · · 0

0 −λ
2

1 + λ −λ
2

· · · 0

... . . . . . . . . . −λ
2

0 0 · · · −λ
2

1 + λ


and
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Dλ =



1− λ
λ

2
0 0 · · · 0

λ

2
1− λ

λ

2
0 · · · 0

0
λ

2
1− λ

λ

2
· · · 0

... . . . . . . . . . λ

2

0 0 · · · λ

2
1− λ



.

4. STUDY OF THE ANALYTICAL STABILITY IN L∞([0, 1]) AND L2([0, 1])

OF THE EXPLICIT EULER, IMPLICIT EULER AND CRANCK-NICHOLSON
METHODS

In this section, we study the analytical stability in norm L∞([0, 1]) and in norm
L2([0, 1]) of explicit Euler , Implicit Euler and Cranck-Nicholson methods for the heat
equation.

4.1. Analytical stability in L∞([0, 1]) and in L2([0, 1]) for the explicit Euler
method

This paragraph serves to study the analytical stability in L∞([0, 1]) and in L2([0, 1]

of the explicit Euler method. To do this, we first establish the Von-Neumann-Fourier
stability criterion that we use thereafter to establish the stability of said method.

Von-Neumann-Fourier criterion

In this criterion, one does not take into account the edge effects of discretization
(limiting conditions) and one analyzes only the equation (11). This comes to consider
the problem (12) no longer in a bounded interval but in the whole R and to ignore the
boundary conditions. We also take f ≡ 0. In this case, the exact solution of (12) is
bounded. We then want to find this property on the approximations unj . We seek a
solution in the following particular form, with ξ ∈ R

unj = ξneikπj∆x for k fixed. (20)

Since |unj | = |ξn|, we impose, for any mode k, the condition

|ξ| ≤ 1, (21)
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so that the approximate solution is bounded, for all n. It is the condition of stability
corresponding to the criterion of Von-Neumann. The parameter ξ is called amplification
factor associated with the mode k.

For all
i ∈ C and xj = j∆x where ∆x is the constant step of discretization in space,
we have

unj = ξneikπxj ≃ ξneikπj∆x (22)

un+1
j = ξn+1eikπxj ≃ ξ(ξneikπj∆x) (23)

unj−1 = ξneikπxj−1 = ξneikπ(j−1)∆x ≃ ξneikπj∆.e−ikπ∆x (24)

unj+1 = ξneikπxj+1 = ξneikπ(j+1)∆x ≃ ξneikπj∆.eikπ∆x (25)

by replacing the expressions (22), (23), (24) and (25) in the relation (11) for f ≡ 0, we
obtain

ξ(ξneikπj∆x) = (1− 2λ)ξneikπj∆x + λ(ξneikπj∆.eikπ∆x + ξneikπj∆.e−ikπ∆x) (26)

Dividing (26) by ξneikπj∆x, we find

ξ = (1− 2λ) + λ(eikπj∆x + e−ikπj∆x),

= 1− 2λ+ 2λ cos(kπ∆x),

= 1 + 2λ[cos(kπ∆x)− 1],

since cos(kπ∆x) − 1 = −2 sin2

(
kπ∆x

2

)
therefore, by replacing this equality in the

previous relation, we obtain

ξ = 1− 4λ sin2

(
kπ∆x

2

)
(27)

with the relation (27), the stability condition (21) becomes

−1 ≤ 1− sin2

(
kπ∆x

2

)
≤ 1,

For all k, that to say

4λ sin2

(
kπ∆x

2

)
≤ 2.

For this last inequality to be verified whatever k, we impose 4λ ≤ 2 that is to say

λ ≤ 1

2
that is to say µ

∆t

∆x2
≤ 1. (28)

The condition (28) is a condition of stability (according to the criterion of
Von-Neumann-Fourier) which relates the step in time to the step of space.
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Stability in L∞([0, 1])

In this subsection, we study the analytical stability of the solution unj of the heat
equation of the explicit Euler scheme.

let us consider the relation (13) that is to say

un+1
j = Aλu

n
j +∆tFj with Aλ = Id − λA.

By taking the semi-norm and the sup member to member, we have

|un+1
j | = |Aλu

n
j +∆tFj|

≤ |Aλu
n
j |+ |∆tFj|

sup
j=1,··· ,N

|un+1
j | ≤ sup

j=1,··· ,N
|Aλ||unj |+∆t sup

j=1,··· ,N
|Fj|

||un+1||∞ ≤ ||Aλ||∞||un||∞ +∆t||f ||L∞([0,1])

Now, since λ ≤ 1

2
, we deduce that

||Aλ||∞ = max
1≤i≤N

N∑
j=1

|mij| = |1− 2λ|+ 2λ = 1

which implies
||un+1||∞ ≤ ||unj ||∞ +∆t||f ||L∞([0,1]) (29)

By simple induction, we have

For n = 0, ||u1||∞ ≤ ||u0||∞ +∆t||f ||L∞([0,1])

For n = 1, ||u2||∞ ≤ ||u1||∞ +∆t||f ||L∞([0,1]) ≤ ||u0||∞ + 2∆t||f ||L∞([0,1])

for n = 2, ||u3||∞ ≤ ||u2||∞ +∆t||f ||∞ ≤ ||u0||∞ + 3∆t||f ||L∞([0,1])

...

at rank n, ||un+1||∞ ≤ ||un||∞ +∆t||f ||∞ ≤ ||u0||∞ + T ||f ||L∞([0,1])

that is to say, ||un+1||∞ ≤ ||u0||∞ + T ||f ||L∞([0,1]) hence the result.

Consequently the explicit Euler scheme is stable in L∞([0, 1]).

Stability in L2([0, 1])

Here, we study the analytical stability of the solution unj of the heat equation of the
explicit Euler scheme.
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Indeed, consider the Euclidean norm ||u||2 =
( N∑

i=1

u2i

) 1
2

.

By taking member by member the previous norm in the relation (13), we obtain

||un+1||2 ≤ ||Aλ||2||un||2 +∆t||f ||2 (30)

The matrix Aλ being symmetrical, we have

||Aλ||2 = ρ(Aλ) = max
k

|λk|,

where λk denotes the eigenvalues of Aλ = Id − λA.

We have λk = 1− 4λ sin2

[
kπ

2(N + 1)

]
, for k = 0, · · · , N.

Therefore, we see that λk is exactly the amplification factor ξ associated with the mode

k of the Von-Neumann criterion. Thus, with λ ≤ 1

2
we have |λk| ≤ 1 and therefore

||Aλ||2 ≤ 1.

thus , the equation (30) becomes

||un+1||2 ≤ ||un||2 +∆t||f ||2 (31)

by simple induction, we have

For n = 0, ||u1||2 ≤ ||u0||2 +∆t||f ||2
For n = 1, ||u2||2 ≤ ||u1||2 +∆t||f ||2 ≤ ||u0||2 + 2∆t||f ||2
For n = 2, ||u3||2 ≤ ||u2||2 +∆t||f ||2 ≤ ||u0||2 + 3∆t||f ||2

...

at rank n, ||un+1||2 ≤ ||un||2 +∆t||f ||2 ≤ ||u0||2 + T max ||f ||2

that is to say ||un+1||2 ≤ ||u0||2 + T max ||f ||2 (32)

Hence the stability in L2([0, 1]) of the explicit Euler scheme.

4.2. Analytical stability in L∞([0, 1]) and in L2([0, 1]) for the implicit Euler
method

In this section, we study the analytical stability in L∞([0, 1]) and in L2([0, 1] of the
implicit Euler method. To do so, we first establish the Von-Neumann-Fourier stability
criterion that we use to establish the stability of said method.
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Von-Neumann-Fourier criterion

With f ≡ 0, we are looking for the solution of the relation (15).
let unj = ξneikπx, i ∈ C and xj = j∆x where ∆x

is the constant step of discretization in space,
thus

unj = ξneikπxj ≃ ξneikπj∆x (33)

un+1
j = ξn+1eikπxj ≃ ξ(ξneikπj∆x) (34)

un+1
j−1 = ξn+1eikπxj−1 = ξ(ξneikπ(j−1)∆x) ≃ ξ(ξneikπj∆.e−ikπ∆x) (35)

un+1
j+1 = ξn+1eikπxj+1 = ξ(ξneikπ(j+1)∆x) ≃ ξ(ξneikπj∆.eikπ∆x) (36)

By replacing expressions (33), (34), (35) and (36) in the relation (15) and by posing
fj = 0, we obtain

ξneikπj∆x = (1+2λ)ξ(ξneikπj∆x)−λξ(ξneikπj∆.eikπ∆x)−λξ(ξneikπj∆.e−ikπ∆x) (37)

dividing (30) by ξneikπj∆x, we find

1 = (1 + 2λ)ξ − λξeikπ∆x − λξe−ikπ∆x (38)

which implies

(1 + 2λ)ξ − λξ(eikπ∆x + e−ikπ∆x) = 1,

(1 + 2λ)ξ − 2λξ cos(kπ∆x) = 1,

ξ[1 + 2λ− 2λ cos(kπ∆x)] = 1

ξ[1 + 2λ(1− cos(kπ∆x))] = 1. (39)

Since
1− cos(kπ∆x) = 2 sin2(

kπ∆x

2
),

then by replacing this equality in the relationship (32), we obtain

ξ[1 + 4λ sin2(
kπ∆x

2
)] = 1

which implies

ξ =
1

1 + 4λ sin2(kπ∆x
2

)

For any k, we clearly have 0 ≤ ξ ≤ 1 and consequently the implicit Euler scheme is
unconditionally stable within the meaning of the Von-Neumann criterion.
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4.2.1 Analytical stability in L∞([0, 1]) for the implicit Euler method

In this subsection, we study the analytical stability in L∞([0, 1]) of the solution unj of the
heat equation from the implicit Euler scheme. Indeed, we use the stability criterion of
Von-Neumann-Fourier obtained previously and the principle of the maximum. Consider
the relation (15)

unj = (1 + 2λ)un+1
j − λun+1

j+1 − λun+1
j−1 −∆tfj

which implies
(1 + 2λ)un+1

j = unj + λun+1
j+1 + λun+1

j−1 +∆tfj

By taking the semi-norm member to member, we have

(1 + 2λ)|un+1
j | = |unj + λun+1

j+1 + λun+1
j−1 +∆tfj|

Using the triangular inequality, we get

(1 + 2λ)|un+1
j | ≤ |unj |+ λ|un+1

j+1 |+ λ|un+1
j−1 |+ |∆tfj|

We deduce, for j = 1, · · · , N

(1 + 2λ)||un+1
j ||∞ ≤ ||unj ||∞ + λ||un+1

j+1 ||∞ + λ||un+1
j−1 ||∞ +∆t||f ||L∞([0,1])

After calculations, we get

||un+1||∞ ≤ ||un||∞ +∆t||f ||L∞([0,1]) (40)

By varying n, we get

||un+1||∞ ≤ ||u0||∞ + T ||f ||L∞([0,1]) (41)

Hence the stability in L∞([0, 1]) for the implicit Euler method.

4.2.2 Analytical stability in L2([0, 1]) for the implicit Euler method

In this subsection, we study the analytical stability in L2([0, 1]) of said method.
Indeed,with homogeneous Dirichlet conditions, the linear system (16) becomes

un+1
j = B−1

λ (unj +∆tFj), avec B−1
λ = Id + λA, (42)

We deduce that
||un+1||2 ≤ ||B−1

λ ||2(||un||2 +∆t||f ||2). (43)
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since
B−1

λ =
1

mink |µk|
,

where µk are the eigenvalues of Bλ = Id + λA. So we have µk = 1 + λβk where

βk = 4 sin2

[
kπ

2(N + 1)

]
are the eigenvalues of A. We thus obtain

µk = 1 + 4λ sin2

[
kπ

2(N + 1)

]
> 1, for k = 1 · · · , N (44)

therefore ||B−1
λ ||2 ≤ 1.

The relation (43) becomes

||un+1||2 ≤ ||un||2 +∆t||f ||2 (45)

By varying n, we obtain

||un+1||2 ≤ ||u0||2 + T max ||f ||2 (46)

From where the analytical stability of the implicit Euler method in L2([0, 1]).

4.3. Analytical stability in L∞([0, 1]) and in L2([0, 1]) for the Cranck-Nicholson
method

At this step of the work, we study the analytical stability in L∞([0, 1]) and in
L2([0, 1]) of the solution unj from the Cranck-Nicholson scheme. We first establish the
Von-Neumann-Fourier stability criterion that we use for the stability of said method.

Von-Neumann-Fourier criterion

Let unj = ξneikπx, i ∈ C and xj = j∆x where ∆x

is the constant step of discretization in space,
thus:

unj = ξneikπxj ≃ ξneikπj∆x (47)

un+1
j = ξn+1eikπxj ≃ ξ(ξneikπj∆x) (48)

unj−1 = ξneikπxj−1 = ξneikπ(j−1)∆x ≃ ξneikπj∆.e−ikπ∆x (49)

unj+1 = ξneikπxj+1 = ξneikπ(j+1)∆x ≃ ξneikπj∆.eikπ∆x (50)

By replacing expressions (47), (48) , (49) and (50) in the relation (18) and by posing
fj ≡ 0, we obtain

(1 + λ)ξn+1eikπj∆x − λ

2
(ξn+1eikπ(j+1)∆x + ξn+1eikπ(j−1)∆x)

= (1− λ)ξneikπj∆x +
λ

2
(ξneikπ(j+1)∆x + ξneikπ(j−1)∆x)

(51)
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by dividing (51) par ξneikπj∆x, we find

(1 + λ)ξ − λ

2
(ξeikπ∆x + ξe−ikπ∆x) = 1− λ+

λ

2
(eikπ∆x + e−ikπ∆x)

ξ[(1 + λ)− λ

2
(eikπ∆x + e−ikπ∆x)]

= 1− λ+
λ

2
(eikπ∆x + e−ikπ∆x)

ξ[1 + λ(1− cos(kπ∆x))] = 1 + λ[cos(kπ∆x)− 1]

ξ[1 + 2λ sin2(
kπ∆x

2
)] = 1− 2λ sin2(

kπ∆x

2
)

Which implies

ξ =
1− 2λ sin2(

kπ∆x

2
)

1 + 2λ sin2(
kπ∆x

2
)

(52)

We have |ξ| ≤ 1. The Crank-Nicholson scheme is unconditionally stable in the sense
of Von-Neumann.

4.3.1 Analytical stability in L∞([0, 1]) for the Cranck-Nicholson method

We study the analytical stability in L∞([0, 1]) of the Cranck-Nicholson method used
for the heat equation problem. To do this, we use the Von-Neumann-Fourier condition
obtained previously and the maximum principle.

Consider linear interpolation (18) between unj−1, u
n
j , un+1

j , un+1
j−1 and un+1

j+1

(1 + λ)un+1
j =

λ

2
(un+1

j+1 + un+1
j−1 ) + (1− λ)unj +

λ

2
(unj+1 + unj−1) + ∆tfj

Using the maximum principle, (see [9]), we obtain

(1 + λ)||un+1||∞ ≤ λ||un+1||∞ + (λ+ |1− λ|)||un||∞ +∆t||f ||L∞([0,1])

Or λ ≤ 1 therefore λ+ |1− λ| = λ+ 1− λ = 1,

which allows to obtain after calculations, the relation

||un+1||∞ ≤ ||un||∞ +∆t||f ||L∞([0,1]) (53)

By varying n, we obtain

||un+1||∞ ≤ ||u0||∞ + T ||f ||L∞([0,1]) (54)

Hence the analytical stability in L∞([0, 1]) for the Cranck-Nicholson method.
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4.3.2 Analytical stability in L2([0, 1]) for the Cranck-Nicholson method

We want to study the analytical stability in L2([0, 1]) of the Cranck-Nicholson method
used for solving the problem of the heat equation.
Let us now study the stability L2([0, 1]) of the Cranck-Nicholson scheme, using the
lemma 4.1.5 (see [9]). Considering the homogeneous Dirichlet conditions, the system
(19) is written

un+1
j = Pun +

∆t

2

(
Id +

λ

2
A

)−1

Fj with P =

(
Id +

λ

2
A

)−1(
Id −

λ

2
A

)
. (55)

we deduce that

||un−1||2 ≤ ||P ||2||un||2 +
∆t

2
||
(
Id +

λ

2
A

)−1

||2 ||f ||2. (56)

By property 3 of lemma 4.1.5, P is symmetric and ||P ||2 = ρ(P ) ≤ 1.

Note now that C−1
λ =

(
Id +

λ

2
A

)−1

. We have ||C−1
λ ||2 = ρ(C−1

λ ) because C−1
λ is

symmetric and the eigenvalues of C−1
λ are given by ϕk =

1

1 + λ
2
µk

where µk are the

eigenvalues of A. Since µk > 0, we have ϕk < 1, ∀k and therefore ||C−1
λ ||2 ≤ 1. We

thus deduce from (55),
||un+1||2 ≤ ||un||2 +∆t||f ||2 (57)

We therefore have by induction

||un+1||2 ≤ ||u0||2 + T max ||f ||2 (58)

Therefore the Crank-Nicholson scheme is a time-precise scheme (order 2) which is
unconditionally L2 -stable under the condition λ ≤ 1.

5. CALCULATION OF THE TRUNCATION ERROR OF THE HEAT
EQUATION

In this section, we compute the truncation error of the explicit Euler, implicit Euler and
Cranck-Nicholson methods that we denote respectively ζE , ζI and ζC . Therefore, we
will consider in all calculations f ≡ 0.

5.1. Calculation of the truncation error of the heat equation from the explicit
Euler method

Here we want to calculate the truncation error of the explicit Euler method for the
problem of the heat equation in order to prove the convergence of the chosen method.
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Let the heat equation
∂u

∂t
(x, t)− µ

∂2u

∂x2
(x, t) = 0 (59)

Let us first use the Taylor expansion of order 3 in time
forward scheme

u(x, t+∆t) = u(x, t) + ∆t
∂u

∂t
(x, t) +

∆t2

2!

∂2u

∂t2
(x, t) +O(∆t3)

u(x, t+∆t)− u(x, t) = ∆t
∂u

∂t
(x, t) +

∆t2

2!

∂2u

∂t2
(x, t) +O(∆t3) (60)

dividing (60) by ∆t we obtain

u(x, t+∆t)− u(x, t)

∆t
=
∂u

∂t
(x, t) +

∆t

2

∂2u

∂t2
(x, t) +O(∆t2) (61)

but
∂u

∂t
(x, t) = µ

∂2u

∂x2
(x, t), (62)

using (62), we prove that

∂2u

∂t2
(x, t) =

∂

∂t

[
∂u

∂t
(x, t)

]
,

= µ
∂2

∂x2

[
∂u

∂t
(x, t)

]
,

∂2u

∂t2
(x, t) = µ2∂

4u

∂x4
(x, t). (63)

Replacing (62) and (63) in (61) we obtain

u(x, t+∆t)− u(x, t)

∆t
= µ

∂2u

∂x2
(x, t) + µ2∆t

2

∂4u

∂x4
(x, t) +O(∆t2) (64)

In addition, let us use the Taylor expansion of order 5 in space.
Backward scheme

u(x−∆x, t) = u(x, t)−∆x
∂u

∂x
(x, t)+

∆x2

2!

∂2u

∂x2
(x, t)−∆x3

3!

∂3u

∂x3
(x, t)+

∆x4

4!

∂4u

∂x4
(x, t)+O(∆x5)

(65)

u(x+∆x, t) = u(x, t)+∆x
∂u

∂x
(x, t)+

∆x2

2!

∂2u

∂x2
(x, t)+

∆x3

3!

∂3u

∂x3
(x, t)+

∆x4

4!

∂4u

∂x4
(x, t)+O(∆x5)

(66)
the sum member to member of (65) and (66) gives

u(x−∆x, t) + u(x+∆x, t) = 2u(x, t) + ∆x2
∂2u

∂x2
(x, t) +

∆x4

12

∂4u

∂x4
(x, t) +O(∆x5)
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u(x+∆x, t)−2u(x, t)+u(x−∆x, t) = ∆x2
∂2u

∂x2
(x, t)+

∆x4

12

∂4u

∂x4
(x, t)+O(∆x5) (67)

dividing (67) by ∆x2, we obtain

u(x+∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
=
∂2u

∂x2
(x, t) +

∆x2

12

∂4u

∂x4
(x, t) +O(∆x3)

(68)
Let us Multiply (68) by −µ

−µu(x+∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
= −µ∂

2u

∂x2
(x, t)−µ∆x

2

12

∂4u

∂x4
(x, t)+O(∆x3)

(69)
The addition member to member of (64) and (69) gives

u(x, t+∆t)− u(x, t)

∆t
− µ

u(x+∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2

= µ
∂2u

∂x2
(x, t) + µ2∆t

2

∂4u

∂x4
(x, t)− µ

∂2u

∂x2
(x, t)

−µ∆x
2

12

∂4u

∂x4
(x, t) +O(∆x3 +∆t2)

= µ2∆t

2

∂4u

∂x4
(x, t)− µ

∆x2

12

∂4u

∂x4
(x, t) +O(∆x3 +∆t2)

we obtain

ζE =
µ

2

(
µ∆t− ∆x2

6

)
∂4u

∂x4
(x, t) +O(∆x3 +∆t2) (70)

From where the truncation error of order 1 in time and order 2 in space of the explicit
Euler method for the heat equation.

5.2. Calculation of the truncation error of the heat equation from the implicit
Euler method

Here, we want to calculate the truncation error of the implicit Euler method for the
problem of the heat equation in order to prove the convergence of the chosen method.
Let the heat equation

∂u

∂t
− µ

∂2u

∂t2
(x, t) = 0

In the relation (68), replace t by t + ∆t, we obtain after a Taylor expansion in (xj, tn)

that

u(x+∆x, t+∆t)− 2u(x, t+∆t) + u(x−∆x, t+∆t)

∆x2
=
∂2u

∂x2
(x, t)+

∆x2

12

∂4u

∂x4
(x, t)+

+∆t
∂3u

∂t∂x2
(x, t) +O(∆x3 +∆t2)
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=
∂2u

∂x2
(x, t) +

∆x2

12

∂4u

∂x4
(x, t) + ∆t

∂2

∂x2

(
∂u

∂t
(x, t)

)
+O(∆x3 +∆t2) (71)

Replacing (62) in (71), we find

u(x+∆x, t+∆t)− 2u(x, t+∆t) + u(x−∆x, t+∆t)

∆x2

=
∂2u

∂x2
(x, t) +

(
∆x2

12
+ µ∆t

)
∂4u

∂x4
(x, t)+

+O(∆x3 +∆t2) (72)

Let us multiply (72) by −µ

−µu(x+∆x, t+∆t)− 2u(x, t+∆t) + u(x−∆x, t+∆t)

∆x2
= −µ∂

2u

∂x2
(x, t)−

−µ
(
∆x2

12
+ µ∆t

)
∂4u

∂x4
(x, t) +O(∆x3 +∆t2) (73)

By making the sum member to member of the relations (64) and (73) we obtain the
truncation error of order 1 in time and order 2 in space of the implicit Euler scheme

ζI = −µ
2

(
µ∆t+

∆x2

6

)
∂4u

∂x4
(x, t) +O(∆x3 +∆t2) (74)

5.3. Calculation of the truncation error of the heat equation from the
Cranck-Nicholson method

The Crank-Nicholson scheme is based on the explicit and implicit Euler schemes. Thus
the Cranck-Nicholson error is the average between the error of order 2 in space below

ζC = −µ∆x
2

12

∂4u

∂x4
(x, t) +O(∆x3 +∆t2) (75)

6. STUDY OF THE CONVERGENCE OF METHODS

In this section, we will study the convergence of the solution unj of the heat equation
of the explicit Euler, implicit Euler and Cranck-Nicholson schemes towards the exact
solution u(x, t),(see [8]). To do this, we can either try to study convergence directly,
which can be complicated and not always possible, or use the consistency and stability
of our scheme because it is generally much easier to study than its convergence.

6.1. Convergence for the explicit Euler method of the heat equation
To study the convergence of the solution unj from the heat equation of the explicit Euler
scheme to the exact solution u(x; t), we first study the consistency of said scheme.
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Study of the consistency

This scheme is said to be consistent if the truncation error tends towards zero when
the step of time discretization ∆t and the space discretization step ∆x tend to zero
independently.

According to our analysis, the truncation error is

ζE =
µ

2

(
µ∆t− ∆x2

6

)
∂4u

∂x4
(x, t) +O(∆x3 +∆t2)

By taking the limit we have

lim
(∆x,∆t)→(0,0)

ζE = lim
(∆x,∆t)→(0,0)

µ

2

(
µ∆t− ∆x2

6

)
∂4u

∂x4
(x, t) = 0 (76)

whith

O(∆x3 +∆t2) → 0 when (∆x,∆t) → (0, 0)

Hence the consistency of the explicit Euler scheme. The scheme being stable and
consistent, then the numerical solution of unj of the explicit Euler scheme for the heat
equation is convergent.

6.2. Convergence for the implicit Euler method of the heat equation
To study the convergence of the solution unj of the heat equation of the implicit Euler
scheme to the exact solution u(x; t), let us first study the consistency of the scheme.

Study of the Consistency

This scheme is said to be consistent if the truncation error tends towards zero when
the step of time discretization ∆t and the space discretization step ∆x tend to zero
independently. Indeed, let us calculate the limit of the truncation error (74).

lim
(∆x,∆t)→(0,0)

ζI = lim
(∆x,∆t)→(0,0)

−µ
2

(
µ∆t+

∆x2

6

)
∂4u

∂x4
(x, t) = 0 (77)

with

O(∆x3 +∆t2) → 0 when (∆x,∆t) → (0, 0)

Hence the implicit Euler scheme is consistent. Therefore the numerical solution of unj
of the implicit Euler scheme for the heat equation is convergent.
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6.3. Convergence for the method of the Crank-Nicholson method of the heat
equation

To study the convergence of the solution unj of the heat equation of the
Cranck-Nicholson scheme towards the exact solution u(x; t), let us first study the
consistency.

Study of the consistency

This scheme is said to be consistent if the truncation error tends towards zero when
the step of time discretization ∆t and the space discretization step ∆x tend to zero
independently. For that, let us compute the limit of the error of truncation (75) of the
scheme of Cranck-Nicholson.

lim
(∆x,∆t)→(0,0)

ζC = lim
(∆x,∆t)→(0,0)

−µ∆x
2

12

∂4u

∂x4
(x, t) = 0 (78)

whith

O(∆x3 +∆t2) → 0 when (∆x,∆t) → (0, 0)

So the Crank-Nicholson scheme is consistent. Therefore the numerical solution of unj
from the Cranck-Nicholson scheme for the heat equation is convergent.

7. NUMERICAL COMPARISON OF THE ERRORS IN NORM L2(Ω) OF THE
SOLUTIONS OBTAINED

In this section, we want to calculate the different errors in norm L2(Ω) of the solutions
obtained by solving the heat equation by the numerical methods of explicit Euler,
implicit Euler and Cranck-Nicholson respectively . These errors are calculated by the
formula:

||e||L2 =

√√√√ N∑
i=1

(ui − u∗i )
2 (79)

where ui and u∗i represent the different values (or components) of the
numerical solutions obtained by the methods of explicit Euler, implicit Euler and
Cranck-Nicholson in the resolution of the heat equation (1)-(3) for N points.
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In order to calculate and compare the errors between the different solutions by the
formula (79) of the three numerical methods stated above, we set the number of steps
in space to 19 (N = 19) and the number step in time to 99 (T = 99) in all the
calculations. Then, we seek to vary the thermal diffusion coefficient µ and the time
step ∆t of the various numerical methods especially explicit Euler, implicit Euler and
Cranck-Nicholson methods.

• By taking µ = 0.01 and ∆t = 0.002, the Table 1 and the Figure 1 give and
display respectively the components and solutions of the numerical resolution of the
heat equation (1) - (3) by the explicit Euler, implicit Euler and Cranck-Nicholson
methods.

Explicit Euler Implicit Euler

Cranck-Nicholson

Figure 1: Representation of the solution of the problem of the heat equation by the
explicit Euler, implicit Euler and Cranck-Nicholson methods for µ = 0.01, ∆t = 0.002,
N = 19, T = 99 and f(x) = e−200(x− 1

4
)2 .
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Table 1: Different values (or components) of the solution of the heat equation by three
methods: explicit Euler, implicit Euler and Cranck-Nicholson for µ = 0.01 , N = 19

,∆t = 0.002, T = 99 and f(x) = e−200(x− 1
4
)2

Explicit Euler Implicit Euler Cranck-Nicholson
0.1782263 0.1806513 0.1805966
0.3449844 0.3567639 0.3566755
0.4942958 0.5384747 0.5384150
0.6241786 0.7355206 0.73560
0.7341622 0.8900153 0.8902163
0.8241602 0.9354999 0.9355897
0.8941600 0.9383305 0.9382754
0.94416 0.9559227 0.9558462
0.97416 0.9766143 0.9765736
0.98416 0.9845888 0.9845749
0.97416 0.9742244 0.9742209
0.94416 0.9441685 0.9441678

0.8941600 0.8941610 0.8941609
0.8241602 0.8241604 0.8241603
0.7341622 0.7341627 0.7341624
0.6241786 0.6241811 0.6241798
0.4942958 0.4943053 0.4943005
0.3449844 0.3450097 0.3449971
0.1782263 0.1782614 0.1782439

Error between explicit and implicit Euler solutions

Here, we make a numerical application of the formula (79) to calculate the numerical
error between the explicit and implicit Euler solutions obtained in solving the heat
equation (see Table 1). By considering u and u∗ the components (or values) of solutions
(Table 1) by explicit and implicit Euler respectively, we obtain

||e||L2 = 0.22969063977 (80)
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Error between explicit Euler and Crank-Nicholson solutions

In this section, we apply the formula (79) calculating the numerical error between the
explicit Euler and Cranck-Nicholson solutions obtained in solving the heat equation
(see Table 1). Considering u and u∗ the components of the solutions by explicit Euler
and Cranck-Nicholson respectively, we obtain

||e||L2 = 0.231005922 (81)

Error between implicit Euler and Crank-Nicholson solutions

In this section, we calculate the numerical error between the implicit Euler and
Cranck-Nicholson solutions obtained in the resolution of the heat equation by making
the numerical application of the formula (79) of which u and u∗ represent respectively
the values of the solutions obtained by implicit Euler and Cranck-Nicholson (see Table
1). After calculations, we obtain

||e||L2 = 0.000286277066 (82)

• by taking µ = 0.3 and ∆t = 0.0005, the Table 2 and the Figure 2 give and display
respectively the components and solutions of the numerical resolution of the heat
equation (1) - (3) by the methods of explicit Euler, implicit Euler and Cranck-Nicholson.

Error between explicit and implicit Euler solutions

Here, we make a numerical application of the formula (79) to calculate the numerical
error between the explicit and implicit Euler solutions obtained in the resolution of the
heat equation (see Table 2). By considering u and u∗ the components (or values) of the
solutions (Table 2 ) by explicit and implicit Euler respectively, we obtain

||e||L2 = 0.0418595628 (83)

Error between explicit Euler method and Crank-Nicholson

In this section, we apply the formula (79) calculating the numerical error between the
explicit Euler and Cranck-Nicholson solutions obtained in solving the heat equation
(see Table 2). By considering u and u∗ the components of the explicit and implicit
Euler solutions respectively, we obtain

||e||L2 = 0.081322329098 (84)



Identification of the Diffusion Parameter in the 1D Heat Equation Model 399

Table 2: Different values (or components) of the solution of the heat equation by three
methods: explicit Euler, implicit Euler and Cranck-Nicholson for µ = 0.3 , N = 19

,∆t = 0.0005, T = 99 and f(x) = e−200(x− 1
4
)2

Euler implicit Euler implicit Cranck-Nicholson
0.1443489 0.1479206 0.1478626
0.2841340 0.2919131 0.2918145
0.4151620 0.4282953 0.4281824
0.5338909 0.5530032 0.5528996
0.6375685 0.6597231 0.6596417
0.7242252 0.7433730 0.7433147
0.7925616 0.8058830 0.8058414
0.8417872 0.8501543 0.8501209
0.8714628 0.8764271 0.8763955
0.8813755 0.8841823 0.8841479
0.8714628 0.8729912 0.8729501
0.8417872 0.8426154 0.8425621
0.7925616 0.7930460 0.7929739
0.7242252 0.7245709 0.724474
0.6375685 0.6378791 0.6377560
0.5338909 0.5342010 0.5340589
0.4151620 0.4154582 0.4153149
0.2841340 0.2843742 0.2842557
0.1443489 0.1444848 0.1444172

Error between implicit Euler solutions and Crank-Nicholson

In this section, we calculate the numerical error between the implicit Euler and
Cranck-Nicholson solutions obtained in the resolution of the heat equation by making
the numerical application of the formula (79) of which u and u∗ respectively represent
the values of the solutions obtained by implicit Euler and Cranck-Nicholson (see Table
2). After calculations, we obtain

||e||L2 = 0.0000001452229 (85)

Discussion In section 7, we calculated the errors in norm L2(Ω) of the solutions
obtained by solving the heat equation by the numerical methods of explicit Euler,
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Explicit Euler Implicit Euler

Cranck-Nicholson

Figure 2: Representation of the solution of the problem of the heat equation by
explicit Euler, implicit Euler and Cranck-Nicholson method respectively, for µ = 0.3,
∆t = 0.0005, N = 19, T = 99, and f(x) = e−200(x− 1

4
)2 .

implicit Euler and Cranck-Nicholson. We found that the errors (82) and (85) between
the implicit Euler solutions and Cranck-Nicholson calculated for the values of: µ =

0.01, ∆t = 0.002 and µ = 0.3, ∆t = 0.0005 respectively are very close to each
other. This leads us to choose the solution obtained by the Cranck-Nicholson method
with µ = 0.3 and ∆ = 0.0005 to solve the problem in the section 8.

8. IDENTIFICATION PROBLEM OF THE DIFFUSION COEFFICIENT µ IN
THE THE HEAT EQUATION MODEL

To identify the diffusion coefficient in the model (2.1), we have defined an optimization
problem of the least square type ψ = ψ(µ) which depends on the square of the
difference of the numerical and experimental celerities of heat propagation, (see [14],
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[6]). The objective function ψ = ψ(µ) is defined as follows:

ψ(µ) =
1

2
(ĉ− c∗)2, avec ĉ = ĉ(µ). (86)

ĉ is the numerical speed and c∗ is the experimental speed.

We will look for µ∗ minimizing ψ = ψ(µ) where u is the solution of (1) with the
boundary conditions (2) and initial (3).

8.1. Differentiability of u of the heat equation model with respect to µ
We want to minimize the function ψ = ψ(µ). For this, we want to check if the
function ψ is differentiable with respect to the heat diffusion coefficient µ, that is to say
µ 7→ uµ 7→ c(uµ) 7→ ψ(c). The chain derivation requires that the function relating µ to
ψ be differentiable, in particular uµ with respect to µ. We want to check if the solution
of the equation (1) is differentiable with respect to the heat diffusion coefficient µ.
To do this, denote by δu = δu(x, t) the directional derivative of the solution of the
model of the heat equation and δµ the increment of the heat diffusion coefficient, (see
[13]). We will admit that the source term f(x) = 0. The equation (1) becomes

∂u

∂t
− µ

∂2u

∂x2
= 0. (87)

Let uµ be the solution of
∂uµ
∂t

− µ
∂2uµ
∂x2

= 0. (88)

we consider u+ δu the solution of

∂(uµ + δu)

∂t
− (µ+ δµ)

∂2(uµ + δu)

∂x2
= 0. (89)

combining equations (88) and (89), we obtain

∂δu

∂t
− (µ+ δµ)

∂2δu

δx2
= δµ

∂2uµ

∂x2
, (90)

which is equivalent to the system

∂

∂t

δu
0

− ∂2

∂x2

[µ+ δµ

0


δu

0

]
︸ ︷︷ ︸

Diffusion term

= δµ


∂2uµ

∂x2

0


︸ ︷︷ ︸

Source term

, (91)

which leads to
(δu)t = (δu)xx + (δuµ)xx. (92)
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We use the following initial condition because not being interested in studying the
variation of the solution u compared to the initial condition

δu(x, 0) = δu0(x) with u0(x) = 4x(1− x) (93)

The system (92) proves that the solution u = u(x, t), x ∈ [0, 1], t ∈ [0, T ] is
differentiable with respect to µ.

9. NUMERICAL OPTIMIZATION METHOD USED

We now present the numerical method used to minimize the function
ψ = ψ(µ). Since this function is a composite function µ 7→ uµ 7→ c(uµ) 7→ ψ(c),
with a complex dependency and differentiable with respect to µ. We therefore used
a differentiable optimization method, in particular gradient descent method with fixed
steps to identify the heat diffusion coefficient µ of the heat equation model.

9.1. Gradient descent method with fixed steps
Gradient descent method with fixed steps allows to calculate numerically µ∗ minimising
ψ = ψ(µ) such that

ψ(µ∗) = min
µ∈R

ψ(µ)

The principle is to build an iterative algorithm of the form,(see [9], and [2])

µj+1 = µj − ρ∇ψ(µj) ∀j ∈ N

where −∇ψ(µj) is the direction of strongest decay of ψ, ρ ∈ R is the step of the method
and µ0 ∈ R the initial value. For j ∈ N, the iterated µj+1 is calculated from µj by

µ0 given in R
µj+1 = µj − ρ∇ψ(µj)

ρ ∈ R fixed

(94)

This method requires the calculation of the gradient of ψ(µj), that is to say∇ψ(µj)

9.1.1 Calculation of the gradient

The idea here is to increment the parameters to calculate an approximation by the finite
difference method of the partial derivative of ψ(µj) with respect to µ

that is to say ∇ψ(µj) =
∂ψ(µj)

∂µ
. (95)
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Indeed, the forward finite difference approximation before the previous partial
derivative following the step h gives

∂ψ(µj)

∂µ
≃ ψ(µj + h)− ψ(uj)

h
(96)

The choice of h is made by numerical test to ensure the good precision on the
computation of the gradient, (see [9]).

10. NUMERICAL VALIDATION TEST

To validate our approach, we want to retrieve, using the Gradient descent algorithm
with fixed steps, the value of the parameter µ∗ = 0.3 which is such that ψ(µ∗) = 0. We
have studied the behavior of the method according to the tolerance (δ) for a solution µ0

next to µ∗. The convergence criterion requires that

||µk+1 − µk|| ≤ δ.

For two successive iterations µk and µk+1, k ≤ kmax. We display the parameter µfinal

obtained when the convergence criterion is reached. Table 3 displays the parameter
µfinal obtained when the convergence criterion is reached for a tolerance of the order of
δ = 10−5 with different choices of µ0 to initialize the method and h = 10−2 in the finite
difference method and c∗ = 0.3653898m/s the numerical speed.

Table 3: Statistic of the constant-step gradient algorithm.

µ0 k µfinal ψ(µfinal) ||µfinal − µ0||L2(Ω)

0.2 32 0.300038 7.127D-12 0.280038
0.35 39 0.299990 1.178D-14 0.05001
0.39 39 0.3000005 8.970D-16 0.0899995
0.4 40 0.300012 3.355D-17 0.099988
0.5 40 0.300007 4.331D-18 0.199993

We read Each line of Table 3 as follows, for example for the first line: starting from
µ0 = 0.2 close to the minimizer µ∗ = 0.3, we performed 32 iterations until convergence
is reached δ < 10−5, which gives µfinal = 0.300038, then we evaluate the function
ψ = ψ(µ) at point µfinal with which the function ψ is very small and finally, we calculate
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the norm in L2(Ω) between the final µfinal and initial µ0 solutions.

For the test case of Table 3, we were able to reach the optimal solution with a precision
close to the order of 10−5 for any initial solution µ0 close to µ∗ = 0.3 the gradient
descent algorithm with fixed step requires a good choice of µ0 close to µ∗ to guarantee
convergence towards a global minimum. The fact that ψ(µfinal) = 0 at most to 10−14

confirms that this numerical method allows to identify the thermal conductivity term of
the heat equation model by correctly choosing µ0.

Discussion
The work proposed in this paper allowed us to highlight the explicit Euler, implicit
Euler and Cranck-Nicholson methods, but also to discover the importance of these
methods in the numerical resolution of the heat equation problem. We carried out a
numerical resolution of the heat equation problem by the explicit Euler, implicit Euler
and Cranck-Nicholson methods and we obtained linear systems whose matrices are
tridiagonal and symmetrical then we used the condition of Von -Neumann-Fourier and
the maximum principle to prove the analytical stability in L∞([0, 1]) and L2([0, 1])

respectively. We have proved the convergence of the solution unj by using the truncation
errors of the methods. A numerical resolution of the heat equation was carried out by
fixing the number of steps in space at 19 (N = 19) and the number of steps in time
at 99 (T = 99) then by varying the heat diffusion coefficient µ and the time step ∆t.
By using the solutions obtained by these methods, we made a comparative study of the
errors in norm L2 between these different solutions. We used this numerical comparison
to choose the solution obtained by the Cranck-Nicholson method with µ = 0.3 and
∆t = 0.0005 to solve identification problem of the diffusion coefficient µ in the heat
equation model.

11. CONCLUSION ET PERSPECTIVES

To identify the diffusion coefficient µ, we have defined an optimization problem of
the least square type depending on the numerical and experimental speeds of the
propagation of heat. Then, we proved the differentiability of the solution u of the heat
equation model with respect to the diffusion coefficient µ. Finally, we used the gradient
descent algorithm with fixed steps to identify the thermal conductivity term µ.
For future work, we plan to develop a technique for identifying the thermal conductivity
parameter of the 2D heat equation.
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